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Metabolic syndrome mainly includes obesity, type 2 diabetes (T2DM), alcoholic

fatty liver (NAFLD) and cardiovascular diseases. According to the ancient

experience philosophy of Yin-Yang, monarch-minister compatibility of

traditional Chinese medicine, prescription is given to treat diseases, which

has the advantages of small toxic and side effects and quick effect. However,

due to the diversity of traditional Chinese medicine ingredients and doubts

about the treatment theory of traditional Chinese medicine, the mechanism of

traditional Chinese medicine is still in doubt. Gastrointestinal tract is an

important part of human environment, and participates in the occurrence

and development of diseases. In recent years, more and more TCM researches

have made intestinal microbiome a new frontier for understanding and treating

diseases. Clinically, nonalcoholic fatty liver disease (NAFLD) and diabetes

mellitus (DM) often co-occur. Our aim is to explain the mechanism of

interaction between gastrointestinal microbiome and traditional Chinese

medicine (TCM) or traditional Chinese medicine formula to treat DM and

NAFLD. Traditional Chinese medicine may treat these two diseases by

influencing the composition of intestinal microorganisms, regulating the

metabolism of intestinal microorganisms and transforming Chinese

medicinal compounds.
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1 Introduction

Intestinal microecology is an important part of human

environment. It is composed of intestinal microbiota, intestinal

epithelial cells and immune system, forms intestinal mucosal

barrier and plays an important role in energy metabolism. Both

external and genetic factors affect the composition and function

of intestinal microecology. The steady state of microbiota is

closely related to human health. There is growing evidence that

intestinal microbiota and their metabolites play an important

role in the development of obesity, diabetes and nonalcoholic

fatty liver disease (1). Diabetes and non-alcoholic fatty liver are

two diseases closely related to intestinal microbial homeostasis.

T2DM is the main type of diabetes, mainly manifested as

metabolic disorders, such as hyperglycemia, hyperlipidemia

and insulin resistance. Diabetes can lead to a variety of serious

complications, such as retinopathy and diabetic nephropathy,

gestational diabetes, atherosclerosis and other cardiovascular

diseases, these complications affect the quality of life of a large

number of people around the world. The rapid growth of

diabetes has brought a great burden on the global society and

economic society (2). Nonalcoholic fatty liver disease (NAFLD),

as a common chronic liver disease, can be divided into fatty liver,

steatohepatitis and liver fibrosis according to the degree of

inflammation and fibrosis. The main manifestations of

NAFLD are steatosis, lipotoxicity and inflammatory injury,

which are associated with glucose homeostasis and persistent

low-grade inflammation (1) (3). Studies have found that

intestinal flora and metabolites can reverse some metabolic

disorders, including high fat, tissue inflammation and low

insulin sensitivity and secretion (4). This suggests that

intestinal flora can be used in the treatment of diabetes and

fatty liver (5).

As an important supplementary means of clinical medicine,

traditional Chinese medicine has been widely adopted in some

East Asian countries. In some western countries, such as the

United States, Britain and Germany, the trend of using

traditional Chinese medicine as a treatment for diseases is

becoming more and more obvious. Different from chemical

drugs and biological agents, traditional Chinese medicine and

traditional Chinese medicine formulations under the guidance

of traditional Chinese medicine theory are often difficult to

determine specific bioactive components. Traditional Chinese

medicine prescribes prescriptions to treat diseases under the

guidance of ancient empirical philosophy, such as yin-yang,

monarch-minister compatibility and so on. Traditional Chinese

medicine advocates the concept of wholeness and regards organs

such as internal organs as a whole. the destruction of intestinal

microbial homeostasis promotes the development of metabolic

syndrome such as diabetes, fatty liver and cardiovascular

syndrome, which is in line with the “whole” concept of TCM

theory. There has been a sharp increase in patients with diabetes
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and non-alcoholic fatty liver disease worldwide, which studies

have shown may be associated with insulin resistance. Patients

usually suffer from these two diseases at the same time, which is

a difficult problem in clinical treatment (6). As insulin resistance

plays an important role in the development of non-alcoholic

fatty liver, diabetes drugs are often used as the treatment option

for the treatment of non-alcoholic fatty liver (7) (8). On the one

hand: there are no approved drugs for nonalcoholic fatty liver

disease, and the only approved treatment option is to improve

diet and lose weight. On the other hand: the drugs used to treat

diabetes are still defective in the treatment of fatty liver. With the

discovery of plant-derived natural products quercetin,

resveratrol, polysaccharides, berberine and curcumin in the

treatment of diseases, researchers have focused on “simple,

convenient and low-toxic” herbs. Researchers have found that

single herbs such as Coptis chinensis, Radix Astragali, Ginseng

and herbal formulations such as SiMiao, Gegen Qinlian

decoction, Huanglian jiedu decoction and LLKL have potential

therapeutic effects on T2DM and NAFLD. These herbs exert

pharmacological effects through intestinal microflora and

mainly include two ways: changing the composition of

intestinal microorganisms and affecting the metabolism of

intestinal microflora. The main purpose of this review is to

explain the therapeutic effect of intestinal microbiota on diabetes

and non-alcoholic fatty liver.
2 Association between diabetes
mellitus and non-alcoholic fatty
liver disease

2.1 Diabetes mellitus and non-alcoholic
fatty liver disease – two clinically
associated diseases

Diabetes is a metabolic disorder characterized by

hyperglycemia caused by deficiency of insulin secretion and/or

deficiency of insulin action. There are two main types of

diabetes, insulin-dependent type 1 diabetes (T1DM) and

insulin-independent type 2 diabetes mellitus (T2DM), of

which type 2 diabetes accounts for 90% of patients with

diabetes (9). Nonalcoholic fatty liver disease (NAFLD) is

considered to be the most common form of liver disease in the

world, including fatty liver, steatohepatitis (NASH) and liver

fibrosis (10). NASH is a progressive form of nonalcoholic fatty

liver. NAFLD is a risk factor for metabolic disorders such as

obesity, diabetes, especially T2DM and cardiovascular disease.

Among obese people undergoing bariatric surgery, the

prevalence of NAFLD is as high as 90%, and among diabetics,

the prevalence of NAFLD can be as high as 71%. Insulin

resistance (IR) exists in almost all patients with NAFLD and

T2DM. Through the evaluation of the homeostasis model of
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insulin resistance, it was found that there was a significant

correlation between IR and the prevalence of steatohepatitis in

NAFLD. The relationship between diabetes and nonalcoholic

fatty liver gradually evolved into the relationship with simple

steatosis (SS), NASH and liver fibrosis (11) (12). Cross-sectional

studies have shown that non-alcoholic fatty liver disease usually

occurs in patients with type 2 diabetes (13). A systematic review

and meta-analysis of 27 clinical trials confirmed the direct

relationship between fatty liver and the incidence of diabetes

(14). The probability of developing diabetes is also different in

different steatosis states. Follow-up results showed that the

incidence of diabetes in patients without steatosis, intermittent

steatosis and persistent steatosis increased by 5.1%, 14.1% and

27.1%, respectively. It can be speculated that early intervention

of steatosis has a resistant effect on the development of diabetes

(15) A study based on patients with nonalcoholic fatty liver

disease and first-degree relatives in the United States found that

familial aggregation of insulin resistance syndrome has a genetic

susceptibility to supporting nonalcoholic fatty liver disease (16).

