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Lymphoid tissue residency:
A key to understand Tcf-1+

PD-1+ T cells

Chaoyu Ma* and Nu Zhang*

Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine,
University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
During chronic antigen exposure, a subset of exhausted CD8+ T cells

differentiate into stem cell-like or progenitor-like T cells expressing both

transcription factor Tcf-1 (T cell factor-1) and co-inhibitory receptor PD-1.

These Tcf-1+ stem-like or progenitor exhausted T cells represent the key target

for immunotherapies. Deeper understanding of the biology of Tcf-1+PD-1+

CD8+ T cells will lead to rational design of future immunotherapies. Here, we

summarize recent findings about the migratory and resident behavior of Tcf-1+

T cells. Specifically, we will focus on TGF-b-dependent lymphoid tissue

residency program of Tcf-1+ T cells, which may represent a key to

understanding the differentiation and maintenance of Tcf-1+ stem-like CD8+

T cells during persistent antigen stimulation.
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Introduction

During acute antigenic exposure, such as acute viral infections or vaccination, naïve

CD8+ T cells are activated by professional antigen presenting cells carrying cognate

antigenic peptide/MHC-I complex in secondary lymphoid organs. Activated T cells

undergo massive proliferation and further differentiate into effector CD8+ T cells with

profound alterations in effector molecule production, migration pattern, transcriptional

network, metabolic program, and epigenetic landscape. Shortly after antigen clearance,

effector T cells undergo contraction and further differentiation into long-lived memory T

cells with superior recall capacity (1). However, when antigen presence is prolonged

(such as chronic infection and tumor), effector T cells rapidly turn to a different path

towards exhaustion with greatly reduced effector function and population size. In recent

decades, reviving exhausted T cells have been established as one of the common goals in

tumor immunotherapies (2). Thus, it is essential to advance our understanding of

exhausted T cells. Here, we will summarize recent findings related to the migration and

tissue residency of a subset of exhausted T cells expressing transcription factor Tcf-1 (T

cell factor-1).
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Tcf-1+ stem-like T cells

Shortly after the discovery of T cell exhaustion, it has been

realized that exhausted T cells are not homogenous. Instead, a broad

spectrum of T cell subsets together constitute exhausted T cell

population. Initially, different exhausted T cell subsets were

distinguished by various levels or composition of inhibitory

receptors (3, 4). Later, different exhausted T cell subsets with

various expression of T-box transcription factors T-bet and

Eomes levels were discovered (5). More recently, Tcf-1+ subset of

exhausted T cells has been defined as the progenitor or stem-like

subset to sustain the whole exhausted T cell population (6–10) (Box

1). Tcf-1+ cells further differentiate into transitional subsets (e.g.,

CX3CR1+ cells) as well as terminally exhausted cells (e.g., CD101+

cells) (11–13). Most importantly, Tcf-1+ subset is the one

responding to PD-1 or PD-L1 blockade in both chronic viral

infection and tumor settings (7, 9, 14). Further, Tcf-1+ exhausted

T cells are the main target of therapeutic tumor vaccines (15).

Together, Tcf-1+PD-1+ stem-like or progenitor exhausted T cells

are the key CD8+ subset which can be self-sustained and further

differentiate into other exhausted T cell populations.

Interestingly, a recent paper has further defined a subset of Tcf-

1+PD-1+ T cells carrying TCM (central memory T cells) marker

CD62L and CCR7, which is highly enriched for stem-cell or

progenitor activity and largely responsible for PD-1 blockade

induced T cell expansion (16). These Tcf-1+PD-1+CD62L+ stem-

like CD8+ T cells is critically dependent on transcription factor

Myb, which reminds us about a similar Myb-dependent CD8+ TCM
subset generated after acute viral infection (17). Accumulating

evidence has documented the similarity between TCM cells

generated after acute infection (18) and stem-like exhausted T

cells during chronic antigen exposure, especially regarding the Tcf-

1-dependent genetic signature. At molecular level, it has been

recently demonstrated that during memory T cell recall

responses, there are a large collection of immediate responsive

genes, including glycolytic enzymes, cell cycle controllers and

transcriptional regulators. Tcf-1 is essential to keep these genes

ready for future recall response via maintaining their 3D genomic

interaction with distal enhancers (19). Consistent with this role of

Tcf-1 in memory T cells, Tcf-1 and closely related transcription

factor Lef-1 controls the 3D structure and crosstalk between distal

genomic elements partially via interacting with CTCF (CCCTC-
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binding factor) in naïve T cells (20, 21). Thus, it is safe to conclude

that Tcf-1-control transcription and epigenetic programs represents

one of the central themes for most T cells (e.g., naïve, TCM and

stem-like) with robust expansion and differentiation capacity.
Tissue-resident memory T cells

Based on migration pattern, acute antigen exposure induced

memory T cells can be categorized into central memory (TCM),

effector memory (TEM) and tissue resident memory (TRM) T cells

(22) (Box1). Because of the broad TCR repertoire, the frequency of

T cells bearing TCR with a given specificity is often extremely low.

