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Elevated inflammatory fecal
immune factors in men who
have sex with men with HIV
associate with microbiome
composition and gut
barrier function
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Charles P. Neff1, Victoria Soesanto1, Janet C. Siebert1,2,
Nichole M. Nusbacher3, Nancy Moreno-Huizar3,
Ian M. Cartwright1, Abigail J. S. Armstrong3, Sean P. Colgen1,
Catherine A. Lozupone3 and Brent E. Palmer1*

1Department of Medicine, University of Colorado, Aurora, CO, United States, 2CytoAnalytics,
Denver, CO, United States, 3Department of Biomedical Informatics, University of Colorado
Anschutz Medical Campus, Aurora, CO, United States
Introduction: People living with HIV infection (PLWH) exhibit elevated levels of

gastrointestinal inflammation. Potential causes of this inflammation include HIV

infection and associated immune dysfunction, sexual behaviors among men

who have sex with men (MSM) and gut microbiome composition.

Methods: To better understand the etiology of gastrointestinal inflammation

we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal

microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM

with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral

treatment (MSMART). Additionally, fecal solutes from these participants were

used to stimulate T-84 colonic epithelial cells to assess barrier function.

Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a

clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs

(GM-CSF, ICAM-1, IL-1b, IL-12/23, IL-15, IL-16, TNF-b, VCAM-1, and VEGF).

Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly

elevated in MSM-SN compared to seronegative male non-MSM. Conversely,

IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM

with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly

correlated with calprotectin, suggesting they play a role in GI inflammation.

Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and

significant associations with microbiome composition. Additionally, fecal

solutes from participants in the MSM-HIV cohort significantly decreased

colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and

this decrease associated with overall sIF composition and increased
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concentrations of eight inflammatory sIFs in participants with HIV. Lastly,

elevated levels of plasma, sCD14 and sCD163, directly correlated with

decreased transcellular transport and microbiome composition respectively,

indicating that sIFs and the gut microbiome are associated with, and potentially

contribute to, bacterial translocation.

Conclusion: Taken together, these data demonstrate that inflammatory sIFs

are elevated in MSM, regardless of HIV infection status, and are associated with

the gut microbiome and intestinal barrier function.
KEYWORDS

human immunodeficiency virus (HIV), inflammation, men who have sex with men
(MSM), gut microbiome, immune factors, cytokines
1 Introduction

Pathogenesis of HIV infection is closely tied with the

gastrointestinal (GI) tract because it is a major site of HIV

replication. Large numbers of activated CCR5-expressing CD4+

T cells, which are specifically targeted by HIV, reside in the

gastrointestinal tract (1). These cells fuel HIV infection in the

gut, resulting in profound depletion of T cells in the lamina

propria and chronic inflammation (2). Intestinal inflammation

can promote the breakdown of the epithelial barrier and

bacterial translocation, which in turn leads to systemic

immune activation/inflammation (3) that contributes to HIV

pathogenesis and disease progression (4). Furthermore, while

gut inflammation and impaired barrier function improve with

ART, these GI issues persist (5), and have been linked with

metabolic (6), and other co-morbidities (7) in people living with

HIV (PLWH) on ART. Microbiome differences, such as lower

alpha diversity in untreated individuals with low CD4+ T cell

counts (8) or ART-treated individuals with low NADIR (9), have

been observed in PLWH (10). In addition, bacteria from fecal

material of HIV-positive individuals has been shown to induce

higher immune activation in vitro (11). Furthermore, others

have shown that compositional shifts in the fecal microbiome

associated with HIV correlated with changes in metabolic

function and production of cytokines detectable in plasma

samples (12, 13) and mucosal biopsies (14).

In the United States men who have sex with men (MSM)

comprise over 60% of new cases of HIV infection annually (15).

We and others have shown gut microbiome composition in

MSM regardless of HIV infection is highly altered compared to

seronegative non-MSM (10, 16), and is characterized by high

relative abundance of the bacterial genus Prevotella and low

Bacteroides, as well as many additional differentiating taxa (16,

17). Intestinal microbiome composition has also been associated
02
with the risk of HIV acquisition in MSM (14). Whole fecal

bacterial communities isolated from the stools of MSM with and

without HIV induce immune activation and increase HIV

infection of lamina propria mononuclear cells in vitro (11).

Additionally, gavage of fecal bacteria from these MSM cohorts

into gnotobiotic mice leads to elevated levels of intestinal

immune activation compared to non-MSM controls (18). This

has been linked in part through particular enriched bacteria in

MSM such as Holdemanella (19). Because of the importance of

gut immune activation for HIV pathogenesis, transmission

among MSM, and co-morbidity, in-depth profiling of

inflammation in the gut is essential for understanding

these processes.

Measurement of soluble immune factors (sIF) present in

feces, including chemokines, cytokines, growth factors and other

signaling factors, is an attractive method for studying gut

immune activation since collection of fecal material is

relatively non-invasive. Although such methods have been

used to assess GI inflammation in the context of GI diseases

(20–23), how they differ with HIV infection, treatment, and

MSM status has not been explored nor has whether their levels

associate with intestinal microbiome composition or effect

barrier function. Here we assessed well-vetted measures of

intestinal inflammation, fecal sIFs, microbiome composition

and markers of bacterial translocation to characterize and gain

mechanistic insights into the relationship between intestinal

inflammation and barrier function in HIV infection and in

MSM, using stool samples collected from HIV-seronegative

MSM (MSM-SN), MSM with HIV infection with (MSM-ART)

and without ART treatment (MSM-HIV) and male non-MSM-

SN participants. Taken together, our data demonstrate that

inflammatory sIFs are elevated in MSM and with HIV

infection, associate with gut microbiome composition, and

negatively influence intestinal barrier function in HIV.
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2 Materials and methods

2.1 Study participants

Participants from the Denver metropolitan area were

recruited under study protocol #14-1595 approved by the

Colorado Multiple Institutional Review Board (CoMIRB). All

participants provided written consent prior to collection of data

and samples and were separated into cohorts based on sex, HIV

infection and current use of ART, and sexual behavior. All

participants on ART underwent treatment for at least 12

consecutive months using a minimum of three separate ART

medications prior to study entry and displayed at least six

consecutive months of viral suppression. Participants not

undergoing ART were either never treated or off treatment for

six consecutive months prior to study participation. Use of

antibiotics within three months of sample collection, diagnosis

with an active gastrointestinal disease, opportunistic/chronic

infection or malignancy, and/or prescription of anticoagulant

or hypoglycemic medications were exclusionary for this study.

