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As the first barrier of host defense, innate immunity sets up the parclose to keep

out external microbial or virus attacks. Depending on the type of pathogens,

several cytoplasm pattern recognition receptors exist to sense the attacks from

either foreign or host origins, triggering the immune response to battle with the

infections. Among them, cGAS-STING is the major pathway that mainly

responds to microbial DNA, DNA virus infections, or self-DNA, which mainly

comes from genome instability by-product or released DNA from the

mitochondria. cGAS was initially found functional in the cytoplasm, although

intriguing evidence indicates that cGAS exists in the nucleus where it is involved

in the DNA damage repair process. Because the close connection between

DNA damage response and immune response and cGAS recognizes DNA in

length-dependent but DNA sequence–independent manners, it is urgent to

clear the function balance of cGAS in the nucleus versus cytoplasm and how it

is shielded from recognizing the host origin DNA. Here, we outline the current

conception of immune response and the regulation mechanism of cGAS in the

nucleus. Furthermore, we will shed light on the potential mechanisms that are

restricted to be taken away from self-DNA recognition, especially how post-

translational modification regulates cGAS functions.

KEYWORDS
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Innate immunity response: The pivotal role of
pattern recognition receptors

To resist the invasion of pathogens, innate immunity is gradually formed during the

long-term evolution of organisms, which recognize exogenous pathogen-associated

molecular patterns and endogenous damage-associated molecular patterns through

pattern recognition receptors (PRRs). PRR mainly includes Toll-like receptors (TLRs),
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retinoic acid–inducible gene-I (RIG-I)–like receptors (RLRs),

nucleotide oligomerization domain (NOD)–like receptors

(NLRs), C-type lectin receptors (CLRs), and a series of

intracellular nucleic acid sensors (1, 2).

As type I transmembrane glycoproteins, TLRs consist of an

extracellular domain that recognizes pathogen components, a

transmembrane domain that determines subcellular localization,

and an intracellular signaling domain that is responsible for

interacting with intracellular linker molecules. Ten TLRs (TLR1

to TLR10) have been identified in humans, mainly acting

through two signal transduction pathways, the Myeloid

differentiation primary response 88 (MyD88)-dependent

pathway and the TIR-domain-containing adaptor protein

inducing interferon-b (IFNb) (TRIF)-dependent pathway,

depending on the adaptor protein (3–5). Nucleic acid–sensitive

TLRs (TLR3, TLR7, TLR8, TLR9, and TLR10) are located in the

endosomal compartment (6), whereas other TLRs that recognize

lipopeptides, lipopolysaccharide, and flagellin are located on the

plasma membrane. Of the nucleic acid–sensitive TLRs, TLR3

recognizes and binds double-stranded RNA (dsRNA) with base

specificity–independent electrostatic interactions (7), TLR7

(human TLR8) recognizes single-stranded RNA (ssRNA), and

TLR9 recognizes unmethylated CpG islands (CpGs) containing

ssDNA (8). All the above four nucleic acid receptors are

expressed as homodimers on the surface of immune cells to

recognize nucleic acids of microorganisms (9), of which TLR8

and TLR9 exist as dimers (10). Recognition of RNA and DNA by

TLRs is restricted to the endosomal compartment of immune

cells. TLR10 predominantly localized in endosomes is the least

characterized TLR10 due to it being a pseudo-gene in mice. Two

studies suggested TLR10 may suppress Myd88 signaling by

binding dsRNA (11, 12).

RLR mainly detects exogenous cytoplasmic RNA of dsRNA

viruses, and the dsRNA replication intermediates of ssRNA

viruses (13–15). Among the RLR family, the receptors RIG-I,

melanoma differentiation gene 5 (MDA5), and laboratory of

genetics and physiology 2 (LGP2) are DExH/D box helicases

(16). The DexD/H helicase domain of RLRs has ATPase and

helicase activities, and the C-terminal domain recognizes viral

RNA and undergoes conformational changes, whereas the N-

terminal caspase activation and recruitment domain (CARD) is

responsible for downstream signal transduction (17).

Recognition of viral dsRNAs is mediated by RIG-I and MDA5,

where relatively short (<1,000 bp) viral dsRNAs are recognized

by RIG-I and long-chain dsRNAs (>2,000 bp) are recognized by

MDA (18). LGP2 has no signal transduction function because it

has no CARD domain (19), but it can regulate the signal

transduction of RIG-I and MDA5 (20).

The NLR consists of a central nucleotide-binding domain for

nucleic acid binding and oligomerization, a C-terminal LRR

(leucine-rich repeat) domain that recognizes ligands and an N-
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terminal domain (21). NOD1 and NOD2 are the most typical

NLR family PRRs, among which NOD1 recognizes

diaminopimelic acid in Gram-negative bacteria, and NOD2

recognizes muramyl dipeptide in bacterial cell walls (22).

NOD2 also recognizes intact viral ssRNA, which, in turn,

activates interferon (IFN) production and anti-viral

defense (23).

CLRs, which recognize not only pathogen moieties for host

defense but also modified self-antigens, are a family of

transmembrane PPRs (24). Dectin-1 and Dectin-2 are the

most PRR-characterized CLRs, whereas Dectin-1 signaling

controls nuclear factor kB (NF-kB) and Nuclear factor of

activated T cells (NF-AT) activation, and Dectin-2 binds to

the Immunoreceptor tyrosine-based activation motif (ITAM)-

bearing molecule The g subunit of the immunoglobulin Fc

receptor (FcRg) for signaling (25, 26).
DNA sensors in cytosol

Many DNA sensors exist in the cytoplasm; although some of

them can also respond to RNA, here, we talk about the group of

sensors that can trigger the immune response under DNA

attack, in which some of them are particularly in the immune

response pathway; although some are classical DNA repair

factors, these DNA repair factors exist in both nucleus and

cytosol, and they execute different functions under certain

conditions. These DNA sensors including DNA-dependent

activator of IFN-regulatory factors (DAI), LRR (in flightless I)

interacting protein-1 (LRRFIP1), DEAD (Asp-Glu-Ala-Asp)

Box Polypeptide 41 (DDX41), absent in melanoma 2 (AIM2),

p202, IFN-g–inducible protein 16 (IFI16), DHX36 and DHX9,

high-mobility group box (HMGB), Ku70, MRE11, cyclic GMP-

AMP (cGAMP) synthase (cGAS) (27–41). DAI, also known as

Z-DNA binding protein 1 and DLM-1, due to its ability to bind

dsDNA, was identified as the first cytoplasmic DNA sensor after

TLR9, activating NF-kB by binding TRAF family member-

associated NF-kappa-B activator (TANK)-binding kinase 1

(TBK1) and the IFN regulatory factor 3 (IRF3) complex (28).