To efficiently protect the whole body against potential antigenic

evasion, continuous migration and patrolling for cognate antigen

appearance is a build-in feature of T cell biology. Thus, the very

existence of TRM cells, which are largely separated from the

circulation at steady states and confined to a specific tissue

represents an intriguing “outlier”. Numerous efforts have been

devoted to investigating the differentiation, molecular regulation

and function of TRM cells (23). TRM cells are direct decedent of

effector T cells. They often strategically located at previous pathogen

entering sites or peripheral tissues experienced local inflammation

and damage. In adult human and immunized animals, TRM cells

can be detected in most non-lymphoid tissues, including both

mucosal and non-mucosal sites as well as the tissues which have

been traditionally considered as immune-privileged sites (24–26).

Number wise, TRM represents the most abundant T cell population

in most antigen-experience individuals.

Several local signals are actively involved in TRM differentiation.

For example, TNF (tumor necrosis factor), IL-33, extracellular ATP

and local ICOS signals can promotes TRM formation (27–30). Here,

we will limit our discussion to two of the most well-studied signals

for TRM differentiation. First, we will focus on TGF-b (transforming

growth factor-b), which is cytokine essential for CD103 (encoded

by Itgae) induction on activated CD8+ T cells. CD103 is a

commonly used marker for mucosal TRMs and critically involved

in mucosal TRM retention via interaction with its ligand E-cadherin

(31–33). It is well established that TGF-b signal delivered to CD8+ T
cells is broadly required for TRM differentiation, including most

mucosal TRM with CD103 expression (31–34) and some non-

mucosal TRM lacking CD103 (35). Further, continuous TGF-b
BOX 1 CD8+ T cell subsets.

After acute infection, memory CD8+ T cells can be classified into three main subsets based on their migration pattern. TCMs (central memory T cells) carry lymph
node homing receptors CCR7 and CD62L, and circulate via spleen, lymph nodes, blood and lymph. TEMs (effector memory T cells) lack lymph node homing
receptors and circulate via spleen, blood and peripheral non-lymphoid tissues. TRMs (tissue-resident memory T cells) may carry tissue-resident markers, e.g., CD69+

and CD103+/-, and are non-circulating.
During chronic antigen exposure, exhausted CD8+ T cells can be classified into Tcf-1+ progenitor or stem-like T cells and Tcf-1- T cells. The migration and

residency of Tcf-1+ T cells are the focus of the current review. Based on migration pattern, Tcf-1- CD8+ exhausted T cells can be further categorized into a migratory
subset (i.e., CD69-CX3CR1+ and with superior effector function) and a resident subset (e.g., CD69+CD101+ and with diminished effector function).
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signal is required for long-term maintenance of TRM cells in both

skin and intestine (36, 37). Interestingly, dendritic cells deliver basal

TGF-b to naïve T cells inside secondary lymphoid organs. This

basal TGF-b signaling before T cell activation will keep naïve T cells

semi-ready for later priming towards TRM differentiation (38). Thus,

during TRM differentiation and maintenance, TGF-b signal is

required at different locations and different stages. Similar to most

dogmas in biology, the requirement for TGF-b in TRM is not

universal. Prominent exceptions do exist, i.e., TRMs isolated from

upper respiratory tract and liver are formed independent of TGF-b
signal following acute infection (39, 40). It is interesting to note that

some TGF-b-dependent TRM population carry higher levels of

inhibitor receptor PD-1 expression (39, 41).

The second signal we would like to discuss here is local antigen.