Family history of diabetes, especially in non-diabetic patients, is

associated with nonalcoholic steatohepatitis (NASH) and

fibrosis in NAFLD (17). In addition, the occurrence and

development of cardiovascular diseases such as obesity,

retinopathy, renal failure, peripheral neuropathy and

atherosclerosis are also related to diabetes (9).
2.2 Beneficial effects of various anti-
diabetic drugs on non-alcoholic fatty
liver disease

In the above part, we have explained the clinical correlation

between NAFLD and T2DM. However, NAFLD does not have

an explicitly approved drug, and the only approved treatment

option is to change diet and exercise. IR plays an important role

in the development of NAFLD, and many hypoglycemic drugs

have been evaluated for the treatment of NAFLD. These drugs

mainly include biguanides, glucagon-like peptide 1 receptor

(GLP-1) agonists, peroxisome proliferator-activated receptor

(PPAR) agonists and farnesoid X receptor (FXR) agonists.

Metformin is known to improve lipid metabolism by

activating adenylate-activated protein kinase (AMPK), an

important regulator of energy metabolism (18). Metformin

exerts the preventive effect of NAFLD by increasing AMPK

phosphorylation, inhibiting macrophage polarization, reducing

macrophage infiltration and the expression of pro-inflammatory

cytokines (TNF- a, IL-1 b and IL-6), relieving liver

inflammation and fat accumulation (19, 20). In addition,

metformin alleviates fatty liver degeneration in obese mice by

affecting the protein levels of CYP7B1 and CH25H, a cholesterol

hydroxylase, to regulate cholesterol secretion and metabolism

(21). Glucagon-like peptide-1 (GLP-1) is an enterotropic insulin

secreted by intestinal endocrine L cells that regulates glucose
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regulation by slowing gastric emptying and glucose-dependent

inhibition of glucagon secretion. GLP-1 can improve liver

insulin sensitivity (22, 23)and enhance the direct effect of lipid

hydrolysis and oxidation on liver (24–26). Lilarutide is a kind of

GLP-1 analogue. Studies have shown that liralutide can reduce

liver enzymes, including alanine aminotransferase (ALT) and

aspartate aminotransferase (AST) (27). Lipopeptide is associated

with liver lipid metabolism, total cholesterol (TC) and

triglyceride (TG) (28). Pioglitazone belongs to PPAR- g
agonist and has insulin sensitizing effect (29). Pioglitazone

reduces the accumulation of lipids in the liver (30) by

improving fatty acid uptake and transport. Farnesoid X

receptor (FXR) is a kind of nuclear receptor activated by bile

acid, which is highly expressed in the liver and intestines and is

related to bile acid and lipid metabolism (31). FXR agonists can

reduce insulin resistance, improve lipid metabolism disorders,

and alleviate fatty liver degeneration (32).
2.3 Summary

In conclusion, there is a close relationship between diabetes

and nonalcoholic fatty liver disease. Metformin, liralutide and

pioglitazone are used in the treatment of diabetes and drugs can

be developed for the treatment of non-alcoholic fatty liver.
3 How does the gut microbiota
influence T2DM and NAFLD

3.1 Intestinal microbes

Intestinal microecology is an extremely complex ecosystem,

which is composed of intestinal microflora, intestinal epithelial

cells and intestinal immune system. Intestinal microecology is

regarded as an important “organ”, which plays an important role

in regulating human metabolism (33). Intestinal microflora, also

known as intestinal bacteria, is a complex microbial community

living in the gastrointestinal tract of the human body in a

symbiotic way, which mainly includes two phyla, thick-walled

bacteria and Bacteroides (34). Diabetes and nonalcoholic fatty

liver disease are metabolic diseases related to obesity (35).

Obesity increases the risk of diabetes and NAFLD in humans

(36, 37). Intestinal flora disorders have been repeatedly observed

in these metabolic diseases, which seem to be related to changes

in the proportion of thick-walled bacteria and actinomycetes in

the intestines (38, 39). In patients with T2DM, it was observed

that the abundance of Streptococcus faecalis and Rosobacter

increased, while the abundance of Shigella and Bifidobacterium

decreased (40). The decrease of microbial diversity and the

increase of Prevotella abundance were observed in the feces of

children with NAFLD. Today, unhealthy Western diets are

promoting and aggravating the course of T2DM and NAFLD,
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which may be reduced or reversed by intestinal flora treatment

(41–43).
3.2 Intestinal microbial metabolites

3.2.1 SCFAs
Intestinal ecological disorders usually lead to changes in

intestinal SCFAs levels. Short-chain fatty acids (such as acetate,

prop ionate and butyra te ) produced by intes t ina l

microorganisms not only provide nutrition and energy for the

host (44), but also participate in lipid metabolism and glucose

metabolism through a variety of pathways (45), thus affecting the

development of T2DM and NAFLD. It has been found that

human cells respond to SCFAs mainly by activating G protein

coupled receptor (GPR41,GPR43) and inhibiting histone

deacetylase (HDAC) (46, 47). G protein coupled receptors are

expressed in adipose tissue (48), liver (49) and pancreatic b cells

(50). Acetate is an important substrate for fatty acid synthesis,

and the increase of acetate will lead to the accumulation of

triglycerides (51, 52). Propionate is an important precursor of

gluconeogenesis, and an increase in propionate levels will

promote gluconeogenesis in the liver (53). Acetate and

propionate activate GPR43 receptors, inhibit insulin signal

transduction in adipocytes, inhibit fat accumulation and

promote lipid and glucose metabolism in other tissues (54,

55). Butyrate promotes the expression of gluconeogenesis-

related genes in a cAMP-dependent manner. In addition,

SCFAs stimulates intestinal endocrine cells to secrete

glucagon-like peptide 1 (GLP-1) and YY peptide (PYY)

through a GPR-dependent mechanism. These two hormones

inhibit appetite, promote fat oxidation, promote insulin

secretion and reduce glucagon, and inhibit hepatic steatosis

and the development of diabetes (47, 56). In addition,

propionate and butyrate can also act as HDAC inhibitors to

induce increased PYY mRNA levels (57).

