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Radiotherapy induced
immunogenic cell death
by remodeling tumor
immune microenvironment

Songxin Zhu †, Yuming Wang †, Jun Tang † and Min Cao*

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai, China
Emerging evidence indicates that the induction of radiotherapy(RT) on the

immunogenic cell death (ICD) is not only dependent on its direct cytotoxic

effect, changes in the tumor immunemicroenvironment also play an important

role in it. Tumor immune microenvironment (TIME) refers to the immune

microenvironment that tumor cells exist, including tumor cells, inflammatory

cells, immune cells, various signaling molecules and extracellular matrix. TIME

has a barrier effect on the anti-tumor function of immune cells, which can

inhibit all stages of anti-tumor immune response. The remodeling of TIME

caused by RT may affect the degree of immunogenicity, and make it change

from immunosuppressive phenotype to immunostimulatory phenotype. It is of

great significance to reveal the causes of immune escape of tumor cells,

especially for the treatment of drug-resistant tumor. In this review, we focus

on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to

suppress intrinsic immunity, and the sensitization effect of the remodeling of

TIME caused by RT on the effectiveness of immunotherapy.

KEYWORDS

radiotherapy (RT), tumor immune microenvironment (TIME), immunogenic cell death
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Introduction

Characteristics of tumor include sustained proliferation, resistance to cell death,

angiogenesis, invasion and metastasis, as well as suppression of inflammation and

immunity (1). Among them, immunosuppression, an important feature of the tumor

immune microenvironment (TIME), is considered to be an important reason of tumor

progression and metastasis and has become a therapeutic target for numerous tumor types.

Radiotherapy (RT) with highly effective and non-specific in nature is one of the commonly

used therapies in the treatment of malignant tumors. RT is regarded as the most effective

cytotoxic therapy for treating patients with solid tumors and is used as first-line treatment in
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approximately 60% of newly diagnosed patients (2, 3). Firstly, RT

directly or indirectly induces DNA damage and endoplasmic

reticulum (ER) stress, leading to tumor cell death, which is

thought to target cancer cells. In addition, non-targeted and

systemic effects of RT have also been identified (4). There is

growing body of evidence that RT can remodel TIME to alter the

original immunosuppressive state, exert anti-tumor effects, and

exhibit enhanced immune responses and therapeutic effects when

combined with immunotherapy (5–7). This article partly reviewed

the impact of TIME on immunosuppression and the effects of RT

on TIME, elaborated the mechanisms of reversal of TIME on the

suppression of intrinsic immunity, and the sensitizing effect of the

remodeling of TIME on the effectiveness of immunotherapy.
TIME

TIME is the structural and functional niche where tumor

cells arise and live, and includes not only tumor cells and

extracellular matrix (ECM), but also fibroblasts, epithelial cells

(ECs), immune or inflammatory cells, blood and lymphatic

vessels, etc (8). TIME, mediated by the secretion of a large

variety of factors by a diverse range of cells, forms a local milieu

that favors tumor proliferation, infiltration and metastasis.

Tumorigenesis is usually accompanied by the activation of

innate and adaptive immunity, called functional cancer

immunosurveillance, which gradually results in the

accumulation of immune or inflammatory cells within the

TIME. The immune response plays a dual role in the complex

interaction between tumor and host (pro-/anti- tumor) and

undergoes cancer immunoediting processes (elimination,

equilibrium, and escape), culminating in the formation of an

immunosuppressive microenvironment that promotes

malignant tumor progression. Natural killer (NK) cells are key

cells in innate immunity, relying on granzymes and perforin for

direct cell killing without prior sensitization or MHC restriction.

In the adaptive immune system, CD4+ T cells and dendritic cells

(DCs) are important mediators, while CD8+ cytotoxic T

lymphocytes (CTLs) play the ultimate tumor-killing role.

CD4+ T cells, mainly T helper cells, broadly play an important

adjuvant function in the recognition and clearance of tumor

cells, through promoting the proliferation and activation of

CTLs, the formation of memory CTLs, and enhancing the

antigen presentation of DCs (9, 10). Cytolytic CD4+ T cells

recognize antigenic peptides presented by MHC-II molecules

mainly on antigen-presenting cells (APCs), and are relevant to

antitumor immunity in cancer patients (11, 12). DCs are the

most important APCs that initiate adaptive immune responses

via activation of naive T cells (13). DCs cross-present MHC-I

molecules to CD8+ T cells to induce the production of cytotoxic

effector CD8+ T cells, known as CTLs (14). CTLs recognize

MHC-I molecules expressed by tumor cells and specifically kill

tumor cells through Granule exocytosis and Fas ligand (Fas-L)-
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mediated apoptosis induction (15). Moreover, CTLs release

interferon-g (IFN-g) and tumor necrosis factor a (TNF-a) to
induce cytotoxicity within tumor cells (16). Tumor-associated

macrophages (TAMs) are abundant in TME and are major

players in the inflammatory response. In addition to

promoting tumor cell proliferation and angiogenesis, TAMs

suppress adaptive immune responses (17). Cancer Associated

Fibroblasts (CAFs), the plentiful stromal cells in the TME, are a

major source of extracellular matrix fibrogenic components such

as collagen, hyaluronic acid and fibronectin (18). CAFs actively

contribute to cancer invasion by modulating distinct malignant

processes (angiogenesis, chronic inflammation and ECM

remodeling) and therapeutic resistance (19). CAFs control the

functional fate of innate and adaptive immune cells in the TIME

by secreting cytokines/chemokines and engaging in direct

intercellular interactions (20). Moreover, CAFs play important

metabolic effects. The secretion of alanine by CAFs supports

malignant cell growth and may also have a positive effect on T

cell function (21, 22).
TIME suppresses intrinsic immunity

Although the immune system can clear tumors through the

cancer-immune cycle, tumors often evade the body’s immune

surveillance by shaping an inhibitory TIME. The complex

interactions between the mediators of pro- and anti-tumor in

TIME ultimately determine trends of anti-tumor immunity (23,

24). Among these, pro-tumor immune cells include regulatory T

cells (Tregs), myeloid-derived suppressor cells (MDSCs), TAMs,

CAFs, and tumor-associated neutrophils (TANs). In TIME, CAFs,

TAMs and Tregs form an immune barrier to CTLs-mediated anti-

tumor immune responses (15). In addition, pro-tumor immune

cells and immunosuppressive factors (e.g., transforming growth

factor b, interleukin-10) act synergistically to exert important

immunosuppressive effects, including inhibition of differentiation

and maturation of DCs, inhibition of NK cell toxicity, inhibition

of antigen presentation, inactivation of the pro-apoptotic

pathway, and disturbance of T cell receptor signaling

(25) (Figure 1).
Immunosuppression of tumor cells

Cytokines, chemokines and metabolites from tumor cells

have a significant impact on TIME, such as transforming growth

factor-b (TGF-b) and interleukin (IL)-10. Tumor cells inhibit

the function of NK cells, CD8+ T cells and evade recognition and

attack by the immune system. Most tumor cells express a large

amount of stem cell factor, which induces mast cells to infiltrate

the tumor site. Mast cells inactivate T cells and NK cells, as well

as inhibit their anti-tumor activity (31). Colony stimulating

factor 1 (CSF1) produced by tumor cells promotes
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differentiation of TAMs and production of granulocyte-specific

chemokines in CAFs (31). CSF1 receptor inhibitor and CXCR2

antagonist treatment inhibit the recruitment of MDSCs to

TIME, exhibiting significant anti-tumor effects (32). TIME also

modify certain inflammatory cell types so that they present a

pro-tumor phenotype , in part icular many chronic

inflammation-associated inflammatory cells promoting tumor

progression (52, 53). Hypoxia is a prevalent feature in solid

tumor TIME and contributes to the suppression of immune

killer cells and protection of tumor cells from immune attack

(26, 27). Hypoxia-induced factor 1a (HIF-1a) is a key regulator
of adaptive responses to hypoxia, involved in angiogenesis,

