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Spinal cord injury (SCI) is a devastating neurological condition prevalent

worldwide. Where the pathological mechanisms underlying SCI are

concerned, we can distinguish between primary injury caused by initial

mechanical damage and secondary injury characterized by a series of

biological responses, such as vascular dysfunction, oxidative stress,

neurotransmitter toxicity, lipid peroxidation, and immune-inflammatory

response. Secondary injury causes further tissue loss and dysfunction, and

the immune response appears to be the key molecular mechanism affecting

injured tissue regeneration and functional recovery from SCI. Immune

response after SCI involves the activation of different immune cells and the

production of immunity-associated chemicals. With the development of new

biological technologies, such as transcriptomics, the heterogeneity of immune

cells and chemicals can be classified with greater precision. In this review, we

focus on the current understanding of the heterogeneity of these immune

components and the roles they play in SCI, including reactive astrogliosis and

glial scar formation, neutrophil migration, macrophage transformation,

resident microglia activation and proliferation, and the humoral immunity

mediated by T and B cells. We also summarize findings from clinical trials of

immunomodulatory therapies for SCI and briefly review promising therapeutic

drugs currently being researched.
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1 Introduction

Spinal cord injury (SCI) is a devastating neurological

condition that most commonly results from vertebral fractures

caused by traumatic accidents, including motor vehicle

accidents, falls, and sports injuries. A few SCIs result from

non-traumatic events such as infections or vascular damage

(1). The clinical manifestations of SCI include loss of sensory

and/or motor function below the level of injury. The symptoms

can be partial or complete depending on the degree of injury and

its location on the spinal cord (1). The estimated global

incidence of total SCI in 2019 was 900,000, with an age-

standardized incidence rate of 12 per 100,000 (2). Currently,

patients who survive after severe SCI find it difficult to achieve

complete recovery owing to the limited regenerative capacity of

the lesioned spinal cord. As a result, SCI can not only causes

serious disability but can also place great economic burden on

patients’ families and society at large (3). Therefore, it is crucial

to clarify the underlying cellular and molecular mechanisms of

SCI pathophysiology and investigate novel therapeutic targets

for intervention. After SCI onset, the primary injury caused by

mechanical damage is the mechanical disruption of tissues and

subsequent edema (4). This is followed by a secondary injury

cascade that develops over the subsequent weeks and/or months.

This involves vascular dysfunction (5), ischemia (6),

excitotoxicity (7), ionic dysregulation (8), oxidative stress (9),

neurotransmitter toxicity (10), lipid peroxidation (11), necrosis/

apoptosis (12), immune-inflammatory response (13), and

Wallerian degeneration and scar formation (14). These

biological responses in secondary injury cause further damage

to the spinal cord. Nevertheless, proper interventions in these

processes can aid tissue regeneration and functional recovery

after SCI.

The immune response appears to be the key molecular

mechanism underlying these various pathophysiological

processes and the main factor affecting the outcome of SCI

(15). Immune response to SCI orchestrates the activation of

different immune cells and the generation of various

immunological factors. After SCI, astrocytes, the primary

resident cells in the spinal cord, react rapidly by producing

immunological mediators and recruiting or activating immune

cells, including macrophages/monocytes, neutrophils, microglia,

and T and B cells. The immunological mediators released by

immune cells include not only inflammatory cytokines such as

interleukin (IL)-1b, IL-6, and tumor necrosis factor (TNF)-a,
but also chemicals such as chondroitin sulfate proteoglycans

(CSPGs). With recent developments in biotechnology, a more

precise method to understand the heterogeneity of immune cells

and immunological factors is now available. This provides novel

perspectives for investigating new therapeutic targets. In this

review, we focus on the latest findings on (i) the

pathophysiological mechanisms underlying SCI, (ii)
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heterogeneity of these immune components and their roles in

SCI, and (iii) clinical trials and promising basic research on

immunomodulatory drugs for SCI.
2 The role of the immune response
in pathophysiological processes in
spinal cord injury