3.2.2 TMAO, BAs and BCAAs
Trimethylamine N-oxide (TMAO) is a metabolite

associated with diabetes, liver steatosis and other chronic

diseases (58). TMAO is derived from intestinal microflora

that metabol izes chol ine . Chol ine is converted to

tr imethylamine (TMA) through Flav in-conta in ing

monooxygenase, and TMA is converted into TMAO in the

liver (59). It was found that TMAO accumulated in the serum of

patients with T2DM and NAFLD (60–62). TMAO can play a

role in NAFLD by changing bile acid metabolism (63). In

addition, TMAO may induce pancreatic b-cell dysfunction

and promote the pathogenesis of T2D (64). Bile acids include

primary bile acids and secondary bile acids. Primary bile acids

are synthesized by cholesterol in the liver. Primary bile acids

enter the intestine and are converted into secondary bile acids
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by intestinal flora. As an important mediator of intestinal-liver

crosstalk, bile acid mainly acts on two key receptors, farnesoid X

receptor (FXR) and Takeda G protein-coupled receptor 5

(TGR5), and regulates glucose homeostasis and lipid

metabolism (65, 66). Bile acid metabolism is associated with

the onset and progression of type 2 diabetes and NAFLD (67).

Bile acid chelating agents can inhibit FXR activity in intestinal L

cells, promote the production and secretion of GLP-1, and

improve blood glucose (68). It can also reverse hepatic

steatosis, inflammation and fibrosis by interrupting intestinal

bile acid reabsorption (69). Branched chain amino acids

(BCAAs) are essential amino acids, including leucine,

isoleucine and valine (70). Intestinal microflora can produce

and degrade branched chain amino acids. The increase of host

branched chain amino acids is related to metabolic fatty liver

disease and diabetes (71, 72). Amino acid-induced insulin signal

transduction damage and G protein coupled receptor

involvement lead to insulin resistance and type 2 diabetes

mellitus (73). Leucine affects glucose metabolism by activating

rapamycin complex 1mTORC1 (74). Host circulating branched

chain amino acids were positively correlated with higher

cholesterol level, liver fat content and insulin resistance (IR)

(75). However, some studies have found that supplementation

of branched chain amino acids can reduce the expression of

adipogenesis-related genes FAS and ACC in the liver and reduce

fat accumulation in the liver of rats fed with high-fat diet

(72, 76).
3.3 Intestinal permeability
and inflammation

The intestinal barrier consists of mucin layer and epithelial

cells. The destruction of intestinal barrier makes it easier for

bacterial metabolites and inflammatory cytokines to enter the

circulatory system, which is related to the occurrence of

metabolic syndrome (77). It is known that secondary bile acid

pass inhibits the expression of intestinal tight junction protein

and increases intestinal permeability (78). The production of

LPS results from the overgrowth of Gram-negative bacteria in

the intestinal tract. LPS circulates through the portal vein to the

liver to induce liver injury and inflammation (79, 80). The

increase of intestinal permeability and inflammation induced

by LPS is mediated by TLR4-dependent activation of ganglion

(81). By inducing the activation of TLR4/NF- k B signal

pathway, LPS upregulates the levels of inflammatory factors

such as TNF- a, IL-1 and IL-10, and promotes oxidative stress,

resulting in insulin resistance and NAFLD (82, 83). Similarly,

SCFAs reduces intestinal inflammation by inhibiting the LPS/

NF-kappa B/TLR4 pathway (84). SCFAs reduces inflammation

by inhibiting the activity of histone deacetylase (HDAC) and

promoting the production of regulatory T cells (Treg) (85).
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3.4 Summary

From the above introduction, it can be known that intestinal

microbiota disorder is the key to the occurrence and

development of T2DM and NAFLD. It can induce local organ

or systemic inflammation by changing the diversity of intestinal

flora, affecting microbial metabolism and destroying

intestinal barrier.
4 Intestinal flora– the “target organ”
of traditional Chinese medicine in
the treatment of diseases

Traditional Chinese medicine has a history of treating diseases

in China for more than 2000 years, including single drug

treatment and compound drug treatment. T2DM and NAFLD

are metabolic diseases characterized by hyperglycemia and fat

accumulation. Intestinal flora mediates the occurrence and

development of metabolic diseases and is used as an important

organ to participate in metabolic regulation. A series of

experimental results also show that the hypoglycemic and lipid-

lowering effect of traditional Chinese medicine is related to

intestinal flora. Below, we will introduce the molecular

mechanism of traditional Chinese medicine in the treatment of

diabetes and fatty liver from the point of view of intestinal flora
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structure, intestinal barrier and intestinal metabolites. The

mechanism of the therapeutic effect of traditional Chinese

medicine (TCM) is shown in Figures 1, 2.
4.1 Individual herbs or herbal extracts

It is well known that traditional Chinese medicine extracts

resveratrol, berberine, ginsenosides and curcumin play a

beneficial regulatory role in lipid and glucose metabolism.

Resveratrol is a natural polyphenol compound found in most

herbs and has the potential to relieve diabetes and liver steatosis

(86). It has been proved that the therapeutic effect of resveratrol

is mediated by intestinal flora. For example, resveratrol alleviates

the progression of diabetic nephropathy by reversing the low

levels of Bacteroides, Alistipes, Rikenella, Odoribacter,

Bacteroides and Alloprevotella in db/db mouse model. The

therapeutic effect of resveratrol on db/db mice is related to

resveratrol reversing the imbalance of intestinal flora, improving

intestinal barrier, reducing intestinal permeability and

inflammation (87). In addition, resveratrol can act as a

potential NAFLD replacement therapy, and its therapeutic

effect has been evaluated and confirmed in a number of trials.

Previous experimental results have shown that resveratrol can

improve lipid metabolism and reduce lipogenesis and

inflammation in high-fat-fed mice, thus reducing hepatic

steatosis (88). A new study found that high-fat diet (HFD)-
FIGURE 1

Mechanism of TCM in treating diseases.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1072376
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bao et al. 10.3389/fimmu.2022.1072376
induced NAFLD mice treated with resveratrol reduced the

enrichment of lipid and glucose metabolism-related pathways,

and this change was closely related to changes in intestinal flora.

Resveratrol can reshape the diversity and composition of

intestinal flora at different levels of the family. At the phylum

level, the number of thick-walled bacteria increased significantly,

while that of Bacteroides decreased significantly; at the family

level, the erysipelaceae increased; at the genus level, the Olsenella

content increased. Resveratrol reduces the invasion of harmful

substances by up-regulating tight junction protein zo-1 and

ameliorates l iver inflammation by down-regulating

inflammatory factors (IL-1, TNF- a, MyD88 and TLR-4) (89).