As TRM is often formed at the site of local infection, which is likely

associated with enhanced local antigen presentation. TRM induction

in the brain, the sensory ganglia, the lung and the cornea requires

local antigen recognition (24, 25, 42, 43). However, local antigen is

not essential for TRM formation in the skin, the gut and the female

reproductive tract (43–45). For example, chemical-induced local

sterile inflammation can effectively attract in vitro activated CD8+ T

cells to form skin TRM, which is a commonly used and convenient

technique in TRM field (43). However, even for skin TRMs, local

antigen significantly boosts their formation (46, 47). After TRM
formation, it is generally believed that long-term maintenance of

TRM is TCR-independent, which is first demonstrated in skin-

resident gdT cells (48), later confirmed in both CD8+ and CD4+

TRMs (49–51). Together, although not universally required, TGF-b
and local antigen often promote initial TRM formation. For long-

term TRM maintenance, TGF-b is likely involved while antigen is

not required.
TRM in secondary lymphoid organs

Although initial CD8+ TRM research was largely focused on

non-lymphoid tissues, it was quickly realized that TRM could form

inside secondary lymphoid organs [i.e., spleen and lymph nodes

(LN)] after systemic viral infection although the population size was

small (52). In systemic LCMV (lymphocytic choriomeningitis

virus) infection model, lymphoid organ CD8+ TRM does not

express CD103. They carry typical TRM markers CD69+Ly6C-

CD62L- and core TRM gene signature. Importantly, these

secondary lymphoid organ TRMs are not migratory as

demonstrated in parabiosis experiments (53). They are direct

derivative of upstream non-lymphoid tissue TRM. In other words,

non-lymphoid tissue TRM re-activation leads to robust TRM

accumulation inside draining LNs (53). Consistently, pet store

mice or “dirty” mice with a complicated exposure history to a

broad collection of environmental pathogens carried significantly

increased TRM population in secondary lymphoid organs (53). In

local influenza virus infection model, a significant population of
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CD69+CD103+CD8+ TRM subset can be identified in lung draining

LNs (54–56). Repetitive infection promotes LN TRMs (54) and

CD8+ T cells carrying different TCR specificity exhibit distinct LN

TRM potential (56), suggesting a possible role of antigen in LN TRM

formation. However, antigen is not required for LN TRM

maintenance (55). Similar to systemic LCMV infection, LN TRM

is generated via retrograde migration from upstream lung TRMs

during influenza viral infection (55). Functionally, these draining

LN TRM may represent an expanded local defense to reinforce the

first line of TRM-dependent immunity at the upstream non-

lymphoid tissues.

Interestingly, a large number of memory CD8+ T cells in

human LNs and spleen carry typical TRM markers CD69 and

CD103 (57). In addition, a CD69+CD103+ CD8+ T cell subset

has been identified in human tonsil and specific for Epstein Barr

Virus (EBV) (58). The identity, migration and function of these

human T cells remains a mystery. Based on the observation in

mice (especially the results from dirty mice), it is conceivable

that these CD69+CD103+ CD8+ T cells in human secondary

lymphoid organs may contain a significant TRM subset. Thus,

CD8+ TRM can form inside secondary lymphoid organs in both

mouse and human. In mouse acute infection models, these LN

TRMs are derived from upstream non-lymphoid tissue TRMs. In

other words, they may have a travel history to periphery tissues

before settling down in the draining LNs.
Lymphoid residency of stem-like T
cells—Chronic infection

In the original papers that discovered Tcf-1+PD-1+ subset

during chronic LCMV infection, a few interesting features of

Tcf-1+ stem-like T cells emerged. First, they are largely located

inside secondary lymphoid organs (LNs or splenic lymphoid

follicles). Second, they are almost absent in the peripheral blood

(7). Demonstrated via parabiosis experiments, most Tcf-1+PD-

1+ T cells are tissue-resident and largely separated from the

circulation after the establishment of chronic LCMV infection

(59). Incorporating TRM marker CD69, both Tcf-1+ stem-like

and Tcf-1- effector subsets can be further divided into CD69+

and CD69- populations. Importantly, both Tcf-1+CD69+ and

Tcf-1-CD69+ subsets are excluded from the circulation and

negatively enriched for circulating T cell gene signature (60).

Tcf-1+CD69+ cells are largely located inside lymphoid follicles

while Tcf-1-CD69+ ones are splenic red pulp-resident (60).