In traumatic SCI, primary injury is predominantly caused by

the compression of,or distraction of the spinal cord resulting

from dislocated bone fragments, discs, and ligaments (16). In

traumatic SCI, primary injury is primarily caused by the

compression of the spinal cord (17). Primary injury leads

sequentially to local hemorrhage, edema, ischemia, and

hypoxia at the site of injury (16). The disruption of blood

vessels at the site of SCI results in hemorrhage and increased

permeability of the blood–brain barrier (BBB)/blood–spinal

cord barrier (BSCB). Following the release of vasogenic and

cytotoxic factors, active chemicals infiltrate to site of injury,

which causes tissue edema. Subsequent blood flow reduction at

the injury site causes ischemia and hypoxia in local neurons and

glial cells. Early surgical decompression of the spinal cord within

24 h of SCI onset is the best treatment to reduce neuronal

damage caused by primary injury (18). Biological responses in

the primary injury are significant proponents of the

development and progression of a pathophysiological cascade

of secondary injury, including oxidative stress, ischemia, BSCB

disruption, inflammatory and immune response, apoptosis, and

mitochondrial dysfunction. In acute SCI, secondary injuries are

usually categorized into four phases: the acute phase (<48 h),

subacute phase (2–14 days), intermediate phase (14–180 days),

and chronic phase (>180 days) (16, 19). In the acute phase, a

disrupted BBB/BSCB results in astrocyte polarization, the

infiltration of immune cells, including neutrophils, monocytes,

and T cells, into the injured site of the spinal cord, and the

proliferation of resident microglia (15). These cells release pro-

inflammatory and chemotactic factors, triggering inflammation,

lipid peroxidation, necrosis, edema, oxidative stress, calcium

influx, ion disturbance, and excitotoxicity (13). In the subacute

phase, the critical characteristics include the commencement of

reactive astrogliosis at the injury site and infiltration of

macrophage (20, 21). The resolution of edema and BSCB

repair are also initiated in this phase (19). In the intermediate

phase, reactive astrogliosis continues and glial scars start

maturing, which is followed by axonal sprouting of the

corticospinal tract and reticulospinal fibers (22). The chronic

phase is typically characterized by the stabilization of scar

format ion , cys ts / syr inx format ion , and Wal ler ian

degeneration (16).

The immune response contributes to each phase of

secondary injury and affects the clinical outcome. Moreover,
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immune cells and related immunological factors also modulate

the pathophysiological reactions in SCI (Figure 1). Nguyen et al.

reported that neutrophil infiltration led to cytotoxic tissue

damage via the release of excessive cytokines, prostaglandins,

and toxic granules, and also caused oxidative stress (23). Chen

et al . demonstrated that a stronger local immune

microenvironment inhibited apoptosis, thus aiding recovery in

murine SCI (24). Mohrman et al. showed a strong immune

response associated with the reduction of neuronal signal

transmission and better recovery of the SCI animal model

(25). Collectively, a better understanding of the immune

response after SCI may help investigate effective therapeutic

targets for protecting tissue and functional loss in response

to SCI.
3 How are the functions of immune
cells and immune factors
orchestrated in the pathophysiology
of spinal cord injury?

3.1 Astrocytes

3.1.1 The dual roles of astrocytes in spinal cord
injury pathophysiology

Astrocytes are the most abundant cells in the central nervous

system (CNS) and contribute to the functional and structural

homeostasis of the CNS (26) by regulating the balance of

neurotransmitter ions (27) and maintenance of the BBB (28).

Astrocytes do not belong to the immune system, but they play
Frontiers in Immunology 03
essential roles in immune responses to SCI by, for example,

recruiting immune cells and secreting immunomodulatory

molecules, such as transforming growth factor (TGF-b) and

TNF-a. After SCI, astrocytes in the quiescent state (i.e., naïve

astrocytes) gradually shift to an activated state (i.e., reactive

astrocytes), forming a glial scar, which has dual roles that are

either protective or detrimental to the recovery of injured tissues

and neurological functions of patients (26).

Astrocytes proliferate and migrate in an overlapping manner

to the lesion site, and are arranged into glial scars around the

area of injury. With this, they form a network of tangles with

other cells (including fibroblasts and oligodendrocyte precursor

cells, among other cells) and secrete various cytokines to

participate in the subsequent inflammation and repair process

(29, 30). Glial scars prevent the spread of necrotic and apoptotic

cells and restrict inflammation to the lesioned area (20). Simply

eliminating astrocytes severely affects the pathology of and

recovery after SCI, such as by causing more severe

inflammation, increasing lesion volume, and worsening motor

dysfunction. Although the physical and molecular properties of

scars limit the spread of inflammation to the area of injury, the

accumulation of excess astrocytes follows. The physical barrier

also hinders the damage to axon regeneration and scaffolds

disruption in the extracellular matrix, which will soften the tissue

and lead to the failure of axon regeneration (31). In the final

phase, astrocytes constitute the predominant cell type in the

injury site (32) and form scar tissue as a barrier between necrotic

and normal tissues (33). An in vitro study using primary

astrocytes found that transforming growth factor b3 (TGFb3)
exerts neuroprotection effect and reverses the neurotoxic

phenotype of astrocytes induced by aligned poly-L-lactic acid
FIGURE 1

The mechanism of spinal cord injury (SCI). Demonstration of primary injury and secondary injury, including four phases of SCI after trauma to
the spinal cord.
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fibers (34). The formation of astrocyte scars aids rather than

inhibits the regeneration of axons in the CNS. Blocking the

formation of astrocytic scars significantly reduces the regrowth

of laminin-dependent sensory axons and related molecules

across scar-forming astrocytes (35). A robust stimulation was

observed in the regeneration of propriospinal axons in the

astrocyte scar border as well as in the lesion cores of non-

neural tissue (35). The conditional deletion of sterile alpha and

TIR motif-containing 1 (SARM1) in neurons and astrocytes

improved the functional recovery of behavior performance post-

SCI (36). After SCI, the traumatized spinal cord is protected by

neuron-derived exosome-transmitted miR-124-3p via inhibited

activation of neurotoxic microglia and astrocytes (37).