However, whether DAI plays a relevant role in DNA sensing

requires further experimental verification. LRRs are key motifs

in the TLR domain responsible for recognizing PRRs (42), and

the cytoplasmic localized LRRFIP1 was found to bind dsDNA

and dsRNA, but not ssDNA and ssRNA (43). With several

members of the DExD/H-box helicase superfamily identified as

RNA sensors, DDX41 was also found to bind DNA and interact

with STING through its DEADc (Asp-Glu-Ala-Asp) domain

(44). AIM2, p202, and Interferon Gamma Inducible Protein 16

(IFI16) all are PYHIN family proteins, containing Pyrin and

HIN domains (p202 only contains the DNA-binding HIN
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domain). AIM2 recognizes cytoplasmic dsDNA and forms an

inflammasome that activates caspase-1 with Apoptosis-

associated speck-like protein containing a CARD (ASC) (45).

Nuclear-localized IFI16 mediates type I IFN responses by

translocating to the cytoplasm depending on the DNA in the

microenvironment (46). Both CpG-B–binding DHX9 and CpG-

A–binding DHX36 are localized in the cytoplasm and directly

bind to the Toll-interleukin receptor domain of MyD88 through

their helicase-associated domain and Domain of unknown

function (DUF) domains (47). This suggests that MyD88-

dependent DNA sensors DHX9/DHX36 in the pDC cytosol

have a broader role in virus sensing. The HMGB protein family

is essential for maintaining the normal function of chromosomes

and participates in various biological activities in the nucleus

such as DNA replication, DNA transcription, and DNA repair

(48, 49). It has a high affinity for DNA and RNA, thus promoting

the activation of intracellular DNA receptors such as TLR and

RIG-I in response to its nucleic acid ligands (50). Among them,

HMGB2 mainly binds to DNA, whereas HMGB1 and HMGB3

can simultaneously bind to DNA and RNA (50). Ku70 is an

evolutionarily conserved protein that forms a complex with

DNA-PKcs and Ku80 during the Non-homologous end

joining (NHEJ) DNA repair process (51). However, Ku acts as

a cytosolic DNA sensor that ultimately induces type III but not

type I IFN responses mediated by the IRF1 and IRF7 signaling

pathways (52). Meiotic recombination homolog A (MRE11)

specifically binds to dsDNA and promotes its repair during

cellular damage but does not recognize DNA introduced by

viruses (53). All of the above cytosolic pathogens recognition

binders are either cell type–dependent or function in a sequence-

specific manners. In 2013, the Sun et al. discovered that cGAS

can recognize the cytosol DNA, and, since then, many

fascinating studies are coming out to dissect its molecular

mechanisms (54). To date, cGAS may be the only “real” DNA

sensor (55), and it can directly bind to dsDNA and coordinate

with the stimulator of IFN genes (STING) to activate TBK1 and

IRF3 and then initiate the production of type I IFN or triggering

the inflammation reaction through the NF-kB pathway. Among

these identified DNA sensors that can induce inflammatory

responses, Ku70 recognizes DNA to induce type III IFN

production (37, 56), AIM2 inflammasome produces IL-1b and

IL-18, whereas others induce type I IFNs through the TBK1–

IRF3 signaling axis. A variety of DNA sensors induce the

production of immune active factors, which may all initiate

downstream signaling pathways in a STING-dependent manner.

However, their molecular mechanisms of STING activation are

still unclear (57–59). At present, it is relatively clear that cGAS

catalyzes the synthesis of the second messenger cGAMP after

recognizing dsDNA, which further binds and activates STING

and then activates the transcription factors IRF3 and NF-kB to

induce the production of type I IFN. Beyond the canonical role
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of cGAS in immune response in the cytosol, growing evidence

indicates the critical roles of cGAS in the nucleus that is involved

in the DNA damage repair process (60–63), which provides

another layer of the cross-talk between immune response and

DNA damage repair.
cGAS-STING pathway: Central
player in immune response

Wu et al. found that cGAMP as a second message can

activate type I IFN when cells are transfected with DNA or

infected with DNA virus. cGAS was identified as an enzyme that

synthesizes cGAMP by the same group. Meanwhile, cGAS-

STING–initiated immune response entered people’s field of

vision (64). cGAS is a 520–amino acid–long nucleotidyl

transferase comprising a highly basic unstructured N-terminus

of 160 amino acids and a C-terminus containing a highly

conserved NTase domain and a male abnormal 21 (Mab21)

domain (65). The NTase domain is a common domain of the

NTase superfamily, in which conserved amino acid residues

such as D227, D319, E225, G212, and S213 are the key to the

enzymatic function of cGAS, catalyzing the transfer of

nucleoside phosphate to hydroxyl acceptor (41, 66). cGAS

utilizes its positively charged surface and the zinc-ribbon

domain of Mab21 to insert into the minor groove of DNA and

interact with the sugar-phosphate backbone (67, 68), indicating

that the interaction between cGAS and DNA is sequence-

independent. To achieve the stable catalytic activity, cGAS

needs to assemble into a dimer (69, 70). Whereas, two DNA-

binding sites (A and B) on its catalytic domain cover about 16–

18 bp of DNA, sandwiching the DNA strand between the dimer.

Human cGAS dimers have a C site that cooperates with the N-

terminal domain to promote liquid-phase condensation and are

critical for cGAS activation (71). The dsDNA-binding ability of

cGAS uses ATP and GTP as raw materials to synthesize the

second messenger cGAMP, which, in turn, binds and activates

the STING located in the endoplasmic reticulum. ER-localized

STING is activated upon binding to cGAMP and translocated to

the Golgi apparatus. At this point, the cGAS-STING complex

activates kinase 1 (TBK1) and IkB kinase, which activate IRF3

and NF-kB, respectively, inducing the production of type I IFNs

and other cytokines (72–75).

cGAS recognizes dsDNA and activates the immune response

to produce type I IFN in a STING-dependent manner.

Therefore, the cGAS-STING pathway is crucial for the

identification and clearance of DNA-causing microorganisms.