The four cohorts of male participants were MSM with HIV, not

currently using ART (MSM-HIV: n=15), HIV-positive MSM

undergoing ART (MSM-ART: n=13) and HIV-seronegative

men who either had sex with men (MSM-SN: n=17) or who

did not (non-MSM-SN: n=14). A cohort of female participants

with HIV and on ART treatment (F-HIV: n=5) were also

included and compared to a matched cohort of women with

no history of HIV infection (F-SN: n=5). Analysis of the female

cohorts was limited due to the small cohort size. All cohort

demographics data are included in Table 1.
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2.2 Collection of fecal samples
and surveys

Participants collected full stool samples in a commode specimen

collector prior to their clinic visit, which were shipped or transported

within 48 hours either frozen or cool. Upon delivery, samples were

transferred to long-term storage at -80°C. During research visits,

participants completed a GI-symptoms questionnaire based on the

GSRS (24) comprised of 14 multiple choice questions covering

common GI issues experienced within the prior year and 24 hours

before stool sample collection, including diarrhea, constipation,

bloating, flatulence, vomiting and abdominal pain. Multiple choice

answers ranged from “1 – little to no symptoms” to “4 – debilitating

symptoms”. An aggregate GI Symptoms Score was calculated as the

average value across all 14 questions. Participants were also asked to

evaluate the consistency of their stool sample at the time of collection

by utilizing the visual Bristol stool scale (25). Each participant

assigned a subjective score (1-7) that most closely resembled their

fecal sample.
2.3 Fecal solute preparation
and sIF quantification

Fecal solute preparations were adapted from previously

described methods with significant alterations (21, 22). Specifically,

an aliquot of two grams of frozen feces was obtained andmixed with

8 mL of saline solution (DPBS, Protease Inhibitor, EDTA, DNase).

Samples were homogenized for 1 min and placed on ice for 30 min.

Samples were then ultra-centrifuged at 12,000 rpm for 45 min at 5°
TABLE 1 Participant cohort demographics and characteristics.

Male Female

Non-MSM-SN MSM-SN MSM-ART MSM-HIV F-SN F-HIV

N 14 17 13 15 5 5

Race (BA/A/W/O)a 0/1/13/0 1/0/17/0 2/0/12/0 2/0/13/0 0/0/4/1 0/0/5/0

Ethnicity (H/NH)b 2/12 1/17 0/13 2/13 1/4 2/3

Median age
(years)

32
(22-70)

35.5
(27-50)

56c

(44-65)
36

(23-55)
29

(24-61)
54

(30-63)

Median HIV-1 viral load
(RNA copies/mL)

NA NA
0

(0-20)
62800d

(159-5.2e5)
NA

20
(0-20)

Median CD4+ T cell
count (cells/mL)

NA NA
648

(177-1114)
577

(201-939)
NA

639
(187-1417)

Median fecal BCA
(ug/mL)

881.7 829.8 700.1 763.8 868.6 1025.8

Kruskal-Wallis tests were performed for all demographic characteristics, corrected for multiple comparisons and significant differences are indicated. Units are provided in parentheses
in the first column and all information in parentheses in subsequent columns are data ranges.
aBA, Black/African American; A, Asian; W, White; O, Other.
bH, Hispanic; NH, non-Hispanic.
cThe median age of MSM-ART is significantly higher compared to all cohorts excluding F-HIV. (Non-MSM-SN: P = 0.0017; MSM-SN: P = 0.0060; MSM-HIV: P=0.0051; F-SN:
P=0.020).
dP < 0.0001 in comparison to MSM-ART and P=0.0056 in comparison to F-HIV. NA, Not Applicable.
fro
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C, and the supernatant was passed through a 0.2 mm filter, aliquoted

and stored at -80°C until testing. Total protein levels were assessed

using a Bicinchoninic acid (BCA) assay. Standard sandwich ELISAs

were used to measure fecal calprotectin (Epitope Diagnostics, San

Diego, CA), IL-22 (eBioscience/Thermofisher, Waltham, MA),

sCD14 (Hyclone, Uden, Netherlands) and sIgA (BioVendor, Brno,

Czech Republic), while multi-plex ELISAs (MesoScale Diagnostics,

Rockville, MD) were used to measure multiple analytes

simultaneously each following manufacturer’s protocols. The

following V-Plex MSD (MesoScale Diagnostics, Rockville, MD)

kits were utilized: Proinflammatory Panel 1 (IFN-g, IL-1b, IL-2,
IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-a), Vascular Injury
Panel 2 (SAA, CRP, VCAM-1, ICAM-1), and Cytokine Panel 1

(GM-CSF, IL-1a, IL-5, IL-7, IL-12/23p40, IL-15, IL-16, IL-17A,
TNF-b, VEGF-A).
2.4 DNA extraction and sequencing

DNA was extracted from the same fecal samples used in the

ELISAs using the standard Power Soil Kit protocol (Qiagen).