Traditional terms associated with astrocytes include reactive

astrocytes and reactive astrogliosis. The modern concept of

astrocyte polarization was proposed by Virchow, who

descr ibed astrocyte polar izat ion after trauma and

neurodegenerative injury (38). In 2017, Liddelow et al. first

proposed that reactive astrocytes can be characterized as

inflammatory astrocyte 1 (A1) and neuroprotective astrocyte 2

(A2). The activation of A1-type astrocytes was induced by

microglia in neuroinflammation, with C3 as a surface marker.

Activated microglia in vitro and in vivo secrete IL-1a, TNFa,
and C1q to activate A1 astrocytes (39). Based on this new

classification method, recent studies have provided a new

perspective. In 2021, Zhang et al. found that miR-21a-5p can

aggravate the inflammatory response after traumatic SCI by

increasing A1 polarization via the inhibition of the CNTF/

STAT3/Nkrf signaling pathway (40). In the same year, in

another study, Li et al. demonstrated that heat shock

transcription factor 1 plays a key role in suppressing the

excessive increase in neurotoxic A1 astrocytes (41). Wang

et al. showed that the transformation of A1/A2 reactive

astrocytes may be associated with functional recovery after SCI

(42). Furthermore, a recent study based on single-cell RNA

sequencing demonstrated that astrocytes in the injured tissue of

SCI showed the altered expression of biomarkers, including

Atp1b2, S100a4, Gpr84, C3/G0s2, GFAP/Tm4sf1, and Gss/

Cryab, which can help achieve a more precise classification (43).

3.1.2 Pivotal immune chemicals released
by astrocytes

Following SCI, reactive astrocytes in the glial scar produce

high levels of CSPGs (44), which were initially known to inhibit

axonal growth and regeneration (45), but were later found to be

beneficial in spinal cord recovery (46). CSPGs are extracellular

matrix proteins that contribute to the interactions between the

matrix and the immune system (47). CSPGs bind to

chemokines/cytokines, growth factors, and pro-inflammatory

cytokines required for immune cell growth and recruitment,

thereby modulating the immune system (47). Astrocytes also

secrete monocyte chemoattractant protein-1 (MCP-1), which is
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a chemokine inhibiting the expansion of the lesioned spinal cord

tissue by attracting M1 macrophages (48). Other chemokines,

such as chemokine C–C motif ligand 2 (CCL2) (49) and C–X–C

motif ligand 1 (CXCL1) are produced by astrocytes. These

chemokines will intensify the recruitment of neutrophils and

pro-inflammatory macrophages after SCI (50). Moreover,

astrocytes release anti-inflammatory cytokines, such as IL-10

and TGF-b, which can enhance the transformation of microglia/

macrophages to a pro-regenerative M2-like phenotype (51, 52).
3.2 Neutrophils

3.2.1 The dual roles of neutrophils in spinal
cord injury pathophysiology

Neutrophils are fundamental members of the innate immune

system (51). In humans, neutrophils are derived from bone marrow

hematopoietic stem cells and are known as polymorphonuclear

leukocytes. Although neutrophils have a short lifespan (less than

24 h), they have a generation rate of 1 × 1011 cells/day, which makes

them the most abundant granulocytes in peripheral blood (53). In

SCI, neutrophils are the first immune cells that arrive at the site of

injury, i.e., within 3 h of SCI, and remain at the site for 3 days post

injury. Large number of neutrophils gather at the site of injury

within 24 h post SCI (54). The infiltration of neutrophils to the site

of SCI exerts adverse effects via the secretion of neutrophilic tissue-

damaging factors (54). These unfavorable factors trigger biological

responses, such as oxidative stress, inflammation, pro-inflammatory

cytokins release, and BSCB disruption, which interrupts vascular

formation. In mice, neutrophil accumulation inhibition after SCI

can improve white matter sparing and promotes rapid neurological

recovery (55).

Although numerous studies have paid attention to the

deleterious role and effect of neutrophils in SCI, we should

take into account that neutrophils are heterogeneous, and the

recruitment of neutrophil post SCI may not completely reflect

the exacerbation of injury. Early pathogenesis of the contused

spinal cord and long-term neurological recovery are mediated by

neutrophils and monocytes (56). As the initial responders at the

site of injury, neutrophils and monocytes can initiate the

clearance of debris and generate pro-inflammatory cytokines

that recruit other immune/inflammatory cells, such as

macrophages, to engulf residual debris and promote tissue

repair (57). Sas et al. revealed that a new subgroup of

neutrophils (i.e., CD14+ Ly6Glow) increases the survival of

neurons and promotes axon regeneration in the CNS (58).