tumor invasion and metastasis, and increases Tregs abundance

by inducing FOXP3 (28). Moreover, HIF-1a also increases PD-

L1 expression on tumor cells and suppresses immune cell

responses by targeting PD-1 on activated T cells. Tumor cells

reduce the expression of MHC or tumor antigens to avoid

recognition and clearance by immune cells (29). Adenosine

A2a receptor (A2AR) expressed on tumor cells inhibits the

activation of immune cells and its expression is associated

with cytokines such as HIF-1a. A2AR blockade reduces CD4+

FOXP3+ Tregs infiltration and enhances the anti-tumor

response of CD8+ T cells by attenuating hypoxic HIF-1a
signaling (30).
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Immunosuppression of Regulatory
T cells
Tregs are an immunosuppressive subset of CD4+ T cells

characteristically expressing CD4, CD25, and FOXP3, and

exhibit diversity and functional heterogeneity across tumor

types. Hypoxia in TIME increases Tregs abundance by

upregulating FOXP3 (28). Tregs, the important Tumor-

Promoting Immune Cells, affect a variety of tumor-infiltrating

immune cells by producing multiple immunosuppressive

cytokines (such as TGF-b, IL-10 and IL-35) and exhibit a

significant anti-tumor immune response (43). Tregs inhibit

tumor killing by CTLs through TGF-b-dependent cell contact
(54), inhibit the production of memory CTLs via cytotoxic-T-

lymphocyte-associated protein-4 (CTLA-4) (33), and induction of

CTLs death via granzyme B and perforin-dependent manner (55).

In addition, Tregs inhibit IFN-g secretion by CD8+ T Cells and

promote the polarization of M2 TAMs (suppressing immunity)

(56). Tregs-expressed CTLA-4 binds to CD80/CD86 on DCs to

downregulate co-stimulatory signaling and inhibit DCs function

(57). Tregs restrain NK cell proliferation, IFN-g production,

degranulation and cytotoxicity (58). Tregs-produced TGF-b and

IL-35 enhance the function of MDSCs (59).
FIGURE 1

Cross-talk between various components in TIME. Hypoxia is an important feature of TIME in solid tumors, which exerts multiple effects by
inducing HIF-1a, such as 1) promoting angiogenesis, tumor invasion and metastasis, 2) increasing Tregs abundance to suppress host immune
response, and 3) upregulating PD-L1 and A2AR on tumor cells to evade immunity (26–30). Tumor cells induce and chemotactic
immunosuppressive cells (Tregs, M2 TAMs, MDSCs, CAFs) to infiltrate in TIME by secreting TGF-b and CSF (31, 32). Moreover, tumor cells
inherently upregulate PD-L1 and A2AR expression to suppress the immune function of CTLs, as well as downregulate MHC and tumor-
associated antigens (TAAs) expression to reduce antigen presentation and immune activation (29, 30). Tregs produce multiple
immunosuppressive cytokines and express CTLA4 to inhibit CTLs and DCs by binding CD80/86 (33). M2 TAMs in TIME suppress T cell function
by upregulating ARG and PD-L1 expression while recruiting Tregs via CCL20/CCL22 (34–36). MDSCs produce inhibitory cytokines and inhibit
the formation and cytotoxicity of NK cells by reducing NKG2D expression and IFN-g secretion (37). CAFs secrete a large number of cytokines,
chemokines and ECM, which exhibit immunosuppressive and tumor-supportive effects (31, 38, 39). For example, IL-6 from CAFs recruits
MDSCs, CAFs reduce M1 macrophages while recruiting M2 TAMs via hyaluronic acid, upregulated expression of Fas and PD-1 suppresses and
depletes T cells (40–42). Suppressive cytokines (e.g., TGF-b, IL-10, IL-35) can be produced by tumor cells and a variety of immunosuppressive
cells in TIME to inhibit immune killing of CTLs, suppress the differentiation and antigen presentation of DCs, and restrain the proliferation and
cytotoxicity of NK cells (43–46). In addition, glucose and arginine deficiency in TIME, as well as high lactate levels inhibit T cell function (47–51).
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Immunosuppression of tumor-
associated macrophages

Macrophages account for >50% of tumor-infiltrating immune

cells. According to function and cytokine secretion, macrophages

are classified as classical activation (M1) with immunostimulatory

function and alternative activation (M2) with immunosuppressive

and tumor-supportive effects (60). Macrophages are referred to as

TAMs in solid tumors, mainly M2, and there is a strong negative

correlation between their presence and survival in a variety of solid

tumors including breast, colon, bladder and lung cancers (61–64).

TAMs are functionally heterogeneous and display remarkable

plasticity, which allows macrophages to ‘switching’ into an ‘M2’

phenotype in TIME, associated with immunosuppressive, tumor

angiogenic andmetastatic consequences (44). In contrast to classical

M1 macrophages, these M2 TAMs secrete large amounts of IL-10,

and TGF-b, which exert anti-inflammatory effects (44). Hypoxia in

TIME also increases arginase 1 (ARG1), VEGF, and macrophage-

derived protein kinase signaling by activating mitogen-activated

protein kinase signaling in TAMs (34, 65). ARG1 expression is

upregulated in TAMs and tumor cells, inhibiting T cell activation by

reducing arginine entry into tumor-infiltrating immune cells (34).

M2 macrophages-derived CCL20/CCL22 is involved in the

recruitment of Tregs (35). M2 TAMs also increases PD-L1

expression to attenuate the effect of CTLs (36).
Immunosuppression by myeloid-
derived suppressor cells

MDSCs represent a heterogeneous population of immature

myeloid cells with different transcriptional activity and

differentiation states, including granulocytic or polymorphonuclear

MDSCs (PMN-MDSCs) and monocytic MDSCs (M-MDSCs) (66).

They prevent T cell-mediated adaptive immune responses and killing

of tumor cells via the innate immune systemmediated by NK cells or

TAMs (67). Among them, PMN-MDSCs produce ROS and reduce

T-cell responses to antigens (66). M-MDSCs produce nitric oxide or

differentiate into immunosuppressive macrophages to suppress

immune activation (68, 69). Similar to Tregs, the secretion of IL-10

and TGF-b by MDSCs impairs CTLs function and facilitates the

induction of Tregs formation (45, 46). MDSCs also cause arginine

deficiency by consuming nutrients in the TIME, which in turn causes

Teff cell inactivation (46). In a xenograft mouse model, MDSCs

inhibit NK cells formation and cytotoxicity by reducing natural killer

group 2 member D (NKG2D) expression and IFN-g secretion (37).
Immunosuppression of cancer-
associated fibroblasts

CAFs generally exhibit immunosuppressive and tumor-

supportive functions (70–72). CAFs secrete a large number of
Frontiers in Immunology 04
immunosuppressive cytokines and chemokines, such as

CXCL12, CXCL8, IL-6, TNF, TGF-b, etc. (31). Among these,

high levels of IL-6 recruit MDSCs, upregulate PD-L1 expression

and induce tumor immunosuppression (40). CAFs inhibit the

production of regulatory factors such as IFN-g and TNF-a by T

cells and block the migratory capacity of T cells (73). In addition,

factors secreted by CAFs also reduce the migration of M1

macrophages and inhibit the pro-inflammatory function of M1

macrophages (41). Meanwhile, CAFs upregulate Fas and PD-1

expression on T cells and deplete CD8+ T cells by binding PD-L2

and FasL (42). CAFs remodel the ECM and protect tumor cells

from CTLs, for example, hyaluronic acid produced by CAFs

recruits TAMs to the TIME (38, 74, 75). In short, CAF-derived

cytokines/chemokines mediate immune escape, growth and

metastasis of tumors (39). The SynCon FAP DNA vaccine

reduces the number of FAP+ CAFs by targeting Fibroblast

activation protein (FAP), a major marker of CAFs, thereby

inducing T cell activation and suppressing tumor metastasis

(76, 77).
Immunosuppression of TGF-b

In preinvasive disease, TGF-b mainly acts as a tumor

suppressor. Once the tumor has invaded, TGF-b promotes

tumor progression through epithelial mesenchymal transition,

angiogenes i s , tumor metas tas is , pro l i ferat ion and

immunosuppression of CAFs in TIME (16, 78–81). RT-

mediated reactive oxygen species(ROS) production can

activate TGF-b (82). TGF-b promotes immunosuppressive

TIME through its effects on all immune subgroups (16). For

example, TGF-b promotes stromal fibrosis and immune escape,

which exclude T cells from infiltrating into tumor tissue, thereby

mediating resistance to T cell-directed immunotherapy (64).
Immunosuppression of nutrient
competition, metabolite and ion pooling

The high consumption of glucose and amino acids by tumor

cells contributes to the achievement of tumor growth, metastasis

and immune tolerance (83). Glucose deficiency leads to a

decrease in glycolysis in immune cells, which hinders IFN-g
production and the function of CTLs (47). Arginine is exhausted

by MDSCs and macrophages, resulting in arginine deficiency in

TIME. The anti-tumor activity of T cells is inhibited due to

protein biosynthesis-mediated cellular exhaustion (48, 49).