Extracted bacterial DNA was PCR amplified with barcoded

primers targeting the V4 region of 16S rRNA according to the

Earth Microbiome Project (EMP) standard protocols (http://

www.earthmicrobiome.org). Each PCR product was quantified

using PicoGreen (Invitrogen, Carlsbad, CA), and equal amounts

of DNA from each sample were pooled and cleaned using the

UltraClean PCR Clean-Up Kit (MoBio, Carlsbad, CA).

Sequences were generated on three runs using a MiSeq

personal sequencer (Illumina, San Diego, CA).
2.5 Sequence data analysis

Raw sequences were quality filtered and assigned to samples

based on their barcodes using the default parameters of QIIME

version 1.5.0 (26). Sequences were assigned to 97% identity

operational taxonomical units (OTU)s by comparing them to a

nonredundant reference database of near-full length sequences

(Greengenes database) (27), and unassigned sequences were

clustered into de novo OTUs using UCLUST (28). Since samples

contained between 4,694 and 72,828 sequences, analyses were

standardized at 4,600 sequences per sample to avoid biases.

UniFrac (29) PCoA analyses were conducted using QIIME.

Bacterial families and genera in each sample were determined

using the RDP classifier retrained on the Greengenes taxonomy (30).
2.6 Fecal sIF and microbiome
PCoA analysis

Fecal sIF data was normalized by dividing each individual

value by the mean value of that sIF across all samples. All data
Frontiers in Immunology 04
were entered into a feature table with 17 features to perform

analysis using QIIME2 (31). Distances between fecal samples

based on their sIF levels were calculated using Canberra

distances. PCoA ordination and biplot functionality in

QIIME2 visually integrate the sample feature metadata.

Microbiome beta diversity was calculated using unweighted

UniFrac and plotted by PCoA. A one-sided Mantel test with

Pearson correlation was performed to test for a correlation

between the two distance matrices from the microbiome data

(unweighted UniFrac) and the immune data (Canberra).
2.7 Fecal solute stimulation of intestinal
epithelial cells

Human intestinal epithelial T84 cells were grown and

maintained in DMEM nutrient mixture F-12 ham (DMEM F-

12) media (Gibco, Grand Island, NY) as previously described

(32). Cells were plated on permeable transwell inserts (Costar,

Cambridge, MA) and grown to confluency and high resistance

(>1,000 W•cm2). Agonist-stimulated short circuit currents (Isc)

were measured in Hank’s balanced salt solution (Sigma-Aldrich)

on the apical side using an EVOM2 voltohmmeter (World

Precision Instruments, Sarasota, FL). Measurements were

taken before fecal solutes were added, 30 minutes post-

addition of fecal solutes, and then once an hour for four hours.

Cl- secretory responses are expressed as a change in short circuit

current (DIsc) as previously described (33).
2.8 Statistical analysis

Statistical analyses comparing differences between cohorts

and correlations for clinical measures, sIF levels, DIsc and PC

values were performed using GraphPad Prism Version 7

(GraphPad, San Diego, CA). These consist of Kruskal-Wallis

with Dunn’s corrections and rank Spearman correlation analyses

corrected for multiple comparisons with the false discovery rate

(FDR) method of Benjamini and Hochberg (34) were used to

determine significance of differences between cohorts. Any

correlations where P < 0.05 after FDR correction was

considered statistically significant.
3 Results

3.1 Gastrointestinal symptoms and
inflammation are increased in
MSM with and without HIV infection

There was no significant difference in the age between

cohorts except for the MSM-ART cohort, which was

significantly older (Table 1). There was also no significant
frontiersin.org
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difference in the median CD4+ T cell count between participants

with HIV with or without ART indicating those in the MSM-

HIV cohort were fairly healthy (Table 1). To ensure that stool

consistency was not responsible for differences in sIFs, we also

measured the total protein concentration of the fecal solutes

(total BCA) and no significant difference between cohorts was

noted (Table 1).

To evaluate differences in overall GI discomfort between our

cohorts the gastrointestinal symptom rating survey (GSRS) (24)

was completed by all study participants, and aggregate scores

compared. Both MSM-SN andMSM-HIV reported a statistically

significant increased GI symptom frequency and severity

compared to non-MSM-SN (P=0.031; P=0.029, respectively)

(Figure 1A). After providing a stool sample participants were

asked to rate the sample’s consistency using the Bristol stool

scale (25), and MSM-ART participants reported more watery/

loose stool consistency than non-MSM-SN participants

(P=0.039) (Figure 1B). We then measured fecal calprotectin, a

quantitative clinical marker of GI inflammation. Only MSM-

HIV participants had statistically elevated levels of calprotectin

in their fecal samples compared to non-MSM-SN (P=0.014)

(Figure 1C). However, all MSM cohorts had a higher proportion

of participants with calprotectin levels over 50 mg/g than the

non-MSM-SN cohort (non-MSM-SN: 21.4%, MSM-SN: 44.4%,

MSM-ART: 64.3%, MSM-HIV: 66.7%), which can indicate

potential GI inflammatory disease (35). Several MSM

participants had fecal calprotectin levels greater than 200 mg/g
which is strongly associated with GI inflammatory disease (35)
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(16.7%, 14.3%, and 33.3% of MSM-SN, MSM-ART, and MSM-

HIV respectively) while none in the non-MSM-SN cohort had

comparable levels. All three of these measures were also

examined in F-SN and F-HIV and while the aggregate GI

symptom score was significantly higher for F-HIV compared

to F-SN (P=0.047) there was no difference in stool consistency

(Supplementary Figure 1A). Fecal calprotectin showed a similar

pattern as for HIV-positive men but was a smaller cohort and

did not reach statistical significance (Supplementary Figure 1A).

Based on both reported symptoms and fecal calprotectin we

show a more inflammatory GI environment in HIV-positive

individuals and in MSM compared to non-MSM and HIV-SN,

which prompted further exploration into the specific

characteristics of this inflammation.
3.2 Distinct inflammatory MSM fecal sIF
profile is exacerbated with HIV infection

Twenty-seven sIFs, excluding calprotectin, were measured

from fecal samples using both multiplex and standard ELISAs.