A variety of DNA viruses, including Adenovirus, herpes simplex

virus (HSV), vaccinia virus, hepatitis B virus, pseudorabies virus,

and cytomegalovirus, induce the production of type I IFNs

through the cGAS-STING signaling pathway (76). Like all
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other pathogen-recognizing receptors, cGAS-STING–mediated

innate immune response activation is affected by different

factors, such as cell type, the pathogen intermediates, its

redundant stimulators, or the cross-talk immune pathways

(77, 78); this makes cGAS-STING–mediated immune response

more elegant and complex. Retroviruses (such as HIV) enter

macrophages and dendritic cells (DCs), usually without eliciting

a strong innate immune response due to being masked by viral

or host factors; under permission conditions, cGAS produces

cGAMP through taking advantage of the HIV reverse

transcription and can rekindle the immune response (79, 80);

cGAS-generated cGAMP can also be packaged into the virus

particles and extracellular vesicles, which can be delivered to the

DCs and then can activate the innate immune response (81). The

following study provides evidence that the transmembrane

transporter of cGAMP, the anion channel LRRC8/VRAC, can

transport cGAMP from HSV-1 infected cells to non-infected

cells, thereby exerting anti-viral effects (82). Cell-to-cell contact

and transmission is another strategy for the innate immune cells

to execute the cGAS-dependent anti-virus function. HIV-

infected cells, which have the HIV envelop, can be recognized

by the macrophage cells, and the recognition and contact

between these cells enable the intercellular transfer of cGAMP;

after promoting the anti-virus effect (83), this is also accepted as

a mechanism of how ready is the uninfected cell to propagate the

immune responses. In this sense, the cGAS-STING–mediated

immune response pathway may act not only by inhibiting viral

replication but also by inhibiting the spread of bystander cells to

exert anti-viral effects. In addition to the cGAS-synthesized

cGAMP, extracellular cyclic di-nucleotides (eCDNs) can

activate the innate immune response in a particularly

interesting mechanism. eCDNs are taken up by the

macrophage cells through Clathrin-dependent endocytosis;

after enhancing the DNA binding activity of cGAS, eCDN

binding with cGAS further promotes cGAS-STING complex

formation, which boosts the cGAS-STING–dependent innate

immune response (84).

As mentioned above, several mechanisms exist, directly or

indirectly, to activate cGAS-STING–mediated immune

response; the activation of this DNA sensing pathway

generates cytokine and chemokines, which can change the

cell’s internal environment and then help cells against the

infection events. Infectious disease, for example, Malaria,

drives a p38-mediated IL6 production in macrophages and

further induces pro-inflammatory monocytes to influence the

T-cell function (85). Accumulated evidence indicates that cGAS-

STING–mediated internal environment change affects the

polarization of macrophage cells and ensue to influence T-cell

differentiation (86, 87). From this, cGAS-STING–mediated

immune response pathway bridges the innate and adaptive

immune response to protect the host from better executing
Frontiers in Immunology 04
their function. However, cGAS-STING–induced inflammation

is a troublesome problem that cannot be ignored; it has a tight

connection with autoimmune diseases, neurodegeneration

disease, and metabolic disorders. Reports indicate that tissue

damage can release the host DNA to cytosol that triggers the

cGAS-STING pathway activation in macrophages, further

promoting the type I IFN production, macrophages

recruitment, differentiation, and further inflammation (88–92).

Although the effect of cGAS-STING pathway during the

inflammation process is strong, how it influences the

monocyte and macrophage functions still needs further study.

Cell aging refers to the change process in which the cell

proliferation and differentiation ability and physiological

function gradually decline over time in the process of cells

performing life activities. Senescent cells that stop their

proliferation secrete proteases, inflammatory cytokines, and

growth factors; the senescence-associated secretory phenotype

(SASP) accelerates senescent cell growth arrest and propagates

growth inhibition in a paracrine manner (93). In the absence of

cGAS or STING, SASP and immune cell infiltration are

defective, and the clearance of RasV12-expressing cells is

impaired leading to tumor development (94). Therefore, the

cGAS-STING pathway senses DNA damage, induces SASP, and

prevents tumorigenesis by enhancing senescence or enhancing

the immune cell–mediated clearance of abnormal cells (95–97).

STING also binds directly to bacterially produced cyclic

dinucleotides, including cyclic di-GMP, cyclic diAMP, and

bacterial cGAMP, all of which have traditional 3′,5′-
phosphodiester linkages. DNA sensing by the cGAS-STING

pathway also activates receptor-interacting serine/threonine-

protein kinase 3 (RIPK3) and causes necrosis of bone

marrow–derived macrophages (98). This pathway requires

signaling through type I IFN receptors and tumor necrosis

factor receptors, revealing a synergy of these pathways in their

ability to induce cell death.

Undoubtedly, considering the central immune response

function of the cGAS-STING pathway, although it is still a

long way to go, the cGAS-STING axis already became a

promising therapeutic target for cancer or autoimmune

disease treatment.
DNA damage repair and immune
response

As the carrier of biological genetic information, DNA is

polymerized from four deoxyribonucleotides: A (adenine), G

(guanine), C (cytosine), and T (thymine), by a 3′,5′-
phosphodiester bond. It mediates the replication of biological

genetic information and acts as a template for transcription to

guide protein biosynthesis, which plays an extremely important
frontiersin.org
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role in the growth and development of organisms. Cell growth

and development as well as the stable transmission of genetic

information between cells are closely related to the integration of

the cell genome (99). During the transmission of genetic

information, various endogenous and/or exogenous factors can

cause abnormal changes in the composition and structure of

DNA, affecting the stability of the genome. DNA damage is an

inevitable event that can happen at any time due to exogenous

and endogenous stress. When damage happens, the cell will

activate a specific repair pathway according to the damage type

to make sure that the genetic information is integrated to the

maximum extent. Several repair pathways exist, such as

Homologous recombination (HR), NHEJ, Base excision repair

(BER), Nucleotide excision repair (NER), and Mismatch repair

(MMR). There are many beautiful reviews already clarifying

those DNA damage repair pathways (100–104). So far, the

intersection between DNA damage response and the immune

response is not a new topic (105, 106). In general, DNA damage

can cause nucleus DNA to accumulate in the cytoplasm, which

can activate immune response by the cytosol DNA immune

receptors (105–110). Tumors and cancer cells that have DNA

damage repair defects have more cytoplasm DNA enrichment

and formed small but large impact DNA-containing structure:

micronuclei (111, 112). Cytoplasmic micronuclei, a small DNA-

containing structure in cytosol, resulting from defective DNA

replication, DNA damage repair, or mitosis error, is a biomarker

of DNA damage and genome instability and is considered as the

major elicitor to trigger the cGAS-STING–dependent

autoimmune response.