Indoleamine 2,3-dioxygenase (IDO) is an important rate-

limiting enzyme expressed in CAFs, macrophages, and tumor

cells that catalyzes the production of kynurenine from

tryptophan (84, 85). Tryptophan metabolites/enzymes

suppress inflammatory responses by recruiting Tregs and

inhibiting Teff cells proliferation (86, 87). High levels of
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extracellular lactate inhibited the proliferation and cytokine

production of human CTLs (88). Excess lactate led to an

acidic environment that reduced arginine concentrations in

TIME by inducing ARG1 expression in macrophages, which in

turn inhibited CD8+ T cell proliferation and function (50, 51).

Intracellular lactate, a product of glycolysis, inhibits T-cell

glycolysis by suppressing the mTORC1-mediated signaling

pathway (89). The increase in extracellular fluid potassium

ions caused by tumor necrosis leads to severe suppression of T

cell effector function (90).
Immunosuppression of blood vessels

The immunosuppressive properties of TIME promote

vascular destruction, which limits the infiltration of cytotoxic

T lymphocytes into the tumor and exacerbates hypoxia (91).

And there is a functional defect in the emerging vascular

network in TIME that promotes hypoxia formation (92).

In summary, according to the immune characteristics in

TIME, Tumor immunophenotype is usually classified as “cold”

or “hot” tumors, which suggests individualized clinical treatment

options. In “hot” or “inflamed” tumors, high expression of PD-

L1, enrichment of Th1-type chemokines, and a large number of

NK cells, CD8+ T cells and APCs are found (93, 94). And it has

been established that immune “hot” as a protective factor leads

to better clinical outcomes when treated with anti-PD-1/PD-L1

(95). In contrast, “cold” tumors so-called “immune-desert”

tumors, are characterized by a high number of Tregs and

MDSCs, few NK cells, CD8+ T cells, Th1 cells and DCs, but

abundant immunosuppressive cytokines (93, 94).
Effects of RT on the TIME

RT is a form of local ablative physiotherapy, the principle of

which was using high-energy radiation to treat localized tumors

(96). In addition to damaging tumor cells through different

pathways, RT also affects other components of the TIME,

including immune cells, CAFs, etc. Besides, RT has both

“Non-targeted” and abscopal effects on tumor cells. “Non-

targeted” effects, also called bystander effects, are molecular

signals from irradiated cells that affect adjacent non-irradiated

tissues (97). An abscopal effect, explained by the regression of

the tumor occurring at a site far from the radiation, is thought to

be the result of a systemic immune response (98). Weichselbaum

and colleagues experimentally confirmed that the host immune

response was the primary cause of the RT response and not the

intrinsic radio-sensitivity of the tumor cells (99). RT is involved

in every process of the immune response, the recruitment and

accumulation of T cells in tumors, the release and presentation

of antigens, the initiation and activation of T lymphocytes, and

the recognition and killing of tumor cells by T lymphocytes. The
Frontiers in Immunology 05
effect of RT on irradiated TIME is immunostimulatory or

immunosuppressive, which is primarily influenced by the

immune landscape of the tumor as well as the dose and

fractionation of RT (100).
RT and tumor cells

RT achieves single- and double-stranded DNA damage, mis-

repair and chromosomal aberrations through the induction of

ROS and reactive nitrogen species (RNS) (92, 101). When RT-

induced damage is limited, cells initiate damage repair

mechanisms (including DNA damage response, the unfolded

protein response and autophagy) to ensure the survival of

irradiated cells and re-entry into the cell cycle (102). However,

when damage cannot be resolved by repair mechanisms, the

molecular mechanism of adaptation to stress switches from a

cytoprotective to a cytostatic or cytotoxic mode, usually in one of

these forms, ultimately leading to cellular senescence or

regulated cell death (RCD) (103). Moreover, both protective

repair mechanisms and senescence or RCD have an impact on

the local microenvironment and organismal homeostasis, not

only through the production of many different cytokines and

chemokines, but also through the involvement of damage-

associated molecular patterns (DAMPs), ions, and metabolites

(103). RT-driven DNA damage response (DDR) can mediate

immunostimulatory effects (104). For example, irradiated cancer

cells express NK cell-activating ligands (NKALs) on the cell

surface after DDR, which support antigen-independent NK cell

activation by binding to specific receptors on NK cells (105). NF-

kB is sensitive to intracellular alterations that occur after RT,

including DNA damage and oxidative stress (102). RT-induced

initiation of NF-kB signaling increased the release of cytokines

including TNF and IL-1b (106). Tumor cells and CAFs have a

proficient autophagic response and successful autophagic

response to RT not only preserves cellular viability but also

facilitates the maintenance of immunosuppression by TIME

(102). However, apoptotic RCD resulting from failing DDR,

UPR and autophagic responses transmits danger signals to

TIME via membrane exposure and secreted factors in

response to lethally irradiation (102). In addition, radiation

also induces a variety of non-apoptotic cell death signals, for

example, RT-driven mitotic catastrophe activates cGMP-AMP

(cGAMP) synthase (cGAS)-stimulator of interferon genes

(STING) signaling via TBK1 and IRF3, thereby facilitating the

secretion of large amounts of type I IFN (107, 108). Necroptosis

is a major pro-inflammatory RCD modality that may ultimately

lead to increased tumor infiltration of myeloid cells and CTLs

(103, 109). Genetic data suggested that necroptosis was the

predominant RCD mechanism in non-small cell lung cancer

(NSCLC) cells expressing high RIPK3 levels after ablative hypo-

fractionated RT (110). In contrast, a study by Sandy Adjemian

et al. showed that necroptosis was not the predominant form of
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IR-induced death (111). The intrinsic radio-sensitivity of

malignant cells exhibits intra- and inter-cancer variability,

which depends not only on intrinsic cell characteristics

(including efficient DDR, UPR and autophagic competence)

but also on TIME factors (e.g. partial oxygen tension) (112–

114). Depending on the radiation dose, high doses tend to trigger

powerful cytotoxic effects and a strong immune response, while

low doses tend to induce cellular senescence and acquire a

senescence-associated secretory phenotype (SASP) mainly

promoting immunosuppression (102, 115). Data suggest that

when cells are irradiated with doses below 10 Gy, most DNA

breaks can be repaired and the cells can resume their cell cycle,

divide and remain viable. However, at doses higher than 10 Gy

some DNA damage fail to repair, at which point mitotic

catastrophe and many different forms of death occur (111).

Abscopal radiation-induced antitumor immune responses

are rarely observed in clinical practice (116). Apparently, RT-

induced antitumor immunity is dependent on RT-generated

immune activation signals and immunosuppressive factors (4).