Seventeen of these were measurable within the standard ranges

of each assay for more than 75% of all samples tested. Ten

markers (IFN-g, IL-2, IL-4, IL-6, IL-10, IL-12p70, SSA, IL-5, IL-
17A, TNF-a) where less than 75% of participants had detectable

levels in their fecal solute were excluded. Of those seventeen,

twelve sIFs showed significant differences across cohorts and

values for all participants (Figure 2). The five sIFs that were
A B C

FIGURE 1

Increased GI symptoms and inflammation in MSM with and without HIV infection. (A) GI Symptom Scores, and (B) Bristol Stool Scale Scores
calculated from survey responses. (C) Calprotectin levels (µg/g) determined by ELISA. Each point represents data from one participant and are
colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Black lines/hollow bars represent
the median of each cohort. The dotted line at 200 µg/g represents the cutoff for clinically significant fecal calprotectin. Kruskal-Wallis tests were
used to determine statistical significance with Dunn’s multiple comparisons test where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.
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detectable but did not have significantly different fecal levels

between cohorts were CRP, IL-1a, IL-8, sCD14 and sIgA. Nine

(GM-CSF, ICAM-1, IL-1b, IL-12/23, IL-15, IL-16, TNF-b,
VCAM-1, and VEGF) were elevated in either cohort of

part ic ipants with HIV compared to non-MSM-SN

(Figures 2A, B). The most striking example of fecal sIF

elevation for PLWH was seen in IL-1b, where there were 27-

fold (MSM-HIV) and 10.9-fold (MSM-ART) increases

compared to the non MSM-SN cohort. Many sIFs were

highest in MSM-HIV, though still significantly elevated in

MSM-ART with the exception of ICAM-1 which was not

significantly higher compared to non-MSM-SN. Interestingly,

three sIFs (GM-CSF, ICAM-1 and IL-12/23) were also

significantly higher in MSM-SN compared to non-MSM-SN

and IL-7 was not elevated in either HIV cohort (Figure 2B). We

also compared non-MSM-SN to MSM-SN using a Mann-

Whitney T test. In this analysis, seven (GM-CSF, ICAM-1, IL-

7, IL-12/23, IL-16, TNF-b and VCAM-1) of the sIFs were

significantly elevated while one (IL-13) was lower in HIV-

negative MSM compared to HIV-negative non-MSM

(Supplementary Table 1). In contrast, IL-22 levels were lower

across MSM cohorts compared to non-MSM, most significantly

in participants with HIV, and IL-13 was lower in MSM-SN alone

(Figure 2C). While fecal CRP, IL-1a, IL-8, sCD14 and sIgA

levels were detectable for the majority of participants, there were

no significant differences between cohorts (data not shown). A

separate comparison of only MSM cohorts was done where both
Frontiers in Immunology 06
MSM-HIV and MSM-ART were compared to MSM-SN and the

only significant difference was elevated IL-13 in MSM-HIV

(Supplementary Table 2). There were no other significant

differences between the MSM cohorts. Taken together, our

data show significant differences in sIF levels for MSM

compared to non-MSM that is present regardless of HIV-

infection, and further elevated in participants with HIV.

Levels of fecal sIFs were also examined in the cohorts of

female participants. Because we were unable to recruit enough

male non-MSM with HIV, we examined a small cohort of

females with HIV as their microbiome is similar. Significant

increases were observed in F-HIV compared to F-SN for IL-15

(p=0.016), IL-16 (p=0.0079), TNF-b (p=0.0079), GM-CSF

(p=0.0079), and IL-12/23 (p=0.0079) (Supplementary

Figure 1B). Most of these trends align with the observations of

fecal sIFs in the male cohorts; however, for IL-1b, ICAM-1 and

IL-22 there was no significance between F-HIV and F-SN. Due

to the small size of the female cohorts and known gut

microbiome differences of MSM (17) the remainder of

analyses focused on male participants.
3.3 Fecal sIF frequencies correlate with
fecal calprotectin

Fecal calprotectin is a standardly used clinical marker for

diagnosis and monitoring of inflammatory gut diseases, so we
A

B C

FIGURE 2

Concentrations of fecal sIFs are altered in MSM compared to non-MSM. Levels of (A) IL-1b, IL-15, IL-16, TNF-b, VCAM-1, VEGF (pg/mL), (B) GM-
CSF, ICAM-1, IL-7, IL-12/23 (pg/mL), (C) IL-13 (pg/mL), and IL-22 (ng/mL) comparing MSM-SN, MSM-ART, and MSM-HIV cohorts to non-MSM-
SN. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART
(orange) and MSM-HIV (red). Black lines represent the median of each cohort. Kruskal-Wallis tests were used to determine statistical significance
with Dunn’s multiple comparisons test where *p < 0.05, **p < 0.01, and ***p < 0.001.
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examined associations between fecal calprotectin and sIF levels to

better understand their role in GI inflammation. Statistically

significant correlations were found between fecal calprotectin

levels and IL-1b, IL-8, IL-15, IL-16, GM-CSF, TNF-b, VEGF-A
and VCAM-1 (Table 2). The most significant of these correlations

was between calprotectin and IL-1b (P=0.0005, r=0.51), an

inflammatory cytokine associated with GI disease (36) (Table 2).