3.2.2 Pivotal immune chemicals released
by neutrophils

Neutrophils activate more immune cells for migration to the

injury site and clear debris by secreting pro-inflammatory

factors. Neutrophils were also shown to participate in
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inflammation and tissue healing via the release of secretory

leukocyte proteases (59). Myeloperoxidase (MPO) is one of the

most abundantly expressed proteins in neutrophils. It is a

peroxidase enzyme present in the granules of neutrophils. The

enzyme induces the formation of hypochlorous acid to eliminate

the invasion of pathogens; at the same time, it can also cause

unintentional host tissue injury. Release of MPO attracts the

aggregation of neutrophils, contributing to sustained damage

(60). Matrix metallopeptidase 9 (MMP-9), secreted by

neutrophils in response to SCI (61), has been shown to be

involved in the BBB degradation, facilitating the entry of cells,

such as inflammatory cells, into the CNS (62). Members of the

MMP family affect functional recovery after SCI by modulating

the BSCB (63–65).
3.3 Microglia

3.3.1 The roles of microglia in the
pathophysiological process of spinal
cord injury

Microglia are the resident immune cells of the CNS. Thus,

they are the early immune cells that respond to tissue damage

after SCI (66). Microglia account for approximately 10% of all

CNS cells. These cells help maintain CNS homeostasis through

continuous interactions with neuronal and non-neuronal cells. It

is the first line of immune defense in the CNS. Microglia

constantly remove damaged nerves, plaques, and infectious

substances from the CNS. Activated microglia play an

important role in neurodegenerative diseases such as

Parkinson’s disease, multiple sclerosis, and Alzheimer’s disease

(67). Microglia are activated soon after initial damage in the

spinal cord. They mediate morphological change, neurotoxicity,

and inflammatory cascade activation (68). However,

hyperactivated or unregulated microglia can cause

neurotoxicity, which is an important source of pro-

inflammatory factors and oxidative stress inducers, such as

TNFs, nitric oxide, ILs, and other neurotoxic substances.

Microglia have similar properties to peripheral macrophages,

and activated microglia include inflammatory microglia (M1

type) and anti-inflammatory microglia (M2 type). M1-type

activated microglia play a neurotoxic role by secreting reactive

oxygen species and inflammatory cytokines. M2-type activated

microglia produce anti-inflammatory cytokines and

neurotrophic factors, which exert an anti-inflammatory and

neuroprotective effect (69).

Our understanding of the role of microglia in SCI remains

preliminary. Often, microglia responses are confused with

macrophage responses. When the abundance of microglia

reduces after SCI, it disrupts glial scar formation, increases

parenchymal immune infiltration, decreases neuronal and

oligodendrocyte survival, and inhibits locomotor function
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recovery (70). Meanwhile, the pharmacological depletion of

microglial cells reduces neuroinflammation in the brain and

spinal cord after injury, and improves cognitive recovery,

depression-like behavior, and motor function (71). The

transplantation of microglia in the area with SCI in an acute

period increases tissue sparing, but does not lead to functional

recovery (72).

3.3.2 Immune chemicals released by microglia
Cytokines and chemokines released by activated microglia

can induce the secretion of inflammatory factors and cytotoxic

substances from leukocytes and macrophages, mediating

neuroinflammation and neurotoxicity, and causing BBB

disintegration and glial cell death. The sustained activation of

M1-phenotype microglia causes excessive inflammatory factor

and neurotoxic molecule secretion, leading to the death of

normal cells and further damaging the tissue. Under treatment

with lipopolysaccharides or interferon-gamma (IFN-g), M1

microglia secrete pro-inflammatory cytokines, such as IL-1b,
IL-2, IL-6, and TNF-a. Induced by IL-4 or IL-13, M2-type

microglia secrete anti-inflammatory cytokines, such as IL-10,

arginase 1, and TGF-b, which play a neuroprotective role and

contribute to neuronal regeneration (70). Cytokines and

chemokines released by activated microglia can induce

leukocytes and macrophages to release inflammatory factors

and cytotoxic substances, mediating neuroinflammation and

neurotoxicity. This leads to the destruction of the BBB, and

causes glial cell death (67). Recently, cytokines released by

activated microglia after CNS injury occurrence have been

found to influence the neurotoxic or neuroprotective effects of

astrocytes (39). Aberrant growth factors such as IGF-1 are

produced by the elimination of microglia. This leads to an

increase in neuronal and oligodendrocyte death and a decline

in locomotor performance (71).
3.4 Macrophages

3.4.1 The roles of M1 and M2 macrophages in
spinal cord injury pathophysiology

Macrophages are one of the primary cells that infiltrate to

the lesion after SCI. These cells produce and secrete

inflammatory factors, thereby aggravating secondary injury

(73). Based on the molecular phenotype and function,

macrophages can be classified into two major subsets:

classically activated pro-inflammatory (M1) cells and

alternatively activated anti-inflammatory (M2) cells (74). M1

macrophages exhibit proteolytic activity, expressing TNF-a and

inducible nitric oxide synthase (iNOS). M2 macrophages express

unique molecular markers, possess immunomodulatory,

phagocytic, and remodeling properties, and mediate tissue

repair (73, 75). There is evidence that both M1 and M2
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macrophages infiltrate lesions in SCI. The spinal cord

environment favors the polarization of macrophages toward a

predominantly M1 cytotoxic macrophage phenotype (76).