DNA damage response can cause the activation of an

inflammatory response that increases the production of type I

IFN and pro-inflammatory cytokines that promote innate

immunity. The DNA damage repair factor ATM/ATR/Chk1 is

required for the upregulation of NKG2DL, an innate immune

system ligand for the NKG2D receptor (113). In uninfected non-

tumor cell lines derived from humans and mice, expression of

NKG2D ligands can be induced by DNA damage in an ATM- or

ATR-dependent manner. Furthermore, these repair-related

protein factors induce PD-L1 expression following IR or

oxidative damage in a transcription-dependent manner (114,

115). TREX1, an important component of DDR, is also

associated with autoimmune responses, and it can participate

in DNA repair regulation and clear cytoplasmic DNA that

activates innate immunity. Mutations in TREX1 in patients

with Aicardi–Goutières syndrome and systemic lupus

erythematosus result in the loss of its exonuclease activity

(116–118). Autoantibodies against poly(ADP-ribose)

polymerase (PARP), KU, DNA-PKcs, WRN, and MRE11 were

identified in the serum of patients with systemic autoimmune

rheumatism (119). It is precisely because the tight connection of

DNA damage repair and immune response provided the

opportunity to identify the ideal target for immunological

disease and for cancer treatment.
Frontiers in Immunology 05
Cross-talk between cGAS-mediated
immune response and DNA
damage response

Because cGAS binds to dsDNA in a length-dependent but

the sequence-independent manner, both foreign and host origin

DNA can activate the cGAS-STING pathway. Therefore,

controlling the availability of host DNA is essential to prevent

aberrant pathway activation and inhibit autoimmune disease.

There are several elegant mechanisms that exist to timely remove

the abnormal DNA, such as DNaseII, TREX, and several DNA

binding factors (111, 120).

As mentioned before, the genomic instability induced by

DNA damage can cause micronuclei formation due to the

abnormal processed DNA. During the repair process,

unprotected ssDNA is easily digested or cleaved by various

nucleases, inhibiting HR by preventing DNA entry and the

formation and/or breakdown of Holliday junctions. These

abnormal HR intermediates can stimulate cellular degradation

of some or all damaged chromosomes, resulting in the release of

nuclear DNA into the cytoplasm, which subsequently activates

the cGAS-STING pathway and downstream immune responses.

While mitotic error during cell segregation also can cause

micronuclei formation that contains nucleus DNA, due to the

micronuclei envelope being fragile and easily rupturing, released

DNA from micronuclei was considered as the major reason that

can activate cGAS-STING–dependent immune response (40,

121). This was affirmed by the cGAS that colocalizes with

markers of DNA damage such as phosphorylated histone

H2AX (gH2AX) in micronuclei (122, 123). Beyond that, Exo1

overexcites the DNA strand due to the loss of MutL protein

homolog 1 (MLH1) (MutLa subunit), resulting in increased

ssDNA formation (124). Depletion of RPA, DNA fragmentation,

and the production of abnormal DNA repair intermediates all

can release nuclear DNA into the cytoplasm and activate the

cGAS-STING pathway (125). MLH1-deficient tumor cells

accumulate cytoplasmic DNA to activate the cGAS-STING

pathway, which sensitizes MLH1-deficient tumors to

immunotherapy by promoting initiation and infiltration of

antitumor CD8+ T cells. Disrupting the DNA-sensing

functions of cGAS or STING renders MLH1-deficient tumors

resistant to immunotherapy, which confirmed the DNA

damage-induced immune response (126).

In addition to the cytosol immune function of cGAS, new

evidence indicates that the cGAS shutters between cytoplasm

and nucleus. DNA damage induces cGAS to translocate into the

nucleus or to export to cytosol under infection or through DNA

damage treatment (127–130). In recent years, accumulated

evidence indicates that cGAS is directly involved in the DNA

damage repair process. Liu et al. (2018) first identified that cGAS

participates in the DNA damage repair process; under different

damage treatments, cGAS can transfer from the cytosol to the
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nucleus in a phosphorylation-dependent manner; translocated

cGAS was recruited to the damage site by directly interacting

with PARP1 in its enzyme activity-independent way. The

interaction between cGAS and PARP1 impaired the

connection between PARP1 and the DNA repair factor

Timeless and then impaired PARP1-mediated HR repair (63).

This work opens a new view of the function of cGAS in the

nucleus. Subsequent work by Jiang et al. (2019) extended the

function of cGAS in the DNA damage repair process;

interestingly, they found that cGAS, as a chromatin-bound

protein, is persistently located in the nucleus. This study

confirmed the HR-involved function of cGAS, whereas the

translocation of cGAS and its interaction with DNA repair

factors may not the direct or critical part. cGAS is involved in

the HR process in a phosphorylation-dependent manner, which

is consistent with the study by Liu et al.; phosphorylation of

cGAS also mediated its chromatin binding; meanwhile, this

raises the possibility that Chromatin seems like a platform,

mediating the concrete function of cGAS. In simple terms, the

dimerization and chromatin-bound of cGAS are the key factors

that direct cGAS DNA repair function: cGAS dimerization

promotes chromatin compaction, which affects RAD51-

mediated strand invasion step and eventually affects D-loop

formation during the homology-mediated repair process and

impaired the HR efficiency (60). These two different

explanations exist to dissect the impact of cGAS on HR repair,

and both works are valuable for researchers to understand the

function of cGAS in the nucleus, although neither of them sheds
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light on how cGAS enzymatic activity was blocked in the

nucleus. Several possibilities may be interesting to the

researchers. As phase separation that may compact cGAS,

nucleus DNA and related immune response proteins

eventually prohibit the unwanted immune response; although

cGAS recognizes DNA in a length-dependent sequence-

independent manner, nucleus chromatin DNA is much more

complex, such as chromatin bind protein effect, histone post-

translation-modification, and the higher order of nucleus DNA;

all these may change the patterns of nucleus DNA that is not

preferred by cGAS again; post-translational modification (PTM)

of cGAS is another very possible mechanism that can affect the

cGAS function in the nucleus and then affect cGAS-mediated

immune response function. In addition, even damaged DNA

that is released from the DNA damage-trimming process can be

recognized and bound by nucleus proteins, such as RPA and

RAD51 (125), which also prohibit them to be recognized by

cGAS. More than that, another study by Chen et al. (2020)

further identified cGAS maintaining genome stability,

particularly under replication stress: cGAS interacted with

replication fork and regulated replication dynamics (61).