In fact, most of the fecal sIFs associated with calprotectin have

inflammatory properties (IL-1b, GM-CSF, TNF-b, IL-8, IL-16,
and VEGF-A) or are involved in trafficking of leukocytes into

tissue (VCAM-1). While the significant correlations between

calprotectin and inflammatory sIFs indicate these markers are

relevant to overall gut inflammation, it is notable that the two

cytokines that were decreased in one or all MSM cohorts, IL-13

and IL-22, did not correlate with calprotectin levels. Additionally,

none of the fecal sIFs correlated with the aggregate GSRS or

Bristol stool scores. The associations between fecal sIF

concentrations and fecal calprotectin indicate sIFs contribute to

clinically significant GI inflammation.
3.4 Fecal sIF profile is related to
microbiome compositional differences

Next, we compared the overall fecal sIF profile to

microbiome composition. The evaluation of global differences

in sIFs was made by performing a principal coordinate analysis

(PCoA) of Canberra distances calculated from sIF profiles after
Frontiers in Immunology 07
values were normalized (Figure 3A). Non-MSM-SN individuals

clustered separately from MSM cohorts across principle

coordinate 1 (PC1), which was separated by elevated IL-22

and sIgA for non-MSM-SN and higher levels of ICAM-1,

VCAM-1, IL-1b, TNF-b, and GM-CSF for MSM (Figure 3A).

Clustering of MSM-ART and MSM-HIV cohorts largely

overlapped and were both distinct from non-MSM-SN, while

the MSM-SN cohort was more diffuse. We and others have

reported that the enteric microbiome of MSM with and without

HIV infection is distinctly different than that of non-MSM, in

part due to an increase in Prevotella and decrease in Bacteroides

(17). To relate the microbiome composition to fecal cytokine

profiles, we generated 16S rRNA sequence data from the same

fecal samples. As shown previously (17), MSM microbiome

compositions did not clearly cluster by HIV or ART status

using PCoA (Figure 3B). Differences in between MSM and non-

MSM were again associated with relatively Prevotella rich and

Bacteroides poor microbiome composition in the MSM.

Comparison of the pairwise distance matrices of the fecal sIF

data and unweighted UniFrac values with a mantel test showed a

significant relationship (P=0.029) indicating that the

microbiome differences explained some of the variation in sIF

profiles across fecal samples. We also looked at the abundances

of Prevotella and Bacteroides individually and found patterns

similar to our previous study (17) (Supplementary Figures 2A–

C). When these abundances were correlated with fecal sIF

concentrations Prevotella did positively associate with IL-1b
levels (P=0.038, r=0.48) and negatively with IL-22 (P=0.004,

r=-0.52) for all participants, but there were no correlations

within MSM cohorts (Supplementary Figure 2D).
3.5 Inflammatory sIF composition of
MSM with HIV associates with decreased
intestinal barrier integrity in colonic
epithelial cells

To assess the effects of sIFs on the colonic epithelial barrier

we added fecal solutes to the apical portion of confluent T-84 gut

epithelial cells at resistance (1000 W•cm2). We measured short

circuit current (Isc), a measure of apical fluid transport (37), over

a 24-hour period of time and found the peak change from the

initial Isc occurred at 4 hours (DIsc). We found fecal solute from

MSM-HIV induced a significantly lower DIsc compared to non-

MSM-SN (p = 0.033) and MSM-ART also trended lower

(Figure 4A). None of the fecal solutes from non-MSM-SN had

a negative DIsc whereas solutes from 18% and 31% of the MSM-

ART and MSM-HIV cohorts respectively decreased Isc

compared to the initial reading. We then compared PC1

values of the sIF composition PCoA to DIsc using a stratified

analysis and found significant associations between PC1 and

DIsc for all participants (P=0.0003, r=-0.50), participants with

HIV (P=0.003, r=-0.59), and MSM-HIV (P=0.011, r=-0.69)
TABLE 2 Fecal calprotectin correlates with fecal sIF levels.

Correlate R-value P-value

IL-1b 0.5111 0.0005

VEGF 0.4692 0.0017

IL-15 0.4502 0.0017

VCAM-1 0.4384 0.0021

IL-16 0.4258 0.0024

GM-CSF 0.4156 0.0028

IL-8 0.4153 0.0024

TNF-b 0.4127 0.0023

IL-12/23 0.3662 0.0075

IL-7 0.3598 0.008

ICAM-1 0.3365 0.013

IL-1a 0.313 0.021

Significant correlations between fecal sIF concentrations and fecal calprotectin. Test
results for ranked Spearman correlations with an FDR<0.05 are shown, followed by
the corrected p-value.
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while there was no correlations in other stratifications by HIV

infection status or by cohort (Figures 4B–D). Positive PC1

values, categorized by increased concentration of inflammatory

sIFs ICAM-1, VCAM-1, IL-15 IL-1b and TNF-b and decreased

IL-22 and sIgA, were associated with decreased gut barrier

integrity. There were no correlations found between DIsc and

microbiome PC1 or levels of individual sIFs for all participants

or when stratified by cohort. (Supplementary Data 1). We

repeated this analysis stratified based on participants’ HIV

status and eight of the 12 sIF frequencies significantly

correlated with DIsc (Figure 4E). The strongest associations

among participants with HIV involve IL-15 (P=0.0072, r=-

0.63), TNF-b (P=0.0096, r=-0.61) and VCAM-1 (P=0.0099,

r=-0.59), and GM-CSF, IL-7, IL-12/23, IL-16 and VEGF-A

also negatively associate with DIsc (Figure 4E). There were no

significant associations among participants without HIV. These

findings indicate the reduced apical fluid transport of the gut

epithelial barrier is associated with elevated concentrations of

inflammatory sIFs in participants with HIV.
3.6 Elevated systemic sCD14 in HIV is
associated with fecal sIF induced
intestinal barrier dysfunction