Berberine is a natural isoquinoline alkaloid extracted from

herbal plants, which is the main activity of Coptis chinensis and

Berberis (90, 91). The interaction between berberine and

intestinal flora can alleviate metabolic disorders such as T2DM

and NAFLD. Intestinal flora affects the absorption and

transformation of berberine in gastrointestinal tract, and

berberine also interferes with the structure and function of

intestinal flora (92). In a study of Sprague-Dawley (SD) rats,

the intestinal microflora diversity and richness of rats treated

with berberine changed. At the gate level, there are higher

abundance of Bacteroides and lower abundance of Proteus and

verrucous microorganisms. At the family level, the family of

Lactobacillus was significantly up-regulated. The concentrations

of tyrosine, tryptophan and phenylalanine, the metabolites of

intestinal flora, decreased in intestine and serum. Some studies

have shown that high concentrations of aromatic amino acids

are positively correlated with the risk of diabetes (93). Therefore,

berberine treatment reduced the risk of diabetes in SD rats (94).

Berberine is metabolized to berberine in the liver (95). It has
Frontiers in Immunology 06
been proved that berberine can regulate bile acid metabolism,

activate intestinal farnesoid X receptor (FXR) and inhibit hepatic

gluconeogenesis, and has significant lipid-lowering and

hypoglycemic effects (95). Interestingly, by analyzing the

composition of intestinal flora in high-fat (HFD)-fed mice, the

researchers found that berberine increased intestinal beneficial

bacteria, such as ileobacteria and myxobacteria. In addition,

berberine reduced fat accumulation in the liver of HFDmice and

decreased the levels of ALT and AST, which were beneficial to

the treatment of NAFLD. Berberine can improve the imbalance

of glucose homeostasis in HFD mice by affecting the expression

of proteins related to glucose metabolism (PPAR g, G6Pase,
GLUT2,p-GSK) (96).

Ginsenosides are a kind of bioactive components extracted

from plant medicine Ginseng. Ginsenosides can fight a variety of

diseases through intestinal flora (97). Ginsenoside Rg1 can

relieve T2D symptoms induced by HFD and streptozotocin

(STZ) in rats, which may be related to the increase of the

proportion of lactic acid bacteria and Lachnospiraceae and the

decrease of the proportion of Lactobacillus by Rg1. Spearman

correlation analysis showed that Lactobacillus was positively

correlated with IL-1 b, IL-6, TNF- a and ROS levels (98).

Lachnospiraceae is the main source of intestinal SCFAs,

especially butyric acid (99, 100). Rg5 relieves inflammation by

reducing plasma LPS levels and inhibiting the activation of

TLR4-related signaling pathways in db/db mice. The

hypoglycemic effect of Rg5 is related to its reducing the

abundance of thick-walled bacteria and verrucous

microorganisms and increasing the abundance of Bacteroides

and Proteus in db/db mice (101). 25-hydroxy-protopanaxatriol

(T19) is a new type of ginsenoside. Lachnospiraceae is a
FIGURE 2

Traditional Chinese medicine exerts a therapeutic effect through intestinal flora, such as enterococcus, Akkermansia, and Vibrio desulfurization.
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beneficial bacteria that regulates glucose and lipid metabolism. It

was found that T19 significantly improved the abnormal

glycolipid levels induced by HFD and STZ by significantly

increasing the relative abundance of Lachnospiraceae

family (102).

Curcumin is a polyphenol compound, mainly found in

turmeric root (103). Curcumin attenuates dextran sulfate-

induced T2MD symptoms in mice by reshaping the balance of

Th17 and Treg in lymphoid cells. Th17 and Treg are related to the

secretion of pro-inflammatory factor IL-17A and anti-

inflammatory factor IL-10, respectively. Spearman analysis

showed that curcumin mainly relieved chronic inflammation

caused by T2MD by increasing the level of Roseburia and

decreasing the levels of Erysipelatoclostridum and

norank_f_Oscillospiraceae (104). Tetrahydrocurcumin (THC) is

the main metabolite of curcumin. THC improves diabetes in db/

db mice by reducing the relative abundance of Proteus and

actinomycetes and promoting the expression of GLP-1 in the

pancreas (105).

Herbs such as Polygala, licorice, Scutellaria baicalensis and

Lycium barbarum also have the potential to treat diabetes and

chronic liver disease. Polygala polygala extract (PTE) inhibits fat

accumulation by promoting the expression of PPAR a. In
addition, PTE regulates metabolism by enriching Proteus and

reducing deferrifying bacteria (106). Licorice extract can reduce

intestinal inflammation by reducing the levels of NF- k B, Toll-like
receptor 4 (TLR4) and tumor necrosis factor-a (TNF- a) in the

colon of diabetic mice. The recovery of intestinal microbiology by

licorice extract is related to the decrease of Lachnospiraceae _

NK4A136 content at genus level (107). The water extract of

Scutellaria baicalensis Georgi can treat diabetes and

complications by regulating the interaction between intestinal

flora and bile acid metabolism. FXR is highly expressed in liver

and intestine and is the key receptor of bile acid. Scutellaria

baicalensis water extract can inhibit the expression of FXR in

diabetic rats. Water extract of Scutellaria baicalensis Georgi can

reverse the low levels of thephylaTenericutes and Patescibacteria

and decrease the abundance of Lactobacillus and feacalibaculum

in diabetic rats (108). Lycium barbarum polysaccharides can

increase the proportion of probiotics, such as Ackermania,

Lactobacillus and Prevaceae; Lycium barbarum polysaccharides

can reduce intestinal pH and regulate the intestinal environment;

Lycium barbarum polysaccharides can also stimulate innate

immunity in the intestinal mucosa, such as macrophages or

lymphocytes (109, 110). In addition, some Chinese herbal and

natural plant extracts, such as cinnamon, Dendrobium, Radix

Astragali, rhubarb, Aristolochia manshuriensis, cichoric acid,

inulin, polyphenols, Ganoderma lucidum and mulberry

polysaccharides are also effective in preventing and treating

T2DM, NAFLD and related metabolic diseases. More details are

shown in Table 1.
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4.2 Chinese herbal formulae

The formula of traditional Chinese medicine is another

important means for the treatment of diseases in traditional

Chinese medicine, and it is often used in the diagnosis and

treatment of clinical diseases as a supplement to western

medicine. The compatibility of traditional Chinese medicine is

not random. On the contrary, it is necessary to follow the

principle of compatibility of traditional Chinese medicine and

the principle of diagnosis and treatment of traditional Chinese

medicine (140).

Pi-Dan-Jian-Qingdecoction (PDJQ) contains Radix

Astragali, Radix Pseudostellariae, Coptis chinensis, Scutellaria

baicalensis, Rhizoma Atractylodes, Salvia miltiorrhiza and

Litchi. PDJQ has a good intervention effect on the clinical

treatment of diabetes. In addition to regulating intestinal flora

and inhibiting inflammation, the mechanism of PDJQ in

treating diabetes is also related to the regulation of tryptophan

metabolism, histamine metabolism and tricarboxylic acid

(TCA) circulation. The specific results were as follows: at the

genus level, PDJQ increased the relative abundance of

Lactobacillus, Brucella, Bacteroides, Vibrio Desulfuricus and

Ackermania, and decreased the relative abundance of Prevos.