One immunosuppressive component is TGF-b1, which

promotes tumor progression, invasion and metastasis. Active

TGF-b1 is produced in tumors after RT, particularly in

endothelial cells undergoing low-dose ionizing-radiation (82,

117). TGF-b1 induces a phenotype of infiltrating inflammatory

cells with immunosuppressive effects, e.g. TANs N2 with a

protumor phenotype, TAMs M2 (118, 119). RT induces the

expression of immunosuppressive molecules, such as PD-L1,

through local cytokine-mediated extrinsic effects or P53-

mediated intrinsic mechanisms (120, 121).
RT and lymphocytes

Various subtypes of T cells have different resistance to RT, and

unlike Th cells and CTLs, Tregs cells are relatively radioresistant

(122). B cells and their precursor cells are highly sensitive to

radiation-induced DNA damage (123). However, focal radiation

treatment of tumor sites at 12-18 Gy using a mouse model

suggests that radiation alters B-cell activation, differentiation

and clonogenicity, prompting B cells resistance to tumorigenesis

(124). Irradiation induces B cells maturation and activation as well

as increases the differentiation of tumor antigen-specific plasma

cells (124). RT induces the expression of CD20, a common surface

antigen on B cells, which is now used as a target for some

therapeutic strategies, such as radio-immunotherapy (125).
RT and macrophages

Monocytes, the source of macrophages and DCs, show a

high sensitivity to RT and oxidative damages that can lead to

single- and double-strand DNA breaks (126). However, both

macrophages and dendritic cells upregulate DNA damage repair
Frontiers in Immunology 06
mechanisms and display a relatively normal DNA repair damage

response, leading to an increase in their radio-resistance (126).

In TIME, a low-dose RT (LDRT) of 2 Gy induced the

differentiation of iNOS+M1 macrophages promoting a pro-

immunogenic environment (127). In contrast, higher RT doses

promoted tumor infiltration via pro-tumorigenic M2-TAMs

polarization (128, 129). In addition, high-dose RT (>8 Gy)

may promote anti-inflammatory activation of macrophages

(130) and doses of 20 Gy activate the M2 TAMs with

pathogenic properties via induction of the immunosuppressive

molecules COX-2/PGE2 and NO (128, 131).
RT and DCs

Higher doses of irradiation (20 Gy) affect the function of

DCs, leading to a reduction in the efficiency of antigen

presentation and a reduced ability to induce T lymphocyte

proliferation (126, 132). According to some reports, irradiated

DCs secrete increased amounts of pro-inflammatory cytokines

(including IL-1b and IL-12) and decreased amounts of anti-

inflammatory cytokines such as IL-10 (133, 134). Fractionated

RT along with anti-CTLA4 produced abscopal effects caused in

part by an increased number of Batf3 DCs, which were abolished

in Batf3-/- mice, confirming the important role of Batf3 DCs in

RT-induced anti-tumor immunity (135–137).
RT and Natural Killer Cells

Mature NK cells have been reported to be relatively

radioresistant, while their precursors are radiosensitive (138).

It is generally accepted that the effect of RT on NK cells is

influenced by the radiation dose, with low doses of RT activating

NK cells and high doses leading to impaired NK function (139).

Low doses of RT (0.075 Gy to 0.15 Gy) triggered increased

expression of IFN-g and TNF-a in vitro, and doses of 0.1 Gy to

0.2 Gy resulted in NK activation in an vivo rat model (139). RT

induces an ATM-dependent DNA damage response in NK that

promotes immune response and reduces exhaustion (140).

Radiation increased the ability of NK cells to kill experimental

cells such as MCA105 and K562cells (141, 142), and studies

using human primary NK cells or the NK-92 cell line also

confirmed increased NK cell-mediated cytotoxicity after

radiation (143). In addition, RT also induces the migration of

NK cells towards the tumor with the help of the chemokine

CXCL16/CXCR6 (144). Clinical data from patients with cervical

cancer showed increased cytotoxic activity of circulating NK

cells post-RT, suggesting systemic activation of NK cells (145).

Some studies have also shown a decrease in circulating NK cells

but an increase in robust TIM3+ NK cells after ablative RT (146).

Conversely, several clinical studies have shown a decrease in NK

cell activity post-RT (147–149).
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RT and CAFs

CAFs are extremely radio-resistant, do not trigger apoptosis

even at high doses of radiation (e.g. 30 Gy) and maintain a

strong immunosuppressive effect on activated T cells (in a single

dose of 18 Gy) (73). However, post-RT CAFs become senescent

and produce a different combination of immunomodulatory

molecules (73). In particular, senescent CAFs secrete high

levels of TGF-b1, which mediates T-cell rejection and

facilitates the establishment of immunosuppressive TIME (150,

151). RT was associated with increased radio-resistance of tumor

cells, including in NSCLC, which may be due to the pro-tumor

activity of CAFs (152). The pro-tumorigenic nature of radiated

CAFs is achieved by direct tumor cell stimulation and

suppression of immune cells, including macrophages, DCs,

NK cells and T cells (41, 70, 73). Differently, in vivo models

have shown that irradiation of CAF (iCAF) alters pro-cancer

characteristics and reduces tumor engraftment and angiogenesis

(153). In conclusion, CAFs are the main drivers of becoming

established immunosuppressive TIME post-RT.
RT and vasculature, endothelial cells

There is evidence that single radiation doses of 5-10 Gy

result in relatively mild vascular changes, while higher doses(>10

Gy) result in significant vascular damage, at which point reduced

vascular flow due to endothelial cell death leads to hypoxia,

reduced effector T cell recruitment and suppression of local

immune responses in TIME (154). In addition, high doses of RT

(HDRT) also exhibited pro-tumor effects by inducing HIF-1a/
TGF-b signaling, increasing the number of CAFs and promoting

fibrosis and remodeling of TIME (94).
RT and chemokines, cytokines, and other
soluble factors

Increased expression of type I IFNs post-RT stimulates the

expression of chemokines CXCL9 and CXCL10, which recruit

CXCR3-expressing T cells to the TIME (94). In addition, type I

IFNs promote Battf3-expressing DCs to present antigens to

CD8+ T cells and initiate anti-tumor immunity (155). IFN-g
promotes Th1 cells polarization and CTLs activation, but also

upregulates PD-L1 expression in TIME (156, 157). HDRT

induces the production of tumorigenic cytokines, such as HIF-

1a/VEGF-A, which promotes the release of a large number of

cytokines including IL-1, IL-6, IL-10, and TGF-b (94, 152).

Among these, TGF-b exerts multiple immunosuppressive

effects. TGF-b inhibits the expansion and cytotoxicity of CD8+

T cells, suppresses the differentiation of CD4+ T cells and

induces Tregs transformation (94). In addition, RT-induced
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TGF-b signaling increases the number of CAFs whose release

of CXCL12 binds to the ligands CXCR4 and CXCR7, exerting

pleiotropic pro-tumor activity, including induction of tumor

survival, metastasis and affecting immune cell infiltration, and

function (158–162). RT-induced hypoxic TIME depletes glucose

and essential amino acids, and metabolite accumulation occurs,

such as lactate, adenosine, and kynurenine, which can blunt the

function of CTLs while promoting the accumulation of

Tregs (163).

Furthermore, while radiation initially induces an anti-tumor

response, radiation also induces chronic inflammation and

rebound immune suppression (64). During this phase, tumor-

promoting macrophages are recruited to the tumor in a

radiat ion dose-dependent manner, result ing in an

immunosuppressive TIME that supports tumor regeneration

or resistance. RT also induces HIF-1a which induces PD-L1

expression in tumor cells and TAMs, leading to resistance to RT

and immunosuppression (164, 165). In addition, the

inflammatory response induced by RT also induced

upregulation of IDO, which increased TAMs and MDSCs in

TIME, associated with tumor immunosuppression (166, 167).

From this, it appears that radiation may have a temporary effect

on the immune response to TIME, where there appears to be a

window of anti-tumor response. The clinical data from the

PACIFIC trial suggested that patients who started checkpoint

suppression within 14 days of completing RT appeared to have

better outcomes than those who started later (168).
Reversal of RT: From
immunosuppression to
immunostimulation

A growing number of studies have confirmed that radiation

increases the amount of MHC on the cell surface, leading to the

expression and release of immunostimulatory cytokines and

danger signals, which in turn leads to the activation of innate

and adaptive immune responses (92, 169). (Variations of

multiple factors in TIME post-RT are summarized in Table 1.)