Lastly, to examine the associations between barrier function

and systemic inflammation, we measured levels of inflammatory
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sIFs in plasma. Few significant differences between MSM and

non-MSM cohorts in plasma sIFs were noted, and many sIF

trends are antithetical to sIFs in the feces (Supplementary

Table 3). Of note, IL-22 levels in plasma were increased in all

MSM cohorts compared to non-MSM, while they were decreased

in feces, and of twelve matched sIFs in blood and feces only three

positively correlated (Supplementary Table 3). We also measured

plasma sCD14 and sCD163 to assess the connections between sIF

levels and bacterial translocation (38, 39). Plasma sCD14 was

significantly elevated in MSM-HIV (P=0.0050, Median=1760 mg/
mL) and trended higher in MSM-ART (P=0.074, Median=1726

mg/mL) compared to non-MSM-SN (Median=1398 mg/mL)

(Figure 5A). There was no significant difference in plasma

sCD14 between MSM-SN and non-MSM-SN (P>0.99,

Median=1376 mg/mL) (Figure 5A). DIsc was found to

negatively correlate with sCD14 (P=0.018, r=-0.38) for all

participants (Supplementary Figure 3A) and the relationship

was even stronger for participants living with HIV (P=0.021,

r=-0.51) (Figure 5B). There were no significant associations when

stratified by cohort or among HIV-seronegative participants.

Additionally, there was a much weaker association between

plasma sCD14 and fecal sIF PC1 (P=0.07, r=0.29) and no

association with fecal microbiome PC1 (P=0.87, r=0.02) (data

not shown). Of the 12 fecal sIFs tested there was one significant

association between VEGF and plasma sCD14 (P=0.029, r=0.40)

(Supplementary Table 4). Plasma sCD163 was also significantly

elevated in MSM-HIV (P=0.0003, Median=1166 mg/mL)
A B

FIGURE 3

Principal coordinate analyses of fecal sIF and microbiome composition segregate by MSM status. (A) PCoA plot of fecal sIF composition after
normalization across samples. Each point represents one participant’s sIF composition where the distance between points is representative of
relative similarity – two points closer together are more similar than two further apart. Labeled arrows of the 11 most influential sIFs on this
PCoA’s distribution are included with corresponding directionality and impact as shown by the arrow’s length. (B) Unweighted UniFrac PCoA
plot of fecal microbiome composition where each point represents one individual’s overall microbiome composition. Labeled arrows of the 4
most influential taxa on this PCoA’s distribution are included with corresponding directionality and impact as shown by the arrow’s length.
Points are colored based on cohort: non-MSM-SN (dark blue), MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Each colored oval
encircles the majority of participants in the cohort with corresponding color. The size and location were determined manually and <20% of
each cohort falls outside the oval. The P value below the double-sided green arrow between plots is the result of a Mantel test that shows a
significant positive correlation between these two matrices.
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compared to non-MSM-SN (Median=675 mg/mL), but neither

MSM-ART (Median=734 mg/mL) or MSM-SN (Median=794 mg/
mL) were significantly higher (Figure 5C). While plasma sCD163

did not have significant associations with sIF composition,

barrier function or microbiome composition for all participants

(Supplementary Figure 3B), when stratified by HIV status

participants with HIV show a significant correlation between

sCD163 and gut microbiome composition (P=0.04, r=-0.41)

(Figure 5D). There were no significant associations when

stratified by cohort. Additionally, there were no significant

correlations between individual fecal sIF levels and plasma

sCD163 (data not shown). These findings connect systemic

inflammation markers to both intestinal barrier function and

microbiome composition, both of which are also associated with

fecal sIF composition.
4 Discussion

HIV infection has long been associated with gastrointestinal

disease. Acquired immune deficiency syndrome (AIDS) was
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initially classified as a chronic wasting disease because of the

severe diarrhea and malabsorption seen in PLWH without ART

treatment (40). In recent years, profound depletion of CD4+ T

cells in the intestine and increased bacterial translocation from

the gut have been strongly associated with HIV disease

progression (41, 42), and these findings have sparked renewed

interest of the role of the gastrointestinal tract in HIV

pathogenesis. One area of particular interest is the intersection

between the gut microbiome and inflammation in HIV, in part

due to the strong connections between microbiome

composition, inflammatory gut diseases and various chronic

conditions (43, 44). Our group and others have shown that HIV

infection is associated with intestinal microbiome dysbiosis (45,

46) but interestingly, it has only been recently determined that

sexual behavior contributes more significantly to alterations in

microbiome composition in HIV-infected MSM than HIV

infection itself (17). Understanding the interactions between

the gut microbiome, inflammation and how these factors

influence HIV pathogenesis and transmission following

receptive anal intercourse (RAI) is of interest considering the

known associations between vaginal dysbiosis and HIV
A B

D

E

C

FIGURE 4

Fecal solutes from MSM with HIV infection increase transcellular gut epithelial permeability and associate with sIFs. (A) The change in short
circuit current (DIsc) after 4 hours was calculated using Ohm’s law. A Kruskal-Wallis test was performed to determine statistical significance
where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. Correlations between DIsc and sIF PC1 values from PCoA from figure 3 for all (B), HIV
(C), and HIV-ART (D) participants. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue),
MSM-SN (green), MSM-ART (orange) and MSM-HIV (red). Each black line represents the linear regression for all included points, and P- and R-
values are associated with this line. Each dotted line represents the linear regression for the cohort with the corresponding color. (E) A heat map
showing associations between sIF concentrations and 4 hour DIsc. Teal indicates a negative R-value whereas orange represents a positive R-
value. Rank order spearman correlations were run to determine statistical significance where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001.
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transmission (47, 48). The relationship between fecal soluble

immune factors (sIFs), many of which are important in gut

inflammation (36, 49), and the gut microbiome and barrier

function has not been previously examined in the context of

HIV. Here we show that MSM-SN have higher levels of GI

inflammation than non-MSM-SN, and that many of these sIF

levels are further elevated in MSM with HIV infection. We also

found there was a significant association between the

inflammatory composition of fecal sIFs with microbiome

composition and associations between individual gut

microbiome species and sIF concentrations in a stratified

cohort analysis. Lastly, we found both the overall composition

of sIFs and increased levels of specific sIFs in MSM with HIV
Frontiers in Immunology 10
associated with decreased transcellular fluid transport, which in

turn strongly associated with measures of bacterial translocation

in the plasma of the participants.