Whereas, the function of cGAS in the replication process is

still unclear; because cGAS constitutes binds and promotes

chromatin compact, this may change the replication dynamic,

especially under replication stress. Either way, cGAS is involved

in the DNA damage repair pathway that is unquestionable

(Figure 1). The discovery of cGAS in the nucleus and its

function in the DNA damage response open a new area,
FIGURE 1

cGAS in DNA damage repair process. cGAS impaired the HR process through bind to chromatin and promoting its compaction, blocking the
invasion of RAD51 and following the HR process (60); cGAS directly interacts with PARP1 and blocks its interaction with Timeless; the thought
that it can be modified by PARP1 in the nucleus is unclear (63); cGAS can bind to the replication fork and slow down the replication progress
and participate in replication stress-induced DNA repair (61).
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triggering the researcher’s interest and posing some new

interesting questions: Are there other mechanisms that exist to

regulate the translocation of cGAS between cytoplasm and

nucleus? Does translocation play a critical role in cGAS’s

function under some circumstances—cGAS existing in cytosol

and nucleus in the meantime? Is cGAS involved in other DNA

damage repair pathways? Does cGAS activate the immune

response in the nucleus, because cGAS was found as a

chromatin-bound protein in the nucleus, and what mechanism

restricts the recognition of cGAS to host genome DNA? All these

questions need further investigation.
Post-translational modification of
cGAS in cytoplasm and nucleus

As a pivotal immune response factor, cGAS is constitutively

expressed in most tissues, although the fact that cGAS-STING-

dependent immune response activation can feedback regulate

the protein expression level of cGAS. The protein stability,

enzymatic activity, DNA binding, and subcellular localization

of cGAS are mainly affected by several different PTMs, such as

phosphorylation, ubiquitination, PARylation, and SUMOylation

(Figure 2). In the same way, PTMs may also be the major
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regulatory mechanism that can affect the activity and the related

function of cGAS in the nucleus.
Phosphorylation

Protein phosphorylation is the most basic, common, and

reversible mechanism for regulating and controlling protein

activity and function. The reversible cGAS phosphorylation

mainly regulated its enzymatic activity from different layers.

Akt kinase, for example, phosphorylation of mSer291 or hSer305

of cGAS, affects the cGAS activity under DNA virus stimulation

(131, 132). The negative charge generated by phosphorylation of

the N-terminal serine and threonine residues of cGAS is specific

for its recognition of nuclear DNA and enables its activity to be

selectively inhibited during mitosis (133). Phosphorylation of

cGAS at S291/hSer305 by CDK1 during mitosis inhibits its

activation by host genomic DNA, whereas protein phosphatase

1 (PP1) dephosphorylates this site after mitosis to restore the

ability to sense cytoplasmic DNA (134). In addition to serine

phosphorylation, cGAS can also be phosphorylated on its

tyrosine residue, which is responsible for its nucleus

localization and DNA repair function. In resting cells, cGAS

relies on B lymphoid tyrosine kinases (BLKs) to phosphorylate

the Y215 site to maintain its cytoplasmic localization, whereas
FIGURE 2

Post-translation modification of cGAS. Post-translation modification of cGAS involving in different aspects of the regulation of cGAS function,
from activation to structure formation change, protein stability, DNA binding ability, and some unclear functions. Phosphorylation of cGAS is a
major manner that can block cGAS activity in the nucleus; this help inhibits the abnormal autoimmunity response. Sumoylation of cGAS can
coordinate with cGAS ubiquitination, fine-tuning its protein stability. Palmitoylation of cGAS blocks the interaction between cGAS and DNA and
then affects the cGAS dimerization. Ribosylation of cGAS happened in the cytosol that can impede cGAS-mediated immune response. PARP1
interaction and mediated ribosylation of cGAS in cytosol that can attenuate its immune response activity, the interaction between PARP1 and
cGAS in nucleus involved in the DNA repair process, and the function of ribosylation of cGAS in nucleus are unknown. UFMylation is a novel
modification type, but its function in cGAS-STING–mediated immune response is still unclear.
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cGAS nuclear translocation and its chromatin binding ability are