Evidence from previous studies has shown that M1

macrophages are neurotoxic, whereas M2 macrophages

promote axonal regeneration (77–80). Therefore, increasing

the M2 cell population at the site of injury may be a

promising strategy to repair tissue damage post SCI (81). In

the subsequent stage, macrophages reduce edema and induce the

formation of a cavity by removing dead cells and myelin

debris (80).

Macrophages play pivotal roles in recognizing and degrading

cellular and tissue debris. Furthermore, macrophages remove the

debris and components inhibiting myelin function. Therefore,

macrophages can promote remyelination and axonal

regeneration. However, foam macrophages appear when excess

lipids accumulate in cells; this results in dysregulated lipid

metabolism. This can lead to further neurological decline (73).

The metabolic fitness of macrophages is conducive to secondary

damage, and strategies that promote oxidative phosphorylation

may help mitigate the negative effects of macrophages in nerve

injury (82). M2 macrophage-derived exosomes loaded with

berberine could be used to treat SCI via the inhibition of M1

inflammatory activation and anti-apoptosis function (83).

3.4.2 Immune chemicals released
by macrophages

Interferon-c (IFN-c) and prototypical T-helper type 1

cytokine can activate macrophages to produce cytotoxic

mediators (such as reactive oxygen and nitrogen species) and

pro-inflammatory cytokines [iNOS, IFN-c, TNF-a, C–C motif

chemokine ligand 5 (CCL5), IL-6, IL-12, IL-6], and enhance

their ability to kill pathogens present within cells. By contrast,

the IL-13, IL-4, and T-helper type 1 cytokines inhibit

macrophages from producing pro-inflammatory cytokines

(15). Among these immunomodulatory chemicals, TNF-a is a

protein with multiple functions. Targeting this cytokine could

facilitate better SCI repair owing to its widespread inflammatory

nature. TNF-a is a cytokine associated with acute and chronic

inflammation. Predominant and prolonged TNF-a expression is

counterproductive to post-SCI recovery (84). iNOS catalyzes the

synthesis of nitric oxide, which participates in the apoptosis of

neurons in the spinal cord (85). iNOS may exert a beneficial

effect in the acute phase but plays a detrimental role in the

chronic stage (86). TGF-b, also called human cytokine synthesis

inhibitory factor, participates in cell differentiation and

proliferation, which is mainly activate through type 1 and type

2 serine/threonine kinase receptors (87). In addition, TGF-b
induces cellular apoptosis via activation of the SMAD pathway.

IL-10 prevents the expression of IFN-c and TNF-a by keeping a

check on CD8+ T cells (88) and inhibits MHC-II expression on

the surface of monocytes/macrophages, which are involved in

the presentation of antigens to T cells (89).
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3.5 T and B cells

3.5.1 The roles of T and B cells in spinal cord
injury pathophysiology

T and B cells are two fundamental cells in adaptive

immunity (90). SCI can activate T and/or B cells to induce

autoimmune responses in the nervous system and maintain their

activation for a long duration (91). There are different

classification methods for T cells, including surface markers,

transcriptional regulators, effector molecules, and functions.

Based on the surface marker, T cells can be classified as CD4+

T cells and CD8+ T cells. The subpopulations of CD4+ T cells

include helper T cells (Th1, Th2, and Th17) and regulatory T

cells (Tregs) (90). T-cell infiltration in injured spinal cord tissues

has been consistently reported in various SCI animal models

(92). Jennifer et al. reported that a few CD8+ T cells were

detected in human postmortem injured spinal cords, in both

blood vessels and extravascular spaces, from hours to months

after injury. The authors did not detect any CD20+ B cells in

injured spinal cords (93). These findings were consistent with a

recent study showing that CD8+ T cells are the major cell type

among the few cells detected at the site of injury. Interestingly,

CD138+/IgG+ plasma cells were found in a subpopulation of

SCI, which serve as a reserve cell source in humoral immunity

(82). Whether T cells cause secondary degeneration or mediate

wound repair after SCI remains highly controversial. CD8+ T

cell-derived perforin aggravates secondary SCI by damaging the

BSCB (94). Chronic SCI impairs primary CD8+ T-cells’ antiviral

immunity, but does not affect the generation or function of

memory CD8+ T cells (95). Sirtuin 4 suppresses the anti-

neuroinflammatory activity of infiltrating regulatory T cells at

the SCI site (96). Programmed cell death protein 1 was shown to

be essential for maintaining the anti-inflammatory function of

infiltrating regulatory T cells in a murine SCI model (97). gd T

cells serve as an early source of IFN-g to aggravate lesions in SCI.