We initially assessed gut health and inflammation in our

study cohorts using standard clinically validated techniques; GI

symptoms questionnaire (24), self-reported Bristol Stool scale

(25) and fecal calprotectin (35). As expected, participants with

untreated HIV infection reported more GI symptoms compared

to non-MSM-SN; however, surprisingly we found that MSM-SN

participants also reported more GI symptoms. This could be

explained by the higher rate of sexually transmitted infections

(STIs) among MSM than non-MSM populations (50), which

previously were thought to be the primary cause of increased gut
A B

DC

FIGURE 5

Elevated plasma markers of bacterial translocation in MSM-HIV correlate with increased gut epithelial permeability and microbiome
composition. (A) Plasma sCD14 levels determined by ELISA and separated by cohort. (B) Correlations between DIsc and plasma sCD14 for
participants with HIV. (C) Plasma sCD163 levels determined by ELISA and separated by cohort. (D) Correlations between Microbiome PC1 and
plasma sCD163 for participants with HIV. For (A) and (C), Kruskal-Wallis tests were used to determine statistical significance between cohorts
where * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. For (B) and (D) rank order spearman correlations were run where * = p < 0.05, ** = p <
0.01, and *** = p < 0.001. Each point represents data from one participant and are colored based on cohort: non-MSM-SN (dark blue), MSM-SN
(green), MSM-ART (orange) and MSM-HIV (red). Each black line represents the linear regression for all included points and reported P- and R-
values are associated with this line. Each dotted line represents the linear regression for the cohort with the corresponding color.
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inflammation in MSM. However, there were no significant

correlations between sIF levels and either stool consistency or

the average severity of reported GI symptoms. Additionally, the

rates of STIs – including Neisseria gonorrhoeae and Treponema

pallidum which cause gonorrhea and syphilis, respectively –

have increased in recent years among MSM and may be

influenced by increased use of pre-exposure prophylaxis for

HIV and associated behavioral changes (51); however, these

bacteria were not detected in our microbiome analysis and no

viral or parasitic STIs were reported by participants. Another

notable finding was that the stool from MSM-ART participants

had a looser consistency compared to non-MSM-SN. This aligns

with known associations between diarrhea and other GI

symptoms with various ART regimens (52). We also measured

the levels of fecal calprotectin which is directly related gut

inflammation (53). HIV-ART participants were more likely to

have elevated levels of gut inflammation than non-MSM-SN,

marked by fecal calprotectin between 50mg/g and 200mg/g (35),
and fecal calprotectin in ART-naïve participants was

significantly higher compared to non-MSM-SN. In fact, many

had levels typical of those observed with IBD which is similar to

previous findings in HIV infection (54). We were surprised to

see that 44% of MSM-SN had fecal calprotectin above 50 mg/g
while only 21% of non-MSM-SN participants had comparable

levels. Cumulatively, these findings further solidify the

connection between MSM, regardless of HIV infection, and GI

inflammation and prompted further exploration into how a

broad range of fecal sIFs differ with both HIV infection and

MSM status.

Analysis of stool sIFs has been previously used to study

various inflammatory diseases in the gastrointestinal tract (20–

23). These studies found that analysis of fecal sIFs provide a

sensitive and noninvasive measurement of gastrointestinal

inflammation and provide information on the intestinal

environment during or after viral infection (55). Of the 17 sIFs

that fell into range, eleven were elevated in MSM with HIV

compared to seronegative non-MSM and many of these are

associated with inflammatory GI diseases. Both MSM-HIV and

MSM-ART had elevated levels of eight inflammatory sIFs (GM-

CSF, IL-1b, IL-12/23, IL-15, IL-16, TNF-b, VCAM-1 and

VEGF), while ICAM-1 was increased in MSM-HIV compared

to non-MSM-SN. Of these, IL-1b, IL-12/23, IL-16 and TNF-b
are all elevated in IBD and associated with its pathogenesis (36,

56, 57), IL-15 and GM-CSF are elevated in inflamed intestinal

tissues (58, 59), and anti-VEGF therapies have been shown to

reduce intestinal inflammation in models of IBD (60). Recently

elevated IL-23 in the gut has also been associated with disease

severity after infection with SARS-CoV-2, which has a high

incidence of GI symptoms (55). Since these sIFs have strong

connections to inflammatory diseases and viral infections, it is
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unsurprising to see elevated fecal levels in PLWH but levels of

four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were similarly

elevated in MSM-SN compared to non-MSM-SN. Both GM-CSF

and IL-12/23 are pro-inflammatory, while ICAM-1 and IL-7

modulate the trafficking of immune cells into tissues and

proliferation of lymphocytes respectively, all functions that

support epithelial barrier integrity (59, 61–63). The elevation

of these sIFs in MSM-SN is reasonable following increased

prevalence of mechanical injuries and pathogenic microbes in

the rectum and colon, both of which can negatively affect gut

barrier health. Additionally, IL-16, TNF-b and VCAM-1 were

also significantly higher in MSM-SN when directly compared to

non-MSM-SN indicating GI inflammation, while exacerbated by

HIV infection, is elevated in seronegative MSM. Decreased IL-22

was observed across MSM cohorts, most significantly in

participants with HIV. This may be functionally significant

since IL-22 – produced in the gut by CD4+ T helper subsets

and innate lymphoid cells (ILCs) – is known to promote

epithelial barrier integrity (64–66). This is particularly

important in the context of HIV since IL-22 producing CD4+

T cells are preferentially infected by HIV and both these T cells

and ILCs are significantly depleted in the gut even following

long-term ART (66–68). Surprisingly, of the twelve sIFs that

were detectable in both the blood and feces of these participants

only three – CRP, IL-16 and VCAM-1 – had significant direct

correlations. Interestingly, while IL-22 was lower in both HIV

cohorts compared to non-MSM-SN in feces, these levels were

significantly elevated in all MSM cohorts in the blood. While

twelve of the seventeen sIF levels positively associated with fecal

calprotectin, there were five sIFs, including IL-22, that did not

have significant associations. Taken together, this indicates that

fecal sIFs measurement reveals immune processes that are

specific to the gut, are a valid measurement of inflammation

and more sensitive than fecal calprotectin alone. These data

provide broader insight into intestinal inflammation than other

non-invasive measures and allow for a deeper understanding of

the different interactions of the gut microenvironment of MSM.