RT acts in several aspects of the immune response, transforming

the immunosuppressed state into an immune activated state, e.g.

increased infiltration of immune cells in TIME, activation of

innate and adaptive immunity, enhanced existing T cell

responses, neoantigen-induced immune responses and

diminished immunosuppression.
Increased immune cell infiltration
in TIME

A single irradiation with 2 Gy increased the ability of tumor-

specific CD4+ and CD8+ T cells to migrate into the tumor (127).
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LDRT-induced expression of inflammatory cytokines (IL-1b, TNF-
a and type I and II IFN) and endothelial cell-activated adhesion

molecules (ICAM1 and VCAM1) facilitates extravasation and

activation of immune cells (92, 193). RT induced the expression

of E- and P-selectin on the surface of vascular endothelial cells,

facilitating lymphocyte homing (195). RT induced polarization of
Frontiers in Immunology 08
M1 macrophages and secretion of NO via iNOS activation,

promoting normalization of blood vessels and facilitating

adhesion and infiltration into the TIME (181). Cytoplasmic DNA

produced by irradiated tumor cells is sensed by cGAS, which

enhances the expression of type I IFNs through cGAS-STING

signaling in host immune cells and tumor cells (188, 189). Increased
TABLE 1 Summary of alterations in immunomodulatory factors post-RT.

Factors Immunomodulation Effect of RT Ref.

Immunocytes CD8+ T cells Immunostimulation (tumor-specific cytotoxicity via MHC-I) Increased infiltration and
activation

(64, 135, 170–
178)

CD4+ T cells Immunostimulation (Enhancing CTLs responses or exerting cytolysis via
binding MHC-II)

Increased infiltration and
activation

(64, 179, 180)

DCs Immunostimulation (Uptake of TAAs, cross-presentation, and initiation of
tumor-specific CTLs)

Increased infiltration and
activation

(173, 177,
181–184)

NK cells Immunostimulation (Killing tumor cells directly without prior sensitization
or MHC restriction)

Increased infiltration and
cytotoxicity

(180, 185)

Tregs Immunosuppression (Inhibiting CTLs and NK cells, enhancing MDSCs
and M2 TAMs)

Decreased infiltration (173–177)

M1
macrophages

Immunostimulation (Production of pro-inflammatory cytokines) Increased polarization (127, 180,
181, 186)

MDSCs Immunosuppression (Secretion of immunosuppressive cytokines, inhibition
of T cells and NK cells)

Decreased infiltration (170, 173,
176, 187)

Cytokines Type I IFNs Immunostimulation (Recruitment of CD8+ T cells and CD4+ T cells,
activation of DCs)

Increased expression (94, 155, 188–
190)

TGF-b Immunosuppression (Inhibiting CTLs and NK cells, inducing Tregs, M2
TAMs, and N2 TANs)

Decreased expression (180, 186)

Chemokines CXCL9,
CXCL10

Immunostimulation (Recruiting CXCR3-expressing T cells) Increased expression (94)

CXCL16 Immunostimulation (Recruiting CD8+ T cells) Increased expression (191)

CXCL8 Immunostimulation (Inducing targeted migration of CD56dim NK cells) Increased expression (192)

Adhesion molecules ICAM1,
VCAM1

Immunostimulation (Recruitment and attachment of circulating
leukocytes)

Increased expression (92, 193, 194)

E- selectin, P-
selectin

Immunostimulation (Facilitating lymphocyte homing) Increased expression (195)

DAMPs CRT Immunostimulation (Prophagocytic signals for macrophages and DCs by
binding to CD91 receptors)

Increased exposure (196, 197)

HMGB1 Immunostimulation (Activating T cells) Increased release (25, 174)

ATP Immunostimulation (Recruitment of monocytes and production of IL-1b) Increased release (198)

Cytoplasmic
DNA

Immunostimulation (Enhancing the expression of type I IFNs via cGAS-
STING signaling)

Increased exposure (188, 189,
199, 200)

Cell surface molecules and
receptors

Fas Immunostimulation (A specific death factor inducing apoptosis by binding
to FasL)

Increased expression (194, 201–
203)

MHC-I
molecules

Immunostimulation (Transporting and displaying TAAs allowing CD8+ T
cells to identify)

Increased expression (201, 204)

Hsp70 Immunostimulation (Activating monocytes, macrophages and DCs) Increased exposure (205)

NKG2D Immunostimulation (enhancing cytotoxicity of T cells) Increased expression
(CD4+ T cells)

(179, 206)

NGK2D ligand Immunostimulation (Sensitizing NK cell-mediated cytotoxicity) Increased expression
(tumor cells)

(207, 208)

Neoantigen Immunostimulation (Inducing neoantigen-specific CD8+ T cells and CD4+

T cells)
Increased expression (203, 204,

209)

CD47 Immunosuppression (An anti-phagocytic signal to promote immune
evasion)

Decreased expression (210)

PD-L1 Immunosuppression (Inhibiting activation of T cells) Increased expression (120, 121,
176, 211)
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expression of type I IFNs after RT stimulates the expression of

chemokines CXCL9 and CXCL10, which recruit CXCR3-

expressing T cells to the TIME (94). Similarly, RT induced

CXCL16 to interact with CD8+ T cells to promote their

recruitment activity (191). Tumor cells with senescent

characteristics induce targeted migration of CD56dim NK cells by

secreting CXCL8, which in turn initiates an innate anti-tumor

immune response (192). In addition, radiation generates a pro-

inflammatory microenvironment with remodeling of the

vasculature, allowing T cells extravasation and tumor destruction

(212). RT makes refractory “cold” tumors sensitive to immune

checkpoint inhibitors by promoting the recruitment of anti-tumor

T cells (213). One study showed that HDRT reshaped the

immunosuppressive tumor microenvironment, leading to a

significant increase in CD8+ T cell tumor infiltration, while

suppressing MDSCs, however, the number of CD8+ T cells

decreased when extended fractionated radiation was given (170).

In studies on oral squamous cell carcinomas, metastatic renal cell

carcinomas, and soft tissue sarcomas, neo-adjuvant RT increased

the number of locally infiltrating immune cells in a variety of
Frontiers in Immunology 09
tumors, including CD4+, CD8+, and CD20+ TILs (64, 171, 172).

Recent experiments in both mouse models and patient tumors have

found that LDRT induces predominantly infiltration of CD4+ T

cells with Th1 signatures in TIME (179). (Figure 2)
Innate and adaptive immune
response activation

A series of studies have demonstrated that radiation induces

innate and adaptive immune response activation, of which RT-

induced ICD is a very important mechanism that alters

intracellular immunogenicity through external stimulation

(182, 214, 219). ICD is characterized by the translocation of

the calreticulin (CRT), the release of high-mobility group box 1

(HMGB1) protein and the release of ATP following apoptosis

(214). Among these, the ER-derived proteins CRT translocated

from the ER to the cell surface are key to the ICD, which binds to

CD91 receptors as prophagocytic signals for macrophages and

DCs (196, 197). HMGB1 stimulates the TLR4/MyD88/TRIIF
FIGURE 2

RT-induced increase in immune cells in TIME and tumor-special immune response activated by ICD. LDRT induces increased expression of a
variety of molecules, including inflammatory cytokines (type I IFN), chemokines (CXCL9, CXCL10, CXCL16), adhesion molecules (ICAM1 and
VCAM1) and E-/P-selectin, which facilitate the recruitment of multiple immune cells (DCs, NK cells, M1 macrophages, CD8+ and CD4+ T cells)
(92, 94, 191, 193, 195). Concurrently, RT-induced vascular normalization also promotes immune cell infiltration in the TIME (181). Ultimately, RT
transforms “cold” tumors (lymphocyte deficiency) into “hot” tumors sensitive to immunotherapy. RT directly or indirectly causes DNA damage in
tumor cells and induces various forms of cellular responses and death, such as DDR, UPR, autophagy, mitotic catastrophe, senescence,
apoptotic RCD, necroptosis, necrosis, etc (102, 103, 107, 108). Exposure and release of multiple DAMPs are critical for RT-induced ICD,
including CRT (binding to CD91), HMGB1 (binding to TLR4), ATP (binding to P2Y2), and dsDNA (entering DCs) (25, 196–198, 214). DAMPs or
danger signals recruit DCs and other APCs into irradiated TIME and to promote the maturation and activation of DCs. Mature DCs enhance
uptake of tumor-associated antigens (TAAs) and subsequent cross-presentation with CD8+ CTLs, thereby initiating a tumor-specific adaptive
immune response (181–183). During the process, dsDNA from irradiated cells activates the cGAS-STING pathway signaling via TBK1 and IRF3 in
host DCs and tumor cells, culminating in the production of type I IFN (188, 189, 199, 200). Type I IFN in TIME is thought to be crucial for the
induction of anti-tumor immune responses by RT (165, 190). In addition, RT enhances the immunogenicity of tumor cells by modulating the
expression of cell surface molecules and receptors, and enhances the existing immune response, such as MHC-I, stimulatory molecules (CD80,
CD86), adhesion molecules (ICAM1), death receptors (Fas) (204, 207, 215–218). PD-L1 expression is increased on tumor cells post-RT, which is
one of the important targets for ICB therapy (120, 121, 164, 165, 176).
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pathway and activates T cells (25). In TIME, these factors act