gd T-cell recruitment to the SCI site promotes inflammatory

responses and exacerbates neurological impairment (98). CCL2/

CCR2 signaling is a vital mechanism underlying the recruitment

of gd T cells to the SCI site (99). SCI can trigger a demyelinating

response, producing myelin basic proteins that activate T cells.

Many cell adhesion molecules appear on the surface of activated

T cells, which is useful for adhesion to vascular endothelial cells

and to enable T cells to enter the CNS, inhibit axonal death, and

promote neuroprotection (100).

The role and effect of B cells contributing to neurological

changes after SCI occurrence has not been clarified. B cells can

generate pathogenic antibodies that inhibit local lesion repair

(90), leading to delayed recovery of neurological function.

Precision therapeutic strategies that target B cells or block the

effects of pathogenic antibodies have been proven to be effective

(101). During the acute stage of injury, B cells in the bone

marrow and spleen are substantial reduced. This is likely to be

attributable to the reduction of B cell production, as the number
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and frequency of B cell progenitors in the bone marrow and

periphery decrease at 8 days following SCI (15). The function of

activated B cells that produce pro-inflammatory factors and

maintain autoreactive T cells improves after B-cell knockout, but

B cells also promote repair after SCI through their

immunoregulatory Breg phenotype. Breg cells control antigen-

specific T-cell autoimmune responses by producing IL-10 (91).

3.5.2 Role of immune factors released by T and
B cells in spinal cord injury pathophysiology

Lymphocytes are the only cell type that can specifically

recognize the antigens and initiating the adaptive immune

response (15). However, even though mechanisms by which

these autoreactive T cells are eliminated or inactivated are

existent, these are inadequate and autoreactive phenomenon is

observed after SCI. T and B cells are responsible for the

induction of autoimmunity in individuals. After induction of

protective autoreactivity, a process characterized with immune

response modulation by neural-derived peptides, the presence of

T cells with a Th2 phenotype in the lesion site favors functional

recovery (102, 103). This is because T cells have the ability to

synthesize nerve growth factor (NGF), brain-derived

neurotrophic factor (BDNF), and diverse neurotrophies (104,

105). CD4+ and CD8+ T cells in tandem with natural killer (NK)

cells are the major sources of IFN-g. There is a greater axial

migration of T-cells in SCI mice, which is associated with an

increase in macrophage/microglial activation and divergent

expression patterns of growth factors and immune regulatory

molecules (106). B cells benefit SCI repair by transforming to

Breg phenotype, which regulate T cells’ autoimmune responses

by controlling IL-10 production (107).
4 Potential pharmaceutical
immunotherapeutic drugs for spinal
cord injury

4.1 Methylprednisolone

Methylprednisolone is a classic drug recommended by SCI

standard guidelines (108). A series of clinical trials over recent

decades has demonstrated motor score improvements in patients

with SCI treated withmethylprednisolone. In addition, the 24-hour

National Acute Spinal Cord Injury Study II (NASCIS II) dosing

protocol has been shown to be relatively safe in SCI patients (109).

Methylprednisolone treatment could inhibit the expression of

TNF-a and the activity of NF-kB in SCI rats and promote the

restoration of neurological function. Methylprednisolone can

maintain biological activity in injured tissues and significantly

reduce the inflammatory response and protein expression caused

by secondary injury, thereby reducing edema (110, 111). Gao et al.
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have shown that methylprednisolone combined with amniotic