Evaluation of the differences of fecal sIF profile by PCoA

showed clustering of MSM and non-MSM cohorts. This analysis

indicated IL-22 levels contributed the most of any sIF to the

clustering observed, and in addition to its contribution to

epithelial barrier integrity, IL-22 can modulate gut microbiome

composition (69, 70). Particularly commensal Clostridia,

through the production of short-chain fatty acids (71), can

increase IL-22 production in both in vitro and in vivo models

(72). Based on the known differences in microbiome

composit ion in MSM and non-MSM (17) and the

microbiome’s connection to IL-22, we hypothesized that the

gut microbiome may contribute to elevated inflammatory sIFs.

To assess this, we performed a mantel test to compare pairwise
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distances between fecal sIF profiles and gut microbiome

composition. However, the association was weak indicating

that other factors that we did not measure, such as sexual

practices (73, 74), may also contribute to the differences. We

also found plasma sCD163 was elevated in MSM-HIV and

associated with gut microbiome composition. A marker of

macrophage activation and bacterial translocation (39),

sCD163 has also been connected to mortality and viral

replication in PLWH (75, 76). Recent studies evaluating the

microbiome in MSM with HIV infection have also found both

altered microbiome and elevated sCD163 in this population, but

the cause of this association remains unclear (77). Interestingly,

this relationship between sCD163 and microbiome composition

is specific to PLWH, indicating the possibility of a mechanism

specific to HIV infection. Based on these findings, further

investigation of the relationship between the gut microbiome

and sIFs in MSM and PLWH is warranted.

Systemic immune activation in HIV is caused in part by

translocation of microbial products from the gut (78, 79). To

better understand the effect of sIFs on gut barrier integrity we

cultured T-84 cells with total fecal solutes and measured DIsc – a

measure of apical fluid transport. We found that addition of fecal

solutes fromMSM-HIV to T-84 monolayers significantly lowered

levels of apical fluid transport as compared to non-MSM-SN,

while MSM-ART trended similarly. Increased apical fluid

transport is associated both with improved mucosal hydration

and decreased bacterial translocation (37), therefore fecal

inflammatory sIFs could contribute to increased bacterial

translocation and decreased barrier integrity associated with

HIV (78). These data indicate there is a connection between

fecal sIF composition, decreased intestinal barrier function and

bacterial induced systemic inflammation. While the fecal solutes

used also included bacterial metabolites that are thought to

contribute to intestinal barrier function (80), we also found

negative associations between apical fluid transport and IL-15,

TNF-b, VCAM-1, VEGF, GM-CSF, IL-7, IL-12/23 and IL-13 in

participants with HIV. Interestingly, no significant association

between sIF concentration and resistance to intracellular transport

was seen in participants without HIV, suggesting HIV-specific

fecal sIF compositions are more disruptive to the gut barrier.

Various cytokines in the intestinal lumen, including IL-12,

negatively impact intestinal membrane permeability (81) and

IL-15 is known to drive epithelial tissue destruction (82), cause

inflammation downstream of the antiapoptotic signals it initiates

(83) and direct intraepithelial lymphocyte motility in the gut (84).

VEGF overexpression can be pathogen-induced and also

contributes to barrier permeability (85). T helper subsets, which

are preferentially depleted in the gut of PLWH (86), associate with

worse outcomes from infections and are also associated with
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increased GM-CSF (87). Most importantly, we discovered a

significant inverse association between our in vitro measure of

gut permeability and plasma sCD14 (38), a marker of bacterial

translocation levels, indicating that disruption of barrier function

in vitro correlated with in vivo levels of bacterial translocation. As

plasma sCD14 is associated with mortality in PLWH even with

ART (88) and the mechanisms behind microbial translocation in

HIV are not completely understood (89), further investigation

into the interactions between sIFs and gut barrier function could

reveal new therapeutic targets to decrease systemic inflammation

and associated co-morbidities (2, 90) in PLWH. Taken together,

these data outline the interactions between fecal sIFs, gut barrier

function and bacterial translocation and connects our in vitro

findings to direct ex vivo measurements.

Analysis of fecal sIF allows for a deeper understanding of

the gut microenvironment not detectable by other low-risk,

noninvasive methods. The relevance of fecal sIF analysis is

confirmed by strong relationships with fecal calprotectin, while

also i l luminating unique mechanist ic insights into

gastrointestinal inflammation in HIV infection. Here we

connect fecal sIFs to the overall composition of the gut

microbiome and individual bacterial taxa abundance, barrier

function and bacterial translocation. More work is needed to

determine if microbiome dysbiosis is causal, or if inflammatory

conditions allow for increased abundance of opportunistic

bacteria. However, this study clearly shows elevated levels of

multiple sIFs in the stool of MSM with and without HIV

infection. Furthermore, we show relationships between plasma

markers of bacterial translocation and fecal sIF and

microbiome compositions further supporting the theory that

gut dysbiosis contributes to chronic systemic inflammation

in HIV.
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