dependent on its phosphorylation of Y215. DNA-damaging

agents can dephosphorylate cGAS to initiate its nuclear

translocation and recruitment to DSBs; cGAS nuclear

localization, or its chromatin binding ability, is important for

its inhibition of HR, as BLK knockdown and Y215E mutant

result in increased cGAS nuclear translocation, eliminating

cGAS suppression effect on HR (60, 127). Furthermore, cGAS

is constitutively associated with the PP6 catalytic subunit

(PPP6C) in resting cells, and dissociation of PPP6C occurs

upon virus infection (135). The S420 site in the catalytic

pocket of cGAS is phosphorylated due to the dissociation of

PPP6C, which binds GTP and generates cGAMP (135),

indicating that the phosphorylation level of the S420 site

regulates the GTP binding ability. Because PPP6C was

reported to be involved in the HR repair process and is also

constitutively associated with cGAS (135, 136), the balance of

cGAS’s phosphorylation regulated by PPP6C may affect its DNA

damage repair efficiency in the nucleus. Overall, the reversible

phosphorylation of cGAS is the major breakpoint that uncovers

how cGAS activity restricts in the nucleus, although how the

spa t i o t empor a l r e gu l a t i on o f th i s e v en t i s s t i l l

under investigation.
Ubiquitination

Ubiquitin modification is a cascade of enzymatic reactions

regulated by a variety of enzymes. Similar to methylation,

different from acetylation and phosphorylation, ubiquitination

can act as inhibitory or activating depending on the specific

ubiquitin type and modification site. Targeted protein can either

be polyubiquitinated or monoubiquitinated. Ubiquitin can form

variously linked polyubiquitin chains through its C-terminal

binding to one of the seven lysines (K6, K11, K27, K29, K33,

K48, and K63) on another ubiquitin. Dependent on the

ubiquitination type, the ubiquitin modification regulates

protein stability, localization, metabolism, activity, and so on

(137–140). Up to now, several E3 ligases have been reported to

regulate the activity and stability of cGAS, such as RNF185,

TRIM56, and TIIM14. Most of these modifications focus on the

cytosol function of cGAS; whether nucleus cGAS has specific

ubiquitination modification has not been studied yet. RNF185

(ring finger protein 185) is an E3 ubiquitination ligase localized

at the endoplasmic reticulum, which can interact with cGAS

during HSV-1 infection. RNF185 mediates the formation of

K27-linked ubiquitin chains of cGAS (K173 and K384 sites) and

enhances its enzymatic activity; knockdown of RNF185 reduces

the enzymatic activity of cGAS and inhibits the downstream IFN

response (141). The E3 ubiquitination ligase TRIM56 was

initially thought to be able to ubiquitinate STING protein and

to activate the STING pathway. Whereas the in-depth study

found that knockdown TRIM56 did not affect the direct
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activation of STING by cGAMP but rather enhanced the

cGAS-STING pathway by mediating the ubiquitination of the

K335 site of cGAS, promoting cGAS dimerization and cGAMP

production (142). In resting cells, K48-linked ubiquitination

occurs at the K414 site of cGAS, and p62 recognizes

ubiquitinated cGAS and promotes its autophagic degradation,

thereby inhibiting the type I IFN signaling pathway (143). When

infected with DNA viruses, IFN-I induces the expression of

TRIM14 and enforces the de-ubiquitination enzyme USP14 to

degrade the cGAS ubiquitin chain connection at the K414 site,

thus inhibiting the p62-mediated autophagy degradation of

cGAS (143). Because ubiquitin modification can regulate

protein function from different angles, including the protein

shuttling between cytosol and nucleus (144–146), it will be

interesting to identify ubiquitin modification of cGAS in the

nucleus, which may help the researchers to better understand the

shuttle mechanism of cGAS between cytosol and nucleus. In

addition, these may give some clues on how cGAS can be

regulated in the nucleus to restrict its activation to bind host

nucleus DNA or regulate its DNA damage repair functions.
SUMOylation

Many proteins share sequence homology with ubiquitin, and

these ubiquitin-like proteins are divided into two categories: one

is ubiquitin-related analogs with modification functions similar

to ubiquitination, such as Rubl (Nedd8), Apg8, Apg12, and small

ubiquitin-related modifiers (SUMO); the other is ubiquitin-

domain proteins. Like ubiquitination, SUMOylation also

results in the formation of an isopeptide bond between the

glycine residue at the carboxyl-terminal of the modified protein

and the e-amino group of the substrate protein lysine. The

specific pathway of Sumo modification is very similar to that of

ubiquitination modification, involving a cascade reaction of

multiple enzymes: E1 activating enzyme, E2 conjugating

enzyme, and E3 ligase. However, the enzymes involved in the

two reaction pathways are completely different. The

SUMOylation modification process includes activation,

binding, linking, modification, and other processes (147–149).

In uninfected cells or during the early stages of viral infection,

the ubiquitin ligase TRIM38 targets cGAS to SUMOylate and

activates cGAS; in the late stage of infection, SENP2 mediates the

deSUMOylation of cGAS to prevent its overactivation (150).

SUMO linkages on lysine residues at positions 335, 372, and 382

of cGAS can significantly inhibit the binding of cGAS to DNA

and reduce its oligomerization and nucleotidyl transferase

activities. Meanwhile, SENP7-mediated deSUMOylation of

cGAS can promote the activation of cGAS (151). However, as

ubiquitination modification, all these studies suggested

SUMOylation of cGAS is a cytosol event, either through

regulating cGAS activity or stability, both can influence the

cGAS-mediated immune response. Although SUMOylation in
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DNA damage repair is very common, many repair factors can be

SUMOylate, such as MDC1, BRCA1, RPA, KU70, and PARP1

(152–159). SUMOylation of DNA repair factors can regulate

their protein–protein interaction, degradation, localization,

activity, and so on. Thus, this poses a possibility to investigate

cGAS SUMOylation in the DNA repair process. Because cGAS

SUMOylation can significantly inhibit its DNA binding activity

and evidence indicates that cGAS is a chromatin-bound protein,

SUMOylated cGAS is likely to regulate its DNA recognition

function in the nucleus, thus affecting its DNA repair function or

its activity to host origin DNA.
Glutamylation

Glutamylation is an ATP-dependent process and is

catalyzed/removed by glutamylases/carboxypeptidases (160,

161). Glutamylation was originally identified as a major

modification of tubulins (162). These glutamylases include

tubulin tyrosine ligase (TTL) and tubulin tyrosine ligase–like

(TTLL) enzymes. TTLL6 can polyglutamylates cGAS at E272

sites, resulting in impeding its DNA-binding ability, whereas, at

the E302 sites, mono-glutamylation of cGAS by TTLL4 blocks its

enzyme activity (163). TTLL glutamylases seem to differ in their

preferences for their substrates. Conversely, deglutamylation is

hydrolyzed by cytosolic carboxypeptidases (CCPs). Among

them, CCP1, CCP4, and CCP6 remove the shortening of

penultimate polyglutamylation chains of a-tubulin; CCP5

removes the branch site glutamate. The study shows that

CCP6 and CCP5 recover DNA binding and catalytic activity

of cGAS by removing its polyglutamylation and mono-

glutamylation, respectively (163). This finding suggested that

dynamic glutamylation and deglutamylation of cGAS were

tightly associated with its activity during HSV infection and

shows a new regulatory mechanism of cGAS. However, further

investigation into the mechanism of these enzyme activations

still needs to be clarified.
Acetylation

Protein lysine acetylation is involved in chromatin structure,

metabolic functions, and transcriptional regulation (164). It is a

reversible PTM controlled by lysine acetyltransferases (KATs)

and lysine deacetylases (KADCs). Lysine acetylation was first

found on histone acetylation; now, it has expanded from histone

to lots of proteins in almost all cellular processes. Recently, cGAS

activity was found to be regulated by acetylation. Dai et al. found

that cGAS acetylation on one of the three lysine residues (K384,

K394, and K414) contributes to its inactiveness (165). In

response to DNA challenge, cGAS is deacetylated by HDAC3.
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It has also been suggested that lysine acetyltransferase 5 (KAT5)