In addition, correlation analysis showed that the regulatory

effects of PDJQ on tryptophan metabolism, histidine

metabolism and TCA cycle pathway were related to the

abundance changes of Lactobacillus, Bacteroides and

Ackermann bacteria (141).

Gegen Qinlian Decoction (GQD) is composed of seven

traditional Chinese medicines: Pueraria lobata, Coptis chinensis,

Scutellaria baicalensis, Anemarrhena anemarrhena, American

ginseng, red peony root and dried ginger. The mechanism of

GQD in the treatment of diabetes is similar to that of berberine.

GQD restores glucose homeostasis by increasing butyrate-

producing bacteria, such as Faecalibacterium and Roseburia (142).

LingguiZhugan (LGZG) formula, a traditional Chinese

medicine formula composed of Poria cocos, cassia twig,

Atractylodes macrocephala and licorice, plays a useful role in the

treatment of obesity-related diabetes. LGZG plays a role in

controlling blood glucose and reducing insulin resistance,

which may be mediated by intestinal microorganism

OscillospiraandHelicobacte (143).

The effective components of inQiJiangtangTablet (JQJT) tablets

are berberine, chlorogenic acid, astragalus polysaccharides and

astragaloside IV mainly from Coptis chinensis, astragalus

membranaceus and honeysuckle. Studies have shown that these

active components are related to intestinal bacteria relieving insulin

resistance and low-grade host inflammation. JQJT can increase the

concentration of SCFAs in T2DM mice, especially butyric acid.

JQJT treatment group showed lower desulphurization vibrio and

higher Ackermania (144).
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Xiexin T ang was first recorded in the synopsis of the Golden

Chamber, an ancient Chinese medical book, and consists of

rhubarb, Scutellaria baicalensis and Coptis chinensis. In

traditional medicine, diabetes is called diabetes. Xiexin T ang

has a long history in the treatment of diabetes and its effect is

obvious. The new study found that Xiexin T ang improved
Frontiers in Immunology 08
diabetic symptoms in rats by changing the levels of bacteria that

produce SCFAs and anti-inflammatory bacteria, such as

Adlercreutzia, Barnesiella, and Prevotellaceae NK3B31

group (145).

In addition, other TCM formulations and TCM preparations

derived from TCM formulations, such as Simiao Wan, Qijian
TABLE 1 The mechanism of action of individual herb or herbal extracts.

Herb/Extract Subjects Results Gut microbiota Mechanisms References

Resveratrol db/db mice BW, FBS↓
Bacteroides, Alistipes, Rikenella, Odoribacter,
Parabacteroides, and Alloprevotella genera↑

1.Gut barrier: ZO-1
2.Inflammation: LPS,
IFN-g, TNF-a, IL-6↓
3.Gut–kidney axis

(87)

Resveratrol SD rats TG, T-CHO↓
Akkermansia muciniphila, Ruminococcaceae,
and Lachnospiraceae↑; Desulfovibrio↓

1.Gut barrier:
occludin,
ZO1, claudin1↑; the
endocannabinoid
system(CB1) ↓
2.Inflammation: FAK,
MyD88,
and IRAK4↓; the
endocannabinoid
system(CB2) ↓

(111)

Resveratrol C57BL/6J mice
BW,AST, TG,CHOL,
LDL-C↓; GSH↓

Olsenella,Hydrogenoanaerobacterium↑;
Barnesiella, Parasutterella↓

1.Gut barrier: zo-1,
occludin↑
2.Oxidative stress↓
3.Inflammation: TLR4,
MyD88, IL-1,
TNF-a↑
4. Fatty acid
metabolism: Fabp2,
Fabp1, Cpt1,
Acox1↓

(89)

Berberine SD rats
HOMA-IR,OGTT,
FBG↓

Lactobacillaceae↑; Proteobacteria,
Verrucomicrobia↓

1.Energy metabolism:
amino acids (AAAS)
and lipids

(94)

Berberis kansuensis Wistar rats
BW、FBG、GSP、
HOMA-IR↓

phyla Bacteroidetes, genera Akkermansia↑
1. inflammation: LPS,
TNF-a, IL-1b,IL-6
2. IR and IS

(112)

Berberrubine C57BL/6J mice BW,ALT, AST↓ Ileibacterium,Mucispirillum↑

1. lipid metabolism:
ACC1,FAS,CD36↓;
ATGL, GK,PPAR-a,
CPT-1↑

(96)

Rg1 SD rats
BW, FBG, TC, TG,
LDL-C, HOMA-IR↓;
LDL-C, HOMA-IS↑

Lachnospiraceae_NK4A136_group,
Lachnoclostridium↑

1. SCFAs
2. Oxidative
stress:
3. IR and IS

(98)

Rg5 db/db mice FBG, OGTT↓ Firmicutes, Verrucomicrobia↓

1.Gut barrier:
Occludin, ZO-1
2.Inflammation:
LPS/TLR4

(101)

T19
HepG2, HFD/
STZ mice

FBG, TG, TC, LD↓;
BW, HDL↑

Lachnospiraceae↑
1. Insulin Signal
Pathway: AMPK
and PI3K

(102)

Curcumin
C57BLKS/J(−/−)
_mice

Blood glucose↓
Roseburia, Erysipelatoclostridum,
norank_f_Oscillospiraceae

1. Th17/Treg: IL-17A,
IL-10

(65)

(Continued)
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TABLE 1 Continued

Herb/Extract Subjects Results Gut microbiota Mechanisms References

Curcumin
specificpathogen-
free(SPE) rats

BW, HOMA-IR↓
Bacteroidetes, Bifidobacterium↑
Enterobacterales, Firmicutes↓

1. Gut barrier:
occluding, ZO-1
2.Insulin resistance
3. Inflammation: LPS,
TNF-a, TLR4/NF-kB

(113)

Tetrahydrocurcumin C57BL/6 J mice
Serum insulin and
pancreatic GLP-1↑

Firmicutes↑, Actinobacteria↓ 1. GLP-1 (105)

Polygala tenuifolia ICR mice
BW, ALT, AST,
triglycerides, glucose↓

Proteobacteria↑, Deferribacteres↓
1. Lipid and
cholesterol
biosynthesis: PPARa

(106)

Radix
Scutellariae

SD rats
FBG, LDL-C, OGTT,
HOMA-IR↓

phyla Tenericutes, Patescibacteria↑,
Lactobacillus, feacalibaculum↓

1. Bile acid
metabolism: CYP7A1

(108)

Lycium barbarum
polysaccharides

C57BL/6 mice BW, TC, TG, LDL-C↓ Proteobacteria↓, Lactobacillus spp↑ 1. SCFAs (110)

Lycium barbarum L.
leaves

SPF-grade rats
FBG, TCHO, TG, LDL-
C, FFA, ALT, AST, a↓

Marvinbryantia, Parasutterella, Pre-
votellaceae_NK3B31_group, Blautia,
Ruminococcus_1, Coprococcus_2