synergistically as DAMPs or danger signals to recruit DCs and

other APCs into irradiated TIME and to promote the maturation

and activation of DCs. Mature DCs enhance uptake of tumor-

associated antigens (TAAs) and subsequent cross-presentation

with CD8+ CTLs, thereby initiating a tumor-specific adaptive

immune response, activating T cells and forming memory

phenotypes (181–183). The current study demonstrates that

during RT-mediated ICD, tumor-derived dsDNA enters the

cytoplasm of DCs and activates the cGAS-STING DNA-

sensing pathway signaling a type-I IFN response in which

TREX1 exerts an inhibitory effect by degrading DNA (199,

200). STING induces IFN-b transcription and type I IFN

expression, which are required for DC activation, ultimately

leading to cross-presentation of TAAs and initiation of tumor-

specific CTLs (155, 190). In addition to host immune cells,

DNA-sensing pathways in tumor cells were also activated, which

increase type I IFN production (188, 189). Inflammatory

pathways activated by STING ligands have adjuvant activity

enhancing tumor-specific adaptive immune responses post-RT

(220). ATP is involved in the recruitment of monocytes into

tumors (via P2Y2 receptor) and in the production of IL-1b (via

P2RX7 receptor and inflammasome NLRP3), which is required

for the activation of T cells (198). Unlike Apoptotic cells, which

are normally cleared via the anti-inflammatory pathway,

necrotic cells are immunogenic due to loss of membrane

integrity and sustained release of DAMPs, inducing strong

immune and inflammatory responses (207, 221). For example,

the apoptosis inhibitor zVAD-fmk effectively blocked

programmed cell death and induced necrosis as a form of

ICD, and its combination with radiation altered the infiltration

of immune cells in TIME, i.e. increased DCs and CD8+ T cells

and decreased Tregs and MDSCs (173).(Figure 2)
Enhancement of existing
T-cell responses

Preclinical studies have shown that SBRT can also enhance

immunogenicity by modulating the expression of cell surface

molecules and receptors to reinforce existing immune responses,

such as MHC-I, stimulatory molecules (e.g. CD80, CD86),

adhesion molecules (e.g. ICAM1), death receptors (e.g. Fas),

NKG2D ligands, heat-shock proteins (e.g. HSP70), endoplasmic

reticulum (ER)-derived calreticulin, etc. (204, 207, 215–218).

Garnett et al. investigated the increase in five cell surface antigen

proteins (including Fas, MHC-I, ICAM-1, CEA, or mucin-1)

post-RT in 23 human carcinoma cell lines and the results

suggested that 91% of human carcinoma cell lines showed

dose-dependent increases in at least one antigen (201). Among

other things, radiation increased Fas gene expression in tumor

cells of CEA-expressing mice, thereby enhancing their sensitivity

to CEA-specific CTL-mediated killing (201).
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Several studies have confirmed that radiation increases the

expression of tumor cell surface antigens, particularly MHC class

I/II antigens, and that its expression upregulation is dose-

dependent (222, 223). RT upregulates MHC-I molecules and

generates unique MHC-I antigenic peptides that promote

antigen-specific CTLs responses, one of the important

mechanisms of RT induced immune sensitization (201, 204).

RT has also been shown to enhance the susceptibility of tumor

cells to immune-mediated cytotoxicity via the Fas/FasL pathway,

a key mechanism for cell death mediated by NK cells and CTLs

(202). Chakraborty et al. demonstrated that RT can upregulate

Fas and ICAM-1 expression on MC38 mouse colon cancer cell

lines in a dose-dependent manner (194). Hsp70 translocates

from the cytoplasm to the extracellular matrix by binding to

CD14, CD40, CD91, Lox1 and Toll-like receptors to activate

monocytes, macrophages and DCs (205).

NKG2D is an essential costimulatory receptor expressed

mainly on CD8+ T cells and NK cells, contributing to

enhanced cytotoxicity of T cells and prevention of Fas-

mediated autophagy (224–226). In addition, NKG2D+ CD4+ T

cells were found in cervical carcinoma while missing on CD4+ T

cells in the physiological state (179, 206). Tumors evade NKG2D

through multiple mechanisms and soluble NKG2D ligands

improve ICB effects, suggesting an significant anti-tumor

function of the NKG2D pathway (227–230). RT was also

found to upregulate NGK2D ligand expression on tumor cells,

making them more sensitive to NK cell-mediated cytotoxicity

(207, 208). Recently Fernanda G Herrera and colleagues found

an increase of NKG2D+ CD4+ T cells in TIME post-LDRT and

exhibited proliferative capacity (179). Furthermore, an elevated

expression of NKG2D ligand RAE1 was observed in DCs,

supporting a functional cross-talk between DCs and CD4+ T

cells via NGK2D pathway (179).
Neoantigen-induced immune responses

Silvia C Formenti et al. reported that RT in combination

with CTLA-4 blockade induced anti-tumor responses in

chemotherapy-refractory metastatic non-small cell lung cancer

(NSCLC), where TCR-Seq analysis of responding patients

suggested that CD8+ T cells expanded rapidly in vivo due to

the recognition of a new antigen encoded by a gene that was

upregulated by radiation (209). RT upregulated the expression of

genes containing immunogenic mutations in a mouse model of

triple-negative breast cancer with poor immunogenicity and

increased tumor cell surface death receptors Fas and DR5,

with the result that neoantigen-specific CD8+ T cells and

CD4+ T cells preferentially killed irradiated tumor cells as well

as promoted epitope spreading (203). This suggests that

exposure to RT-induced immunogenic mutations stimulates a

systemic anti-tumor response. Factors released from dead cells

may be the source of radiation-associated antigenic proteins
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(RAAPs) (231). RT is able to modulate the peptide repertoire of

irradiated cells, and in particular, radiation induces the

expression of novel proteins that result in unique MHC-I

antigenic peptides that enhance polyclonal antigen-specific

CTLs responses (204).Whole-exome sequencing of NSCLC

treated with PD-1 blockade confirmed treatment response was

better when there was increased mutational burden, higher neo-

antigenic burden and mutations in the DNA repair pathway

(232). This suggests that the response to immunotherapy after

RT is associated with irradiation-induced neoantigens.
Decreased immunosuppression

Radiation also reduces the immunosuppressive properties to

achieve remodeling of the TIME. TNF production by radiation-

activated T cells leads to direct elimination of MDSCs locally and

in the system (187). In contrast, found in experiments of RT

combined with DNA vaccines, RT induced a decrease in Tregs,

but not MDSCs (174). The transmembrane protein CD47 is

overexpressed in most cancer cells and acts as an anti-phagocytic

signal to promote immune evasion, with downregulation of

expression in the presence of radiation exposure (210).
The effect of RT-induced reconfiguration
of the TIME on the effectiveness of
immunotherapy sensitization

Immunotherapies designed to activate the patient’s immune

system to kill cancer cells include chimeric antigen receptor T-cell

therapy (CAR-T), immune-checkpoint blockade (ICB), and tumor

vaccines. ICB is the most commonly used immunotherapy option.