is a positive regulator of cGAS in response to DNA viral

infection and dsDNA (166). KAT5 can acetylate cGAS at N-

terminal K47, K52, K62, and K83 residues, increasing affinity to

viral DNA and activating an innate immune response. Both

studies helped to understand the delicate regulatory mechanisms

of the innate immune response. Those C-terminal catalytic

domains lysine residues (K384/394/414) and N-terminal

unstructured domain lysine residues (K52/62/83) can be

acetylated by two different regulatory mechanisms and cause

different consequences, demonstrating the complexity of the

same PTM on the same protein.
Ribosylation

ADP-ribosylation is a critical reversible protein post-

translation modification. Target proteins can be modified by

single or multiple ribose and then can be involved in various

cellular processes, including DNA damage repair and immune

response. PARPi, which can block PARP1 activity or cause

PARP1 trapping, is well known for its clinical treatment of HR

deficiency disease. Evidence indicates that the PARPi can induce

cytosol micronuclei formation due to the PARP trapping

induced DNA damage and then trigger cGAS-STING–

dependent immune response (167, 168). Although the nucleus

function of cGAS in the DNA damage repair process is

dependent on its interaction with PARP1, phosphorylated

cGAS is translocated to the nucleus and interacted with

PARP1 through PARP1-ADP-ribose, where cGAS can affect

the HR repair through regulating the PARP1–TIMELESS

interaction (63). Recently, there is another intriguing report by

the same group indicating that DNA-pK can phosphorylate

PARP1 and then further promote the export of PARP1 to the

cytosol, PARylating cGAS in the cytosol that can block the

cGAS-mediated immune response (169). This is a kind of

feedback loop regulation mechanism because the nucleus

PARP1 can PARylate DNA-pK to promote its activity. The

connection between PARylation and cGAS became an

interesting topic, and this opens another question of how

cGAS activity inhibition in the nucleus as cGAS can be

PARylated by PARP1 in the nucleus. It would be interesting to

evaluate the function of cGAS PARylation in the nucleus, or

whether it can restrict the function of cGAS to recognize the host

DNA. This is highly possible because PARPi treatment that

blocks PARP1 activity or induces PARP1 trapping promotes

cGAS-STING–dependent immune response. Whether PARP1

activity during this process has contributed or not is still unclear,

although cGAS PARylation in the cytosol by PARP1 indeed

blocks the activity of cGAS to then attenuating cGAS-dependent

immune response. Nevertheless, it is still possible that cGAS can
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be PARylated by PARP1 in the nucleus and thereby restricted

cGAS reorganization of host DNA either by restricting its

activity or blocking its interaction with host DNA.
Protein arginine methylation

Protein arginine methylation is an important PTM in

regulating multiple intracellular signaling, RNA processing,

chromatin remodeling, and homologous recombination–

mediated DNA repair. It is known to be catalyzed by protein

arginine methyltransferase (PRMTs) in mammals; PRMTs

cata lyze the trans fer o f a methyl group from S-

adenosylmethionine to the arginine residues of histone or

non-histone proteins (170). PRMTs are categorized into three

types based on the final methylarginine product that is

generated: type I PRMTs (PRMT1, PRMT2, PRMT3, PRMT4/

CARM1, PRMT6, and PRMT8), which catalyze the addition of a

second methyl group to the nitrogen, producing asymmetric di-

methylarginine (ADMA); type II PRMTs (PRMT5 and PRMT9),

which methylate additional guanidine nitrogen, generating

symmetrical demethylated arginine (SDMA); and type III

PRMT (PRMT7), which generates monomethylated

arginine (MMA).

Protein arginine methylation can influence the interaction

between protein and DNA, as cGAS is the well-recognized

cytosolic DNA sensor, thus indicating that protein arginine

methylation may have a potential function in regulating cGAS.

Ma et al. showed that PRMT5 is directly bound with cGAS and

induced its asymmetric demethylation, which significantly

attenuated cGAS-mediated anti-viral immune response (171).

The study identified R124 residue as the direct catalyzing site by

PRMT5; cGAS(R124K) mutant abolished PRMT5-mediated

suppression of type I IFN production during virus infection.

Furthermore, the R124 residue is a much-conserved motif in

different species, indicating its significant importance for the

anti-viral immune response mediated by cGAS. However, the

protein demethylation mechanism responsible for fine-tuned

modulation of cGAS anti-viral immune response is not known.
Palmitoylation

Palmitoylation is an important PTM catalyzed by aspartate-

histidine-histidine-cysteine (DHHC)-palmitoyl transferases,

which participate in the regulation of diverse biological

processes (172, 173). Hundreds of mammalian proteins have

been discovered to be palmitoylated (174, 175). These proteins

are either mono-palmitoylated or spontaneous autopalmitoylated;

most of these proteins’ palmitoylation are executed by zinc finger

aspartate-histidine-histidine-cysteine (DHCC)-type containing

(ZDHHC) family of palmitoyl S-acyltransferases (PATs) (176).

PATs are localized to the ER or Golgi apparatus, where STING
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the function of Palmitoylation with the cGAS-STING immune

response pathway; indeed, growing evidence suggested in the

cGAS-STING signaling pathway can be regulated by

palmitoylation (177). Palmitoylation usually links fatty acids

with the addition of a 16-carbon palmitic acid to cysteines via a

thioester bond. It has been reported that activated STING

translocated to the Golgi apparatus, where DHCC3, DHCC7,

and DHCC15 palmitoylated at its Cys88 and Cys9 sites (177).

Palmitoylated STING is essential for TBK recruitment and

activation of the innate immune response.