1. Nicotinate and
nicotinamide
metabolism
2. Arachidonic acid
metabolism

(114)

Cinnamaldehyde C57 mice
OGTT, IPITTs, IGF1R,
IRS1↓

Lactobacillus johnsonii↑, Lactobacillus
murinus↓

1. Bile acid
metabolism:
Deoxycholic acid/
FXR/AMPK
2. Insulin sensitivity

(115)

Dendrobium db/dbmice
BW, LDL-C, MDA↓
INS, SOD, CAT,
GSH↑

Bacteroidetes/Firmicutes, Prevotella
/Akkermansia, S24-7/Rikenella/Escherichia coli

1. Lipid metabolism
2. Inflammation
3. Oxidative stress

(116)

Astragaloside IV Kunming mice
TG, LDL, MDA↓,
HDL, SOD↑

Pelatoclostridum↑, Bacteroides, Oscillibacter,
Parabacteroides, Roseburia↓

1. Signaling pathways:
AMPK/SIRT1, PI3K/
AKT
2.SCFAs: Butyric acid
3. Oxidative stress
4.Lipid metabolism

(117)

Astragaloside IV
C57BL/6
mice

TC, TG, LDL-C,ALT,
AST↓ GLP-1, HDL-C↑

Bacteroides, Lactobacillus, Streptococcus,
Enterococcus, Lactococcus↓

1. Bile acid metabolis:
FXR

(118)

Laminaria japonica
polysaccharide

C57BL/6 mice
ITT, OGTT, HOMA-
IR↓

Akkermansia
1. Insulin resistance
2.Inflammation:LPS,
TLR4

(119)

Mulberry fruit
polysaccharide

db/dbmice
TG, LDL-C, MDA,
FFA ↓HDL-C, SOD,
GSH-Px, CAT↑

Bacteroidales, Lactobacillus, Allobaculum,
Bacteroides, and Akkermansia↑

1. Lipid metabolism (120)

Chicoric Acid C57BL/6 mice

BW, TC, TG, LDL-C,
ROS, GPT-ALT, GOT-
AST↓MDA, HDL-C
IL-10

Lactoba- Callus, Turicibacter,
Ruminococcaceae_ UCG-014, Alloprevotella,
Candidatus_Saccharimonas

1. Signaling pathway:
AMPK/Nrf2/NFkB

(121)

Inulin C57BL/6 mice
ALT, AST, OGTT,
HOMA-IR↓

Akkermansia, Bifidobacterium↑
Firmicutes/Bacteroidetes↓

1.SCFAs
2.Inflammation: (IL)-
18, IL-1b, TNF-a, IL-
6↓, IL-10↑

(122)

Rhubarb C57BL/6J mice
BW, FBG, OGTT, IR,
TC, TG, LDL-C↓

Akkermansia muciniphila
1. Insulin resistance
2. Inflammation:
RANTES, TNF-a, IL-

(123)

(Continued)
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TABLE 1 Continued

Herb/Extract Subjects Results Gut microbiota Mechanisms References

6, IFN-g
3. Lipid metabolism

Akebia saponin D C57BL/6J mice
FBG, TC, TG, LDL-C,
HOMA-IR↓

Alistipes, Prevotella↓ Butyricimonas,
Ruminococcus, Bifidobacter↑

1.Signaling pathway:
PPAR-g/FABP4

(124)

Green Tea
Polyphenols

C57BL/6J mice TC, TG, LDL-C, INS↓ Bacteroidetes/Firmicutes
1.SCFAs: Acetic acid,
butyric acid↑
2.Lipid metabolism

(125)

Quercetin C57BL/6J mice BW, FBG, HOMA-IR↓ Akkermansia, Verrucomicrobia phylum↑

1. Lipid metabolism
2. Inflammation: TLR-
4, NLRP3, TNF-a
3. SCFAs: Butyrate

(126)

Ganoderic acid A Kunming mice
TC, TG, LDL-C, AST,
ALT, MDA↓ SOD,
GSH↑

Lactobacillus,
Burkholderia_Caballeroria_Paraburkholderia,
Escherichia_ Shigella,
Erysipelatoclostridium↓Aerococcus, Bilophila,
Bifidobacterium↑

1.Lipid metabolism
2. Inflammation

(127)

Ganoderma lucidum
polysaccharides

SD rats
TC, TG, LDL-C, MDA
↓HDL-C, SOD, GSH↑

Proteus, Ruminococcus, Coprococcus↓

1.SCFAs: Acetic acid,
propionic acid, butyric
acid
2. Inflammation: IL-
1b, IL-6

(128)

Morchella esculenta
mushroom
polysaccharide

BALB/c mice
BW, FBG, INS,
HOMA-IR↓

Lactobacillus↑ Corynebacterium, Facklamia↓
1.Bile acid metabolis
2. Inflammation: IL-6,
IL-1b, TNF-a

(129)

laurolitsine db/db mice
FBG, TC, TG,
LDL-C↓ HDL-C↑

Mucispirillum schaedleri,
Anaerotruncus_sp_G3_2012↓

1.Signaling pathway:
LKB1-AMPK
2. Inflammation: IL-
1b, TNFa, IL-6, IL-18,
IL-10
3.Lipid metabolism

(130)

Gynostemma
pentaphyllum

SD rats
FBG, TC, TG, LDL-C,
ALT, AST, HOMA-
IR↓HDL-C↑

Elusimicrobia, Cyanobacteria, Lactococcus spp↑
Ruminococcus spp↓

1. Lipid metabolism
2. Gut barrier
3.Inflammation :
TNF-a, IL-1b, IL-6,
TLR4

(131)

Gynostemma
pentaphyllum
polysaccharides

C57BL/6 mice
TC, TG, LDL-C, ALT,
AST↓ HDL-C↑

Lactobacillus, Akkermansia↑Clostridia_
uncultured↓

1.Signaling pathway:
TLR2/NLRP3

(132)

Poria cocos
polysaccharides

C57BL/6 mice
TC, TG, LDL-C, ALT,
AST, MDA↓ HDL-C↑

Faecalibaculum, Escherichia_Shigella,
unclassified Oscillospirales↑ Tuzzerella,
Enterococcus, Staphylococcus↓

1. Signaling pathway:
NF-kB/CCL3/CCR1

(133)

Astragalus
mongholicus
polysaccharides

SD rats
WB, TC, TG, LDL-C,
ALT, AST, HOMA-IR↓
HDL-C↑

Proteobacteria, Epsilonbacteria↑Firmicutes/
Bacteroidetes↓

1. Signaling pathway:
AMPK-PPAR-a,
TLR4 - NLRP3,
SCFAs-GPR
2. Gut barrier: ZO-1,
Occludin

(134)