Immune checkpoints are a series of inhibitory pathways present in

the immune system that are essential for the maintenance of self-

tolerance and facilitate the regulation of duration and amplitude of

physiological immune responses in order to mitigate additional

tissue damage. Unfortunately, tumors use certain immune

checkpoint pathways as the primary mechanism of immune

resistance (211). CTLA-4 binds to its ligands B7-1 (CD80) and

B7-2 (CD86) to generate inhibitory signals that suppress T cell

activation and cytokine production and protect tumor cells from T

cell attack (233). PD-1, mainly expressed in activated T cells, B cells

and macrophages, binds to ligands (PD-L1 and PD-L2) to inhibit T

cell activity, induce apoptosis of tumor-specific T cells and suppress

Tregs apoptosis (234). PD-L1 is expressed on tumor cells, immune

cells and epithelial cells, whereas PD-L2 is only induced on antigen-

presenting cells (235). PD-L1 is overexpressed on tumor cells and is

thought to be associated with immune escape. ICB alleviate the

functional suppression of T cells and have been used to shift the

balance of TIME from an immunosuppressed to an immune

activated state, resulting in a sustained and durable anti-tumor

response at multiple lesion sites (236). Anti-PD-1, anti-PD-L1 and
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anti-CTLA-4 are currently FDA-approved treatment options for a

variety of cancer types (237). In addition, some emerging immune

target studies have recently emerged, for example, lymphocyte

activation gene 3 (LAG-3) overexpression in Tregs produces the

immunosuppressive cytokines IL-10 and TGF-b, which inhibit the

activity of effector T cells, and whose expression levels correlate with

tumor progression and poor prognosis (238). Dual blockade of

LAG-3 and PD-1 also increased the number of tumor-infiltrating

CD8+ T cells and reduced Tregs, thereby synergistically enhancing

anti-tumor immunity (239). Dual blockade of PI3k-g and CSF-1R

promotes a shift in polarization state from M2 TAMs to M1

macrophages, reduces infiltration of MDSCs and enhances CD8+

T cell activation in TIME (240). DC-based vaccines can activate T-

cell responses by removing inhibition of antigen presentation (241).

As radiotherapy can produce anti-tumor immune response and

a control mechanism of suppressive tumor immune response, thus

the combination of RT and drugs targeting tumor

immunosuppression enhances the anti-tumor immune response

and improves the efficacy of single modality therapy (64). Currently,

numerous preclinical and clinical studies reveal the synergistic effect

of RT with ICB (155, 165, 179, 180, 209, 242–245), and part of the

relevant clinical trials are summarized in Table 2. Jing Zeng and

colleagues showed that the combination of PD-1 blockade and local

RT led to long-term survival in mice with in situ brain tumors

compared to single radiation or immunotherapy, and that

immunological data showed increased infiltration of CTLs(CD8+/

IFN-g+/TNF-a+) and reduced infiltration of Tregs (CD4+/FOXP3)

in the combined treatment group (175). Single-cell RNA-

sequencing revealed a significant increase in B cells germinal

center formation after PD-1 blockade and radiotherapy (124). To

take advantage of the enhanced radiation-induced endogenous anti-

tumor immune response, increased PD-L1 expression on tumor

cells or infiltrating immune cells must be counteracted by blocking

the PD-1/PD-L1 pathway (211). In studies on NSCLC, PD-L1

expression was increased both in vitro and in vivo after

conventionally fractionated radiation. Further studies showed that

RT combined with anti-PD-L1 antibody enhanced anti-tumor

immune responses by promoting CD8+ T cell infiltration and

reducing MDSCs and Tregs cell aggregation (176). Xiaoqiang Qi

et al.’s study of the therapeutic effect of Minimally invasive

radiofrequency ablation (RFA) combined with sunitinib in an

HCC model showed that the combined treatment increased the

frequency of CD8+ T cells and DCs, reduced Tregs infiltration, and

activated tumor-specific antigen (TSA) immune response,

ultimately favoring inhibition of HCC growth (177). In addition,

RFA caused the upregulation of PD-1 in tumor-infiltrating T cells

by promoting hepatocyte growth factor (HGF) expression, which

was inhibited by sunitinib treatment (177). The combination of

anti-CTLA-4 antibody and fractionated RT regimens showed an

enhanced antitumor response at the primary site in situ and an

abscopal effect was observed (135). The frequency of CD8+ T cells

producing tumor-specific IFN-g correlates with secondary tumor

suppression (135). Ming-Cheng Chang et al. demonstrated that
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local RT stimulated DCs by inducing apoptosis and HMGB-1

release. RT combined with DNA vaccine increased the number of

antigen-specific CD8+ CTLs and enhanced antitumor efficacy and

suggested that biweekly moderate radiation dose was a more

optimal choice (174). Chemoradiotherapy-exposed TIMEs were

highly enriched with newly infiltrated tumor-specific CD8+ T cells

and tissue-resident memory T cells, moreover, the authors found

that chemoradiotherapy combined with dual CTLA-4 and PD-1

blockade achieved optimal anti-tumor effects (254). As recent

studies have shown, LDRT combined with ICB improved the

anti-tumor outcome of ICB by supporting M1 macrophages

polarization, enhancing NK cells infiltration and reducing TGF-b
levels. Moreover, Depletion of CD4+ T cells and NK cells attenuated

this anti-tumor effect, suggesting a key role of both cells in the anti-

tumor immunity (180). Similarly, Preclinical and clinical studies
Frontiers in Immunology 12
supported LDRT induces predominantly infiltration of CD4+ T

cells with Th1 signatures in TIME (179).

It is currently believed that HDRT (>5 Gy per fraction) is of

limited value in tumor immunomodulation due to the presence of

inherent toxicity and immunosuppression, whereas more recent

studies have elaborated that LDRT (<3Gy per fraction) stimulates

innate and adaptive immune responses, as well as improves the

sensitivity of primary and metastatic lesions to ICBs, which is

expected to improve cancer treatment outcomes by combining ICB

(7). Three recent preclinical studies (1 Gy in lung adenocarcinoma

model, 2.5 Gy in melanoma tumors model, 0.5-2 Gy in ovarian

cancer model) all elucidated that LDRT acts as a modifier of

immune response, remodeling TIME, significantly increasing

infiltration of effector immune cells including tumor-infiltrating

myeloid cells, DCs, NK cells, CD4+ and CD8+ effector T cells, etc.,
TABLE 2 Landmark clinical trials of RT combined with immunotherapy for the treatment of cancers.

First
Author

Patients Cancer types RT
planning

Immunotherapy
planning

Treatment
schedule

Outcomes Data source

Willemijn S
M E Theelen
(246)

92 Advanced Non-
Small Cell Lung
Cancer

8Gy×3 Pembrolizumab 200 mg/
kg q3w

Pembrolizumab alone vs.
pembrolizumab + SBRT

ORR 18% vs. 36%; p = 0.07
mPFS 1.9 vs 6.6; p = 0.19
mOS 7.6 vs. 15.9; p = 0.16

https://clinicaltrials.
gov/ct2/show/
NCT02492568

Willemijn S
M E Theelen
(247)

148 Metastatic non-
small-cell lung
cancer

8Gy×3,
or
12.5Gy×4,
or 3Gy×15

Pembrolizumab 200 mg/
kg q3w

Pembrolizumab alone vs.
pembrolizumab + SBRT

Best ARR 19.7% vs 41.7%
(OR 2.96, p=0·0039)
Best ACR 43.4% vs 65.3%
(OR 2.51, p=0·0071)
mPFS 4.4months vs 9.0
months (HR 0.67,
p=0.0071)
mOS 8.7months vs
19.2months (HR 0.67,
p=0.0004)

https://clinicaltrials.
gov/show/
NCT02492568
https://clinicaltrials.
gov/show/
NCT02444741

Narek
Shaverdian
(248)

97 Stage IV advanced
Non-Small Cell
Lung Cancer

Previously
received
any RT

Pembrolizumab 2 mg/kg
q3w or 10mg/kg q3w or
10mg/kg q2w

Pembrolizumab with a
history of RT vs
pembrolizumab alone

mPFS 4.4 vs. 2.1; p = 0.019
mOS 10.7 vs. 5.3; p = 0.026

https://clinicaltrials.
gov/ct2/show/
NCT01295827

Yijun Hua
(249)