These results demonstrate that during systemic chronic viral

infection, a significant portion of exhausted CD8+ T cells acquire

certain features of TRM inside lymphoid organs. Based on these

findings, it will be interesting to address the questions why Tcf-

1+ stem-like CD8+ T cells prefers a lymphoid environment and

whether the lymphoid-residency is functionally important for

stem-like T cell differentiation or maintenance.
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A series of recent findings focused on chemokine receptor

CXCR3 have shed light on these critical questions. Using either

acute (61) or chronic LCMV infection model (62), it has been

demonstrated that CXCR3 is essential for the differentiation from

Tcf-1+ stem-like to Tcf-1- effector T cells. In the absence of CXCR3,

there is an increased accumulation of Tcf-1+ subset inside

secondary lymphoid organs. There are two ligands for CXCR3 in

C57BL/6 mice, namely CXCL9 and CXCL10. Interestingly, CXCL9

producing cells (e.g., XCR1+ cDC1) are concentrated inside T cell

zone while CXCL10 producing cells (e.g., conventional Dendritic

Cell 2, or cDC2 and inflammatory monocytes) are mainly outside T

cell zone. Thus, it is mainly via CXCL10/CXCR3 interaction to

attract Tcf-1+ T cells to move out of T cell zone (61, 62). These

findings have been validated in a different chronic parasite infection

model (i.e., Toxoplasma gondii, or T. gondii infection) (63). During

T. gondii infection, Tcf-1+ CD8+ T cells expressing high levels of

CXCR3. In responding to CXCL10, these stem-like T cells migrate

out of lymphoid follicles and form clusters with cDC2 in the

bridging channels of spleen. Importantly, these T. gondii-specific

Tcf-1+CD8+ T cells isolated from the spleen carry a typical TRM

phenotype (i.e., Cd69+Itgae+Klf2-S1pr1-S1pr5-) although this result

is from RNA-seq, not confirmed at protein levels (63). Together,

these investigations on CXCR3 and CXCL10 provide us an

excellent example that the lymphoid location of Tcf-1+ stem-like

T cells is tightly associated with their maintenance (Figure 1).

Leaving lymphoid environment is accompanied by immediate

effector differentiation.

Another key signal delivered to stem-like T cells is TGF-b.
Although TGF-b is often considered as a cytokine with broad

distribution, Tcf-1+ stem-like T cells carry TGF-b activating

integrin (avb8) to keep a TGF-b-rich microenvironment around

themselves (64). TGF-b is produced as inactive latent form. Active

TGF-b has an extremely low solubility at neutral pH and therefore

active TGF-b is likely to have a very short functional distance. Thus,
local TGF-b-activating mechanisms (e.g., avb8 integrin) are

essential for TGF-b function in vivo.
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The function of TGF-b on stem-like T cells is multifaceted

(Figure 2). First, TGF-b restrains mTOR (Mammalian Target of

Rapamycin) activity in stem-like T cells to maintain their long-

term responsiveness (64). Second, TGF-b directly suppress the

differentiation of CX3CR1+ effector T cells and promotes the

formation of CD101+ terminally exhausted T cells (64, 66, 67).

Importantly, the impacts of TGF-b are significantly enhanced

during the later stages of chronic infection (66). Finally, we have

demonstrated that TGF-b suppresses Tcf-1+➔CX3CR1+

differentiation partially via enforcing their lymphoid tissue

residency. In the absence of TGF-b receptor, stem-like T cells

exhibited defective lymphoid tissue retention, which is

associated with further effector differentiation. Forcing TGF-

bR deficient stem-like T cells to stay inside lymphoid follicles via

integrin a4 blocking partially corrects the defects. This result

suggests that manipulating the location of Tcf-1+ T cells alone is

sufficient to control their differentiation (67).
Lymphoid residency of stem-like T
cells—Tumor immunity

In tumor settings, Tcf-1+PD-1+ cells are initially identified

among tumor infiltrating lymphocytes (TIL), which is out of a

secondary lymphoid organ. It is later discovered that a
FIGURE 1

CXCR3 is critical for stem-like CD8+ T cells to leave lymphoid
niche during chronic infection. CXCR3/CXCL10-dependent
migration from splenic white pulp to red pulp is required for
the efficient differentiation from Tcf-1+ stem-like to Tcf-1-

effector T cells.
FIGURE 2

TGF-b controls exhausted CD8+ T cell differentiation during
chronic viral infection. TGF-b integrates lymphoid residency,
metabolic program and transcriptional control to inhibit the
differentiation of migratory effectors and promote CD8+

T cell terminal exhaustion. In this figure, we present a lineal
differentiation model for exhausted CD8+ T cells. To be noted,
elegant evidence does exist to support a bifurcation model of
exhausted T cell differentiation (65).
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lymphoid-like microenvironment exists inside solid tumors to

host Tcf-1+ stem-like T cell subset and physically separates them

from tumor cells (68, 69).