Pueraria lobata
starch

C57BL/6J mice
TC, TG, LDL-C, ALT,
AST↓

Lactobacillus, Bifidobacterium,
Turicibacter↑Desulfovibrio↓

1. SCFAs
2. Lipid metabolism
3. Inflammation: IL-6,
TNF-a

(135)

Salviae
polysaccharide

C57/BL6 mice
BW, FBG, TC, TG,
LDL-C↓

Ruminococcus_gnavus, Clostridium_cocleatum,
Bifidobacterium_pseudolongum↓

1. Lipid metabolism
2. Inflammation: IL2,
IL10, TGF-b, IL-6,

(136)

(Continued)
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mixturen, Naoxintong capsule and Herbal formula LLKL, have

also been found to play a therapeutic role through intestinal

flora. More details are shown in Table 2.
5 Discussion

Traditional Chinese medicine can affect the abundance of

intestinal microbiota at different levels (Tables 1, 2). Therefore,

we believe that the role of traditional Chinese medicine in the

treatment of T2DM and NAFLD is probably related to its role in

mediating intestinal microbial changes. There are differences in

intestinal flora changes and therapeutic mechanisms mediated

by different Chinese medicines.
5.1 Intestinal barrier

The damage of intestinal mucosa and the increase of

inflammatory factors are related to T2DM and T2DM related

metabolic diseases. Traditional Chinese medicine alleviates

metabolic inflammation by increasing intestinal mucus and

tight connection (152).Restoratol, ginsenoside Rg5, Curcumin,

Nuciferinehe and traditional Chinese medicine formula Si Miao

maintain the integrity of intestinal barrier by promoting the

expression of tight junction protein ZO-1 and blocking protein.

Nuciferine also enhances the intestinal barrier by increasing the

expression of goblet cells and mucin2 (138). intestinal

epithelium from damage by producing certain enzymes in the

intestine. Resveratrol, Inulin, Rhubarb, Quercetin, and

traditional Chinese medicine formulas such as Simiao Wan,

JinQi Jiangtang T ablet, Huang Lian Jie Du Division can increase

the abundance of Akkermansia. Escherichia coli is not conducive

to maintaining the integrity of the intestinal barrier. The

metabolic enzyme StcE produced will break down mucin,

increase intestinal permeability and induce intestinal
Frontiers in Immunology 11
inflammation. Dendrobium can reduce the content of

Escherichia coli in the intestine of db/db mice (116).

Oscillibacter belonging to Ruminal Cocci family can also

increase intestinal permeability. Astragaloside IV inhibits the

increase of intestinal permeability by reducing the abundance of

Oscillibacter (117).
5.2 Inflammation

LPS entering the intestinal tract will induce intestinal

inflammation, and LPS mainly comes from vibrio desulfuricus

(153). Inverterol, Pueraria lobata starch and Nuciferine can

reduce the abundance of harmful bacteria , Vibrio

desulfurization. LPS combines with TLR of intestinal epithelial

cells to induce the release of proinflammatory factors and

aggravate the host’s inflammatory response. Berberis

kansuensis, Rhubarb, Quercetin, Morchella esculenta

mushroom polysaccharide, Gynostemma pentaphyllum,

Pueraria lobata start, as well as Chinese herbal formula Gegen

Qinlian Reaction and JinQi Jiangtang T ablet can reduce TNF- a,
IL-1 b And IL-6 levels, thereby relieving inflammation caused by

bacterial endotoxin. Salviae polysaccharide, Laurolitsine, Inulin

and Curcumin can increase the level of anti-inflammatory factor

IL-10 (104, 122, 130, 136). In addition, Restoratol, Curcumin,

Nuciferine and Chinese herbal formula LLKL can reduce TLR4/

MyD88/NF- k B pathway inhibits LPS induced inflammatory

mediator production (89) (113, 138). In particular, Curcumin

alleviates T2DM symptoms by maintaining the balance of

immune cells Th17 and Treg, reducing intestinal mucosal

damage and infiltration of inflammatory cells (104). Chiric

Acid and laurolitsine regulate AMPK/NF- k B signal pathway

can reduce systemic inflammation caused by LPS (121) (130).

Oxidative stress is another factor leading to inflammatory

response. Astragaloside IV can reduce the level of oxidative

stress through AMPK/SIRT1 and PI3K/AKT signaling
TABLE 1 Continued

Herb/Extract Subjects Results Gut microbiota Mechanisms References

IL23
3. Gut barrier:LPS

Nuciferine SD rats
Conjugated BA, Non-
12OH BA↑ TC, TG↓

Akkermansiaceae, Akkermansia,
norank_f_Erysipelotrichaceae,
Lachnospiraceae_NK4A136_group↑

1. Bile acid metabolis (137)

Nuciferine SD rats
BW, TC, TG, LDL-C↓
HDL-C↑

Akkmensia muciniphila, Ruminococcaceae,
Desulfovibrionaceae

1. Signaling pathway:
TLR4/MyD88/NF-kB
2. Gut barrier: ZO-1,
Occludin, Mucin2
3. SCFAs: Acetic acid,
Propionic acid

(138)

Myristica fragrans C57BL/6J mice TC, TG, LDL-C↓
Akkermansia, Blautia, Bifidobacterium,
Adlercreutzia↑

1. Signaling pathway:
AhR-FAS, NF-kB

(139)
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1072376
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bao et al. 10.3389/fimmu.2022.1072376
pathways. Dendrobium, Mulberry fruit polysaccharide and

Ganoderma lucidum extract have antioxidant capacity, which

can reduce the level of malondialdehyde (MDA) and increase the

content of superoxide dismutase (SOD), catalase (CA T) and
Frontiers in Immunology 12
glutathione (GSH) (116, 120, 127). The anti-inflammatory effect

of traditional Chinese medicine may be mediated by increasing

the abundance of anti-inflammatory bacteria Akkermania,

Parabolides, Lactobacillus, Bacteroides and Blautia (141, 151).
TABLE 2 The mechanism of action of Chinese Herbal Formulae.