mesenchymal stem cells suppressed MPO activity and cell

apoptosis, reduced the expression of pro-inflammatory factors

such as TNF-a, IL-1b, and IL-6, and increased the level of IL-10

(112). Methylprednisolone has been used in the treatment of SCI

for more than 20 years, but owing to the major problems with

respect to the time of treatment and dose, the appropriateness of its

use has been debated. Therefore, for treating SCI using

methylprednisolone, it is necessary to strictly control the dosage

and time of administration to relieve pain. Methylprednisolone

exhibits substantial immunosuppressive activity by increasing

immune cell apoptosis and suppressing inflammatory responses

(113). Furthermore, methylprednisolone can inhibit lipid

peroxidation and protect oligodendrocytes from apoptosis-

mediated cellular death after SCI. Methylprednisolone

significantly attenuates the release of various inflammatory

cytokines as well as the activation of T lymphocytes in

symptomatic patients with multiple sclerosis (114). More

importantly, methylprednisolone has been found to diminish the

IL-12 levels in the CNS (115), indicating its competency for

reducing autoreactive T-helper 1 lymphocyte reactions.
4.2 Minocycline

Minocycline is a lipophilic derivative of tetracycline that can

penetrate the BBB (116). Casha et al. reported a single-center,

double-blind, randomized clinical trial of minocycline

administration after SCI. A total of 12 months after

minocycline treatment, the motor function recovery of

patients with SCI improved (117). Kobayashi et al. confirmed

in an SCI mouse model that minocycline inhibited the

expression of M1-type microglia surface markers and the

generation of inflammatory cell factors in vivo and in vitro,

but did not affect the expression of M2-type microglial surface

markers in vivo. This is the first study to demonstrate the

selectivity of minocycline in microglia subsets (118). The study

showed that minocycline selectively inhibits the activation of

microglia into pro-inflammatory states, which provides a basis

for understanding the pathological changes that accompany

many diseases involving microglia activation (118).

Minocycline can achieve neuroprotection and functional

recovery by eliminating secondary SCI injury (119).
4.3 Statins

Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA

(HMG-CoA) reductase. They can competitively combine with

HMG-CoA reductase and inhibit cholesterol biosynthesis (120).

Chung et al. reported that hyperlipidemia adversely affects the

recovery of neurological function in patients with SCI.
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Therefore, theoretically, statins may reverse neurological

disability in patients with SCI (121). However, in 2017, the

only clinical trial investigating the efficacy of atorvastatin in

patients with acute SCI found no significant improvement at the

3- and 6-month follow-up in patients receiving the drug (122).

Nevertheless, various basic research studies have demonstrated

the neuroprotective role of statins and elucidated the underlying

molecular mechanisms. In 2014, Nacar et al. showed that the

intraperitoneal administration of atorvastatin improved the

recovery of locomotor activity in a rat SCI model constructed

by single-level laminectomy at T10. Furthermore, atorvastatin

reduced the levels of IL-1b, IL-6, and lipid peroxide in SCI rats.

This indicates that atorvastatin affects SCI by modulating

inflammatory cytokines (11). A single dose of atorvastatin

used immediately after SCI inhibits inflammation and

apoptosis and stimulates axon outgrowth, which may be

important for functional outcomes improvement (123).

Mirzaie et al. showed that lovastatin remarkably improved the

functional outcomes of SCI treatment by reducing

inflammation-induced tissue destruction, neuronal apoptosis,

and demyelination post SCI. These findings indicated the

neuroprotective role of lovastatin in SCI (124). Lovastatin

could inactivate toll-like receptor 4 (TLR4) in microglia by

targeting its co-receptor myeloid differentiation protein 2

(MD2) and alleviate neuropathic pain (125). However, there

was a lack of robust neurological benefits with simvastatin or

atorvastatin treatment after acute thoracic contusion SCI (126).

More clinical research needs to be performed on this topic.
4.4 Human immunoglobulins

Immunoglobulins are a class of globulins that act as antibodies

or have a chemical structure similar to that of antibodies. They are

the primary reactive components in humoral immune response

(127). Intravenous immunoglobulin (IVIG) has been used to treat

various neurological diseases, but the evidence on its effects in SCI

treatment is limited. In 2015, in a pioneer clinical trial named

STRIVE (standard therapy for the treatment of transverse myelitis

in adults and children), researchers attempted to investigate the

efficacy of IVIG in SCI caused by infection. However, the study

ended before completion because of the challenges associated with

conducting a trial on a rare disease with a short enrolment window

(128, 129). In 2018, another research team demonstrated that the

intrathecal injection of neurite growth-promoting anti-Nogo-A

antibodies contributed to neurological recovery in acute SCI

(130). The effects of human immunoglobulin G in the recovery of

tissue injury and neurological outcome after traumatic cervical SCI

are with the involvement of the neurovascular unit (131). The

delayed injection of high-dose human immunoglobulin G improves

the outcome of traumatic cervical SCI via attenuating

neuroinflammation and protecting the BSCB integrity (132).
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4.5 Other potential immunomodulatory
drugs under basic research

In the past few years, several basic research studies have been

conducted on immunomodulatory options, which may be the

focus of therapeutic strategies for SCI in the future.

Neuroimmunophilin ligands are a class of compounds that have

great potential in the treatment of neurological diseases, which

easi ly penetrate the BBB. Severa l drugs target ing

neuroimmunophilins, such as cyclosporin A, FK-506, and

FK1706, have shown significant positive effects after SCI (133–

135). Following SCI, the blockade of IL-6 signaling can facilitate

the production of alternatively activated macrophages, and

thereby alter the inflammatory response after SCI and promote

spinal cord regeneration with functional recovery (136).