Recently, Shi et al. suggested cGAS palmitoylation at Cys474

by ADHHC18, reducing its interaction with dsDNA (178). This

study proposed an elaborate regulatory mechanism of cGAS: In

the resting state in which cGAS is not palmitoylated, cGAS

activates rapidly to initiate innate immune responses; upon

cGAS recognizing and binding DNA, ZDHHC18 interacts and

palmitoylates cGAS, leading to inhibiting cGAS-mediated innate

immune signaling transduction. This identification of cGAS as a

palmitoylated protein expands the knowledge of the role of

palmitoylation in regulating protein function, which might

provide new targets for drug development against viral

infections and autoimmune diseases. However, palmitoylation

that controls the cGAS-STING function remains to be

fully defined.
UFMylation

UFMylation is a ubiquitin-like modification catalyzed by

ubiquitin-like modification activating enzyme 5 (UBA5),

ubiquitin fold modification conjugating enzyme 1 (UFC1),

and UFM1-specific ligase 1 (UFL1) (179). In general, UFM1

is an inactive precursor form (Pro-UFM1) that elicits a

continuous binding reaction when its C-terminal Gly residue

is exposed by UFM1-specific proteases (UFSPs). Then, the only

E1 enzyme UBA5 activates UFM1 with the help of ATP in the

cytoplasm. Similar to other E2 responses, activated UFM1 is

transferred to the UFM1 E2-conjugating enzyme UFC1.

Finally, E3 ligase helps transfer UFM1 from UFC1 to the

substrate. UFSPs can also cleave UFM1 from its target

protein, making UFM modification reversible (180, 181).

UFMylation has a variety of important biological functions

and participates in various biological regulatory processes such

as endoplasmic reticulum stress, embryonic development, and

DNA damage repair (182–186). UFMylation plays a role in the

DNA damage response and regulates ataxia-telangiectasia–

mutated (ATM) signaling in response to genotoxic agents

(187, 188). DNA damage and ATM loss of function have

been shown to activate type I IFN signaling and to amplify

cGAS-STING–dependent innate immune responses (189, 190).

Ufmylation pathway can be a potential critical modification

manner that is involved in immune response; in addition, a
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new report indicates that abrogating any factors of the UFM

pathway can induce the upregulation of the expression of

innate and adaptive immune response factors (191). Hence,

understanding whether the UFM system is involved in the

cGAS-STING pathway is developing research. UFMylation

plays an important role in ER, whereas the cGAS-STING

function centers in the cytosol. Given that UFMylation has a

critical function in DDR, we can see that it may have a great

potential in regulating cGAS in the nucleus.
Conclusion marks

Many conventional cancer treatments are based on that

tumor cells are extremely sensitive to DNA damage.

Radiotherapy and chemotherapy are used to cause DNA

damage in tumor cells to achieve therapeutic effects. In

addition to causing cell cycle arrest and cell death, DNA

damage can activate the immune system. The immune

responses that are damaged by chemotherapy and

radiotherapy are important for the efficacy of cancer therapy

and are mediated, at least in part, by the tumor cell’s intracellular

responses. Although studies have shown that damaged cells can

secrete type I IFNs and pro-inflammatory factors, the current

research on the molecular mechanisms between DNA damage

and innate immune signaling is only the tip of the iceberg and

needs to be resolved deeply. Recent studies have shown that

cGAS exists in the nucleus and is associated with DNA damage-

induced genomic instability. DNA damage itself leads to the

formation of micronuclei; cGAS in the cytoplasm can colocalize

with and recognize broken DNA in micronuclei, following the

activation of the cGAS-STING–dependent immune response.

cGAS-dependent genome instability in the nucleus and genome

instability related to the immune response in cytosol further

make it critical to understand the shuttle mechanism of cGAS

between cytoplasm and nucleus, and how cGAS was restricted to

recognize self-DNA in unperturbed conditions.

Recently, several elegant reports try to uncover the nucleus

cGAS inhibition mechanism from the structural standpoint,

from their results, cGAS bound to the nucleosome, attached to

the nucleosome surface “acidic patch”, the H2A-H2B interface

area that serves as a platform to regulate the protein–chromatin

interaction. These studies revealed how nuclear cGAS is

inhibited by the histone H2A-H2B and nearby nucleosomes

(192–197); however, they ignored the effect of the post-

translation modification, coming from either histones or

cGAS. In addition, because cGAS dimerization promotes

chromatin compaction, this may change the three-dimensional

structure of chromatin, which makes the situation more

complex. RNA binding is another very interesting discovery

that can regulate cGAS activity in the nucleus; in this study, the

circular RNA cia-cGAS was discovered to bind cGAS tightly and
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block its activity, following cGAS-mediated immune response

(198). Although the circular RNA–mediated cGAS inhibition is

a universal mechanism or just tissue, cell type specific still need

further investigated.

CDK-mediated phosphorylation of cGAS inhibits its activity

in the nucleus, especially in the mitotic stage where DNA is

unwrapped and not protected by histones. cGAS is recruited to

DNA damage sites to regulate HR repair, but how cGAS affects

the HR repair efficiency is still a mystery. Damaged DNA can be

a potential substrate for cGAS recognition which may trigger the

sterile inflammation response. cGAS directly interact with

PARP1and PARylation of cGAS in cytoplasm attenuate the

immune activity; therefore, cGAS may be a substrate of

PARP1 in the nucleus that also blocks its activity. Meanwhile,

DNA-pk phosphorylation of PARP1 promotes the translocation

of PARP1 from the nucleus to cytosol, raising the possibility that

post-translation modifications of cGAS can influence its shuttle

between the nucleus and cytosol.

UFMylation modifications are currently reported to have an

important role in participating in the DNA damage response; the

key UFMylation enzyme, UFL1, regulates the immune response

by affecting the protein stability of STING. However, the

regulation of cGAS through UFMylation modifications is

unclear; if so, the function of cGAS UFMylation in the DNA

damage repair process and immune response pathway needs to

be further investigated. Exploring the relationship between

UFMylation modification, cGAS-dependent immune response

signaling, and DNA damage repair pathway may provide new

targets for cancer prevention and treatment.

Up to now, most of the studies about cGAS-STING focus on its

cytosol immune response function. Because more and more

evidence approved that cGAS is permanently localized in the

nucleus as a chromatin bind protein, it will be interesting to

investigate its nucleus function, especially from the post-

translation modification standpoint; whether these PTMs of

cGAS, such as ubiquitination, SUMOylation, methylation, and

acylation, happened in the nucleus is an interesting and urgent

question. As most of these PTMs were reported to regulate the

activity of cGAS, do they play themajor roles to restrict the function

of cGAS in nucleus or not? If not, what are the underlying

mechanisms to separate the cytosol and nucleus cGAS? Further

question is how these PTMs of cGAS coordinated with each other

to fine-tuning the cGAS function, from its activity, protein–protein

interaction, chromatin binding, chromatin release, nucleus to

cytosol shutting to sterling immune inhibition, and so on.
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