Herbal
Formula Subjects Results Gut microbiota Mechanisms References

Pi-Dan-Jian-
Qing
decoction

SD rats
TG, TC, LDL, ALT, AST,
MDA, HOMA-IR↓ HDL, SOD,
GSH-Px↑

Prevotella↓
Lactobacill, Desulfovib, Akkerman, Bacteroides↑

1.Histamine metabolism
2.Tryptophan
metabolism
3. TCA cycle
4.Oxidative stress
5. Inflammation

(141)

Gegen
Qinlian
Decoction

GK rats BW, NFBG, HOMA-IR↓ Faecalibacterium, Roseburia↑

1.SCFAs: butyrate
2. Inflammation: IL-1b,
IL-6, IL-17, TNF-a, IFN-
g, MCP-1
3. Lipid metabolism

(142)

Linggui
Zhugan

C57BL/6 J
mice

BW, FBG, TG, TC, LDL, FFA,
HOMA-IR↓ HDL↑

Lactobacillus, Bacteroides↑
Helicobacter↓

1.Lipid metabolis
2.Insulin resistance

(143)

JinQi
Jiangtang
Tablet

C57BL/6J
mice

FBG,
HbA1c↓

Akkermansia↑
Desulfovibrio↓

1.SCFAs:Acetic acid,
Propionic acid, Butyric
acid
2. Insulin resistance:
TNF-a, IL-6, MCP-1

(144)

Xiexin Tang SD rats TC, TG, LDL-C↓ HDL-C↑
Adlercreutzia, Alloprevotella, Barnesiella,
Prevotellaceae NK3B31 group

1.Lipid metabolis
2. Inflammation:

(145)

Xiexin Tang SD rats TC, TG, LDL-C↓ HDL-C↑
Adlercreutzia Barnesiella, Blautia,
Lachnospiraceae, Prevotellaceae NK3B31 group↑

1. SCFAs
2.Energy metabolism
3. Signal Pathway:PGC-
1a/UCP-2, AMPK/
mTOR

(146)

Simiao Wan
C57BL/6J
mice

Primary BAs↑ Secondary BAs↓
Allobaculum, Clostridium, Akkermansia,
Lactobacilus, Bilophila↑
Coprococcus, Halomonas↓

1. Bile acid metabolism (147)

Si Miao
C57BL/6
mice

BW, ALT, AST, TC, LDL-C↓
HDL-C↑

Akkermansia, Bifidobacterium, Faecalibaculum↑
1.Lipid metabolism
2.Inflammation
3.Gut barrier

(10)

Qijian
mixture

KKay mice FBG, WB, TC, INS↓

Bacteroidetes, Lachnospiraceae NK4A136 group,
Enterorhabdu,
Lachnospiraceae,
Prevotellacea, Parabacteroides↑

1.Signal Pathway: TP53,
AKT1 and PPARA

(148)

Naoxintong
capsule

SD rats
TG, TC, FFA, LDL-C↓ HDL-
C↑

[Ruminococcus] gnavus group,
Erysipelatoclostridium, Oscillibacter,
Ruminiclostridium 9, Ruminococcus 1

1. Insulin resistance
2. Inflammation: IL-1b,
TNF-a, IL-6↓
IL-4↑
3. Lipid metabolism

(149)

LLKL
Zucker
rats

FFA, TC, TG↓ Proteobacteria, Actinobacteria.

1. Signal Pathway: TLR4,
MyD88, CTSK
2. Lipid metabolism
3. Inflammation: LPS,
TNF-a, IL-6↓

(150)

Huang-Lian-
Jie-Du-
Decoction

SD rats
ALT, AST, TG, TC, LDL-C,
HOMA-IR↓ SOD, CAT, GSH↑

Parabacteroides, Blautia, Akkermansia
1. SCFAs
2. Bile acid metabolism
3. Lipid metabolismI

(151)
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5.3 SCFAs

TCM affects T2DM and NAFLD by affecting the abundance

of SCFAs producing bacteria and the metabolism of SCFAs.

SCFAs (acetate, propionate and butyrate) are produced by

selective fermentation of intestinal microorganisms (154).

Acetate participates in host energy metabolism by promoting

the secretion of intestinal hormones (GLP-1 and PYY). Acetate is

mainly produced by bifidobacteria and lactobacillus (155). Acetate

can be converted to butyric acid by Firmicutes bacteria. Butyrate

can protect the intestinal barrier and reduce inflammation (156).

Clostridia, Bacteroides and Bifidobasteria are related to the

production of butyric acid (157). Propionate is believed to

reduce fat production, and serum cholesterol level has a

beneficial effect on disorders of lipid metabolism (158). Green

Tea Polyphenols increased the levels of acetic acid and butyric

acid, which may be related to the increase of Clostridium populati,

Blautia luti, Akkermania muciniphila and Thiothrix unzii (125).

The increase of SCFAs content in Pueraria lobata star may be due

to the increase of the content of Lactobacillus, Bifidobacterium

and Turicibacte (135). Using Inulin in NAFLD treatment, it was

found that SCFAs were positively correlated with Bacteroidetes,

Akkermania and Bifidobasterium, and negatively correlated with

Proteobasteria, Blautia and Ileiberium (122). In addition, the study

also found that ginsenoside Rg1 can increase Lachnospiracea_

NK4A136_ The proportion of group, Roseburia and Romboutsia

increases the content of SCFAs (98).
5.4 Bile acid metabolism

Bile acid metabolism, as an important part of the body’s

regulation of glucose and lipid metabolism, is mainly mediated by

G-protein coupled BA receptor (TGR5) and nuclear receptor

Farni X receptor (FXR) (159). TGR5 is expressed in intestinal

epithelial cells. The activation of TGR5 is conducive to the renewal

of intestinal epithelial cells and the repair of intestinal barrier

function (160). Cholesterol - 7 a- Hydroxylase (CYP7A1) is the

rate limiting enzyme for converting cholesterol into BA (161). The

changes of intestinal flora involved in bile acid metabolismmainly

include bile salt hydrolase (BSH) and a- Dehydroxylated genera

decreased and taurine metabolism related genera increased (137).

Radix Scutellariae, Cinnamaldehyde, Astragaloside IV, Morchella

esculenta mushroom polysaccharide, Nuciferine and Simiao Wan

can all improve glycolipid disorder through bile acid metabolism.

Detailed mechanisms are shown in Tables 1 and 2.
6 Conclusion and prospect

Traditional Chinese medicine has the potential to treat

metabolic diseases such as diabetes and non-alcoholic fatty
Frontiers in Immunology 13
liver. Reshaping intestinal flora and regulating intestinal

microbial metabolism is the key for traditional Chinese

medicine to play a therapeutic role. at the same time,

intestinal flora also provides a new opportunity to clarify the

mechanism of traditional Chinese medicine in the treatment

of diseases. The main mechanisms of traditional Chinese

medicine include: improving the proportion of thick-walled

bacteria and Bacteroides, increasing dominant flora and

reducing harmful flora; regulating intestinal microbial

metabolites such as short-chain fatty acids and bile acids;

and restoring intestinal barrier. Increase the expression of

tight junction proteins and reduce the level of inflammatory

factors. It can be seen that maintaining the stability of

intestinal microecology is of great significance to human

health. The intestinal microecology is stable and healthy,

and the destruction of intestinal microecology leads to the

occurrence o f d i sease . Lac tobac i l lus ac idoph i lus ,

Streptococcus thermophilus, Lactobacillus bulgaricus and/or

Bifidobacterium can improve blood glucose levels in patients

with diabetes. It can be inferred that dietary fiber, probiotics

and probiotics are beneficial to the recovery of the disease. In

addition, fecal microorganism transplantation has therapeutic

potential in chronic inflammation, functional bowel disease,

insulin resistance and morbid obesity. Herbs can be used as a

treasure trove of potential probiotics for more in-

depth research.
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