Recent results have established cDC1-delivered tumor antigen

is critical to establish tumor draining LNs as a reservoir of Tcf-1+

T cells and to sustain anti-tumor immunity (70, 71). Our recent

work has revealed that tumor draining LN (TDLN) harbors a

large population of Tcf-1+ CD8+ T cells with a CD69+CD103+

TRM phenotype (72). The differentiation of TRM-Tcf-1
+ T cells

requires both TGF-b signaling and tumor antigen. Tumor vaccine,

especially vaccine adjuvant promotes the differentiation from TRM

to non-TRM in a type I IFN-controlled way. This result is

consistent with the finding in an acute viral infection model,

where type I IFN suppresses TRM formation (35). The loss of TRM

feature is critical for the active migration of stem-like T cells from

TDLN to tumor site to control tumor growth. In addition, the loss

of TRM identity may represent the first step of CX3CR1+ effector T

cell differentiation. Another key finding is that Tcf-1+ CD8+ T cells

gradually differentiate into TRM inside TDLNs, i.e., the appearance

of TRM-Tcf-1
+ cells is significantly delayed comparing with that of

Tcf-1+ cells in TDLNs. Only large tumor TDLN carries a

significant population of TRM-stem CD8+ T cells. This finding

likely explains the discrepancy between our results and most

previous animal research focusing on early-stage tumor (i.e.,

when tumor is palpable). For example, in contrast to the lack of

efficacy in our hands for large tumors, tumor vaccine is often

effective when given early (15). Using photoconvertible mice, Tcf-

1+ T cell migration between tumor and TDLN can be easily

identified in early-stage tumor (when tumor size is small) (73). It

is possible that similar to retrograde migration in acute infection

settings, TDLN TRM-stem CD8+ T cells are derived from tumor

infiltrating T cells although this idea has not been tested

experimentally. Considering all these results, we believe that

tumor-specific Tcf-1+CD8+ T cells accumulate inside TDLNs

and gradually differentiate into TRM-stem and lose migratory

capacity when tumor reaches a certain size (Figure 3). TGF-b
and tumor antigen promote, while type I IFN inhibits the

establishment of TRM-Tcf-1
+ cells in TDLNs. It is conceivable

that most cancer patients carry large tumors and likely harbor a

significant portion on TRM-stem in TDLNs. The migration from

TDLNs to tumor is essential for CD8+ T cells to directly attack

solid tumors. Thus, targeting TRM-stem in TDLN and mobilizing

TDLN stem-like CD8+ T cells will be one of the keys to boost

tumor immunotherapies, including tumor vaccines.

Conclusion and future

Together, lymphoid residency is an essential component of

Tcf-1+ exhausted T cells in both chronic viral infection and

tumor immunity. The regulation of lymphoid residency for Tcf-

1+ T cells is critical to control effector differentiation and is an
Frontiers in Immunology 05
essential speed-limiting step for tumor vaccine response.

However, TRM is not the only fate for lymphoid Tcf-1+

exhausted CD8+ T cells. A significant portion of lymphoid

Tcf-1+ CD8+ T cells does not differentiate into TRM. The

regulation of TRM vs non-TRM Tcf-1+ T cells under different

tumor immunotherapy settings remains unknown. The lineage

relationship between TRM-Tcf-1
+ vs non-TRM-Tcf-1

+ cells is

unclear. Importantly, whether TRM-Tcf-1
+ T cells are critically

involved in all chronic antigen exposure settings awaits future

investigation. For example, in an autoimmune diabetes setting,

pancreas draining LN Tcf-1+ CD8+ T cells do not carry

enhanced CD69 and express high levels of Klf2 (74), which is

associated with circulating T cells (75). Similarly, in a melanoma

and autoimmune vitiligo setting, LN Tcf-1+ T cells express high

levels of Klf2 and Tcf-1- LN effector T cells become TRM (76).

Thus, it is possible that a unique mechanism exists to keep

autoimmune-induced Tcf-1+ CD8+ T cells as circulating cells in

lymphoid organs. Nevertheless, recent publications have

highlighted the importance of the lymphoid location of Tcf-1+

T cells. Better understanding the control of residency vs

migration of Tcf-1+ T cells represents one of the keys to

advance our knowledge of Tcf-1+PD-1+ T cell biology and

facilitate the future design of T cell-based immunotherapies.
FIGURE 3

The differentiation and migration of stem-like CD8+ T cells
inside tumor draining lymph nodes. TRM-Tcf-1

+ cells can
differentiate into non-TRM-Tcf-1

+ cells, which can further
differentiate into Tcf-1- effector T cells. Non-TRM-Tcf-1

+ and
Tcf-1- T cells have the capacity to migrate to distal organs. TGF-
b, antigen and type I IFN control the differentiation of Tcf-1+ T
cells inside tumor draining LNs.
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