Immunomodulatory therapy of SCI with ChABC yielded

significant neuroprotective and potential neuroregenerative

effects (137). Histone deacetylase (HDAC) is widely accepted as

an enzyme that can eliminate acetyl groups from lysine residues

localized on histone proteins and suppress transcription and gene

expression (138). HDAC inhibitors, CI-994 inhibitors (139),

RGFP966 (140), and valproic acid (141) were shown to exert

significant neuroprotective effects in SCI. Finally, drugs targeting

T and B cells like FTY720 also show beneficial effects in SCI (142).

Furthermore, advanced therapies based on stem cells (112, 143)

and new biomaterials that improve the tissue microenvironment

are also promising direction (144, 145). Table 1 shows recent

findings on inflammation and immunotherapy with potential

application in SCI. This may provide further guidance in both

the research and the treatment for SCI.
5 Limitations and perspectives

In the past decades, there have been significant advances in

elucidating post-SCI immune responses and their relationships

with other molecular mechanisms such as inflammation, axon

regeneration, and scar formation. Nevertheless, there remain

several limitations in research published to date: (i) there is a

lack of a clear temporal–spatial profile of immune cells and

immunological factors post SCI, (ii) there is a lack of substantial

evidence on the safety of new immunomodulatory drugs, (iii)

studies on novel drug carriers, such as nanomaterials, are

promising but still at the nascent stage, and (iv) there is lack of

sensitive and specific detection methods for clinical use for

monitoring the progression of SCI. Therefore, more basic and

clinical research should be undertaken, with a focus on the

following: (i) immune cells and their roles at different time

points and positions in the tissue microenvironment post SCI

should be characterized more precisely, (ii) the safety of emerging

drugs should be investigated thoroughly to ensure that

physiological functions are not affected with their use, (iii) the
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TABLE 1 Summary of key clinical trials on immunotherapy after spinal cord injury (SCI).

Clinical trials

Treatment Country Phase of
study

Design of
study

Study
completion

Trial
registration Conclusion Ref

Methylprednisolone

NASCIS I USA N/A
Multicenter,
double-
blinded RCT

1984 N/A
No difference in neurological recovery
was observed between standard-dose
and high-dose groups

(146)

NASCIS II USA N/A
Multicenter,
double-
blinded RCT

1990 N/A

Methylprednisolone improves
neurological recovery, but naloxone does
not improve neurological recovery after
acute SCI

(147)

NASCIS III USA N/A
Double-
blind,
randomized

1997 N/A
Motor function improvement in patients
who received a 48-h methylprednisolone
infusion starting at 3–8 h after injury

(148)

Minocycline Canada Phase III
Placebo
controlled,
randomized

Be halted* NCT01828203 Improvement of motor function (117)

Statin Iran N/A
Placebo
controlled,
randomized

2015 2014032113947**
Improvement of sensory and motor
function

(122)

Human immunoglobin

Anti-Nogo-A
antibody

Switzerland Phase II
Multicenter,
RCT

Dec. 2023 NCT03935321
Promoting axonal regeneration and
neurobehavioral recovery

(130)

Anti-RGMa-
antibody Japan Phase II

Double-
blinded
RCT

Mar. 2023 NCT04295538 Enhanced recovery of manual dexterity N/A

Basic research

Model/
Species

Drug
Mode of

administration
Dose Interval Outcome Mechanism Ref

SCI/Rat
Cyclosporin
A

10 mg/kg
Every 12 h for
3 days

Improved
neurological
function

Inhibiting immune responses and
mitochondrial permeability transition
through both calcineurin-dependent and
calcineurin-independent mechanisms

(135)

SCI/Rat FK-506 Subcutaneous 2 mg/kg
Daily for 11
weeks

Improved
neurological
function

Stimulating retrograde-labeled neurons
in the red nucleus

(133)

SCI/Rat FK1706 Subcutaneous 2 mg/kg
Daily for 11
weeks

Improved
neurological
function

Stimulating retrograde-labeled neurons
in the red nucleus

(133)

SCI/Mice
IL-6
inhibitor

IP 50 mg/g Once
Improved
neurological
function recovery

Promoting the formation of alternatively
activated M2 macrophages

(136)

SCI/Rat FTY720
With
polycaprolactone
membrane

0.5 or 3 mg
Weekly for 4
weeks

Less cavitation
volume and neuron
loss, improved
recovery of motor
function

Decreasing S1P1 expression and glial
scarring

(142)

SCI/Rat ChABC Injury site
6 ml (10 U/
ml)

Alternate days
for 10 days

Improved functional
recovery of
locomotor and
proprioceptive
behavior

Promoting regeneration of both
ascending sensory projections and
descending corticospinal tract axons

(46)

(Continued)
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application of new biomaterials to transport immunomodulatory

drugs should be explored and characterized, and (iv) detection

methods with high sensitivity and specificity should be developed

to reflect comprehensive immune components after SCI.

Collectively, as various experimental therapies are being

developed or have been explored in clinical trials, promising

therapies for SCI are expected.
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