25 recurrent
nasopharyngeal
carcinoma

2.2Gy×30 Toripalimab 240mg q3w Toripalimab + RT 79.2% overall response,
95.8% disease control

https://clinicaltrials.
gov/ct2/show/
NCT03854838

Shankar
Siva (250)

30 oligometastatic
clear cell renal cell
carcinoma

18-20Gy×1 Pembrolizumab 200mg
q3w

Pembrolizumab+ RT 1- and 2-yr OS 90% and
74%,
1- and 2-yr PFS 60% and
45%

https://clinicaltrials.
gov/ct2/show/
NCT02855203

Alice Y Ho
(251)

17 metastatic triple-
negative breast
cancer

600 cGy×5 Pembrolizumab 200mg
q3w

Pembrolizumab+ RT ORR 17.6%,
CR 17.6%

https://clinicaltrials.
gov/ct2/show/
NCT02730130

Chad Tang
(252)

31 Metastatic liver or
lung Cancer

12.5Gy×4
or 6Gy×10

Ipilimumab 3 mg/kg q3w Ipilimumab+ RT 10% PR,
13% SD

https://clinicaltrials.
gov/ct2/show/
NCT02239900

Hari Menon
(253)

26 Metastatic
Malignant Solid
Neoplasm

7.3Gy (1.1-
19.4Gy)

Pembrolizumab 200 mg/
kg q3w,
or Ipilimumab 3 mg/kg
q3w

38 low-dose lesions vs 45
no-dose lesions

PR/CR 58% vs 18% (P =
0.0001)
median change for longest
diameter size -38.5% vs 8%
(P < 0.0001)

https://clinicaltrials.
gov/ct2/show/
NCT02239900
https://clinicaltrials.
gov/ct2/show/
NCT02444741
https://clinicaltrials.
gov/ct2/show/
NCT02710253
ORR, overall response rate; mPFS, Median progression-free survival; mOS, median overall survival; ARR, out-of-field (abscopal) response rate; ACR, abscopal disease control rate; CR,
complete responses; PR, partial response; SD, stable disease.
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and was superior to either treatment alone in combination with ICB

(178–180). Currently, for “cold” tumors ICB is not effective (255,

256). The corresponding Phase I clinical studies(https://

clinicaltrials.gov/ct2/show/NCT02710253, https://clinicaltrials.gov/

ct2/show/NCT03728179) were conducted in patients with a

variety of “immune desert” tumors, including but not limited to

advanced melanoma, anaplastic thyroid carcinoma, and metastatic

ovarian cancer, demonstrating the safety, feasibility, and significant

therapeutic efficacy of RT in combination with ICB.

It is generally accepted that TGF-b signaling is a strong

regulator of radiation response in normal and tumor tissues

(257). A preclinical study showed that concurrent administration

of TGF-b blockade and RT followed by a PD 1 inhibitor improved

tumor control and prolonged survival in a mouse model of

metastatic cancer (258). The combination of RT and TGF-b
blockade thus offers a new direction for personalized cancer

therapy. In recent years, multiple studies using radiosensitizer

have revealed potent RT-induced antitumor immunity, while also

providing new options for radio-immunotherapy. Experiments by

Kaiyuan Ni et al. observed that intra-tumor injection of

radiosensitizer repolarized M2 TAMs to M1 macrophages,

reduced intra-tumor TGF-b and collagen density, as well as

inactivated CAFs. When intravenous radiosensitizer was

combined with ICB, the mouse model exhibited enhanced T cells

infiltration and a robust abscopal effect (186). Radiosensitizer acting

on the STING pathway significantly promoted the activation of

DCs and enhanced systemic immune responses against primary

and metastatic tumors (184). Recently developed biogenetic gold

nanoparticles (Au@MC38), a radiosensitizer, intensified radiation-

induced DNA damage and ROS production, exacerbated apoptosis

and necrosis, enhanced ICD-mediated immune responses, and

achieved a satisfactory survival benefit in combination with ICB

(259). Recently, additional pathways have been identified that may

be involved in the radio-immunotherapy process. For example,

tumor-induced CD45-Ter119+CD71+ erythroid progenitor cells

(Ter cells) promote tumor progression by secreting artemin

(ARTN), a neurotrophic peptide. Both topical RT and anti-PD-

L1 treatment reduced Ter cell abundance and ARTN secretion in

mice by an IFN- and CD8+ T cell-dependent manner (260).

Regarding the fractionation and dose of RT, M Zahidunnabi

Dewan et al. showed that fractionated but not single-dose RT

induced local and systemic anti-tumor immune responses when

in combination with anti-CTLA-4 antibody (135). Single

radiation doses (>12 Gy) may attenuate immunogenicity

through TREX1 induction, while hypo-fractionated regimens

(i.e., 8 Gy × 3) may be more effective when used in

combination with immunotherapy (188). Fractionated doses of

2.5 Gy×4 and 15 Gy×2 produced higher NK cytotoxicity than

single doses (e.g. 30 Gy or 10 Gy) (185). Differently, a study by

Byron C Burnette and colleagues suggested that local high single

dose RT promotes type I IFN production, initiating a cascade of

innate and adaptive immune attacks against tumors by enhancing

the ability to prime trans-tumor infiltrating dendritic cells (TIDC)
Frontiers in Immunology 13
(189). Latest animal and clinical studies indicated that when

tumor burden was high, it was necessary to combine high-dose

RT, low-dose RT and ICB therapy to achieve optimal therapeutic

effects, specifically, HDRT (12 Gy×3) to target primary tumors

that had activated T cells, while LDRT (1 Gy×2) targeted

metastatic lesions to modulate immunosuppressive stroma and

sensitize ICB (180).Thus, fractions and doses can significantly

alter the immune response to TIME radiation. Primarily, immune

cells must be recruited into the tumor by RT and immune

activation achieved, followed by additional immunotherapy in

order to exert a stronger anti-tumor immune effect. However,

more data are urgently needed to draw more consistent

conclusions about RT activation of the immune response and

the optimal dose and fractionation in combination therapies with

immunotherapy. And there may not be a so-called optimal RT

fraction and dose, but different fractions and doses may be the

most effective way to utilize the immunogenic properties of

radiation in multimodal tumor therapies (4). Regarding the

timing of immunotherapy after RT, studies have shown that

immune cells migrate into the TIME within two days after the

last radiation and remain there for several days, suggesting that

immunotherapy is best applied in the middle to end of the

treatment cycle (96). Additional studies have also shown that

the combination of anti-PD-1 Ab one week after the last

irradiation did not improve the tumor effects of RT (165). Thus,

hypo-fractionated RT may predominate and longer radiation

pauses allow time for the immune system to activate and

function (96).
Conclusion

RT remodels the suppressive TIME and mobilizes immune

response, which creates the conditions for immunotherapy to

work better and thus act locally and systematically against

tumors. RT in combination with additional immunotherapy is

a promising approach to induce specific anti-tumor immune

responses. Accumulating clinical and preclinical data suggest

that the immunogenic effects of radiotherapy may convert “cold”

tumor into “hot” lesion with massive immune cell infiltration,

thereby sensitizing unresponsive tumors to immunotherapy

(213). There is a very delicate balance between activation of

the immune system and RT-induced immunosuppression,

depending on the specific radiation timing, fractionation, and

dosing regimen. There is a need to initiate clinical trials and

preclinical studies aimed at systematically evaluating the effects

of different grading and treatment regimens to gain more insight

into the optimal dose and schedule that may be able to induce

synergy between immunotherapy and RT. As different immune

cell types, with different states of differentiation, exhibit different

radio-sensitivities, the selection of the most suitable

radiotherapy regimen for combination with immunotherapy

must carefully consider the radio-sensitivity of TIME and
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circulating lymphocytes. In addition to this, which

LDRT technology is preferable and which drug combinations

benefit the most in radio-immunotherapy are critical issues to be

explored more thoroughly in the future. Overall, although there

is strong evidence from preclinical work that radiotherapy and

immunotherapy are synergistic, clinical reports detailing the

interaction of radiotherapy and immunotherapy are limited,

and are currently under development.
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