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Trophoblast immune cell interactions are central events in the immune

microenvironment at the maternal-fetal interface. Their abnormalities are

potential causes of various pregnancy complications, including pre-

eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase

(MMP) is highly homologous, zinc(II)-containing metalloproteinase involved

in altered uterine hemodynamics, closely associated with uterine vascular

remodeling. However, the interactions between MMP and the immune

microenvironment remain unclear. Here we discuss the key roles and

potential interplay of MMP with the immune microenvironment in the

embryo implantation process and pregnancy-related diseases, which may

contribute to understanding the establishment and maintenance of normal

pregnancy and providing new therapeutic strategies. Recent studies have

shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively

prevent invasive vascular disease by modulating the activity of MMP. We

summarize the main findings of these studies and suggest the possibility of

TIMPs as emerging biomarkers and potential therapeutic targets for a range of

complications induced by abnormalities in the immune microenvironment at

the maternal-fetal interface. MMP and TIMPs are promising targets for

developing new immunotherapies to treat pregnancy-related diseases

caused by immune imbalance.

KEYWORDS
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1 Introduction

Matrix metalloproteinase (MMP) belongs to a family of zinc

(II)-dependent endopeptidases, which cleave extracellular matrix

(ECM) proteins and participate in processes such as tissue

remodeling and angiogenesis. From the immunological point of

view, a successful pregnancy is one in which the maternal

immune system can accept an embryo containing paternal

antigens. Alterations in the immune environment at the

maternal-fetal interface can induce immune imbalance, which

can be accompanied by varying degrees of inflammatory

responses, thus triggering pathological pregnancy outcomes.

Tissue inhibitor of matrix metalloproteinase (TIMP), the

predominant endogenous inhibitor of MMP, acts by binding

MMP in a 1:1 ratio. In this review, we will provide a

comprehensive overview of the immune role of MMP in the

embryo implantation process and pregnancy-related diseases

using data reported in PubMed and other scientific databases.

Additionally, we present the possibility and potential benefits of

MMP and its inhibitor as a biomarker and potential therapeutic

target for pregnancy-related diseases.
2 Structure, functions, and
regulations of MMP

2.1 Structure of MMP

MMP is a family of zinc(II)-dependent protein hydrolases

with a common core structure that degrade the ECM, which is

essential for vascular remodeling (1). Notably, zinc(II) of MMP-

3 maintains its protease activity even when replaced by other

ions (2). Twenty-eight types of MMP have been identified in

vertebrates, and twenty-three of them are expressed in human

tissues (3). MMP could be secreted by connective tissue, pro-

inflammatory cells, and uterine placental cells, including

fibroblasts, vascular smooth muscle (VSM), leukocytes,

trophoblasts, etc.; A typical MMP consists of a pre-peptide

sequence (80 amino acids), a catalytic metalloproteinase

structural domain (170 amino acids), a variable length linker

peptide or a hinge region, and a heme-binding protein structural

domain (except for MMP-7, MMP-23, and MMP-26) (4, 5). In

vivo, MMP generally exists as the inactive form of proMMP

precursor, which is cleaved by various protein hydrolases (e.g.,

serine proteases, fibrinolytic enzymes, etc.), eventually

producing active MMP to perform its functions (6).
2.2 Functions of MMP

Based on substrate specificity, MMP can be classified into

gelatinase, collagenase, matrilysin, stromelysin, membrane-type
Frontiers in Immunology 02
MMP(MT-MMP), and others (4, 5). Because of the basic

function of degrading ECM proteins, MMP is involved in a

wide range of physiological and pathological processes in the

human body. Physiologically, MMP plays a critical role in cell

proliferation, migration and differentiation, tissue repair and

remodulation, embryogenesis, and wound healing (7).

Pathologically, MMP disorders are connected with tumor

invasion and metastasis because MMP can degrade almost all

protein components in ECM (8).

The degradation of ECM by MMP (mainly collagen and

elastin) is the basis for the involvement of MMP in tissue

damage repair. The degradation process of MMP requires the

coordinated action of a Zn2+ active center and a water molecule

(including three histidines and one glutamate), with methionine

as a hydrophobic base to play a supporting role (5). During the

MMP-substrate interaction, the Zn2+-bound water molecule

launches a nucleophilic attack on the substrate, which

eventually leads to its decomposition and release of water (9).

The process of tissue injury is inevitably accompanied by the

development of inflammation, during which multiple

inflammatory cells and mediators are included in the

alteration. Recent research suggests that the ability to

regenerate tissue may be independent of the inflammatory

response, and thus the correlation between immunity and

tissue regenerative capacity is gradually gaining widespread

attention (10). In general, there may also be an underlying

immune inflammatory response during tissue remodeling in

MMP. Inflammatory cytokines (Interleukin(IL)1-a, IL1-b, IL-2,
IL-17, C-reactive protein, Tumor necrosis factor-a (TNF-a),
etc.) can be found in healing phases of chronic venous ulcers,

which are believed to stimulate the production of neutrophil

gelatinase-associated lipoprotein (NGAL),thus activating MMP-

9 and form MMP-9/NGAL complexes to help to heal (11, 12).

The endometrial remodeling process is precisely regulated in

which MMP is essential (13). In all types of the endometrium,

MMP-26 was found to have cyclical changes in its expression

that may be associated with the endometrial tissue remodeling

process (14, 15).

During the tumor growth and invasion process, MMP may

be involved in key processes that disrupt the balance of growth

and an t i - g r ow th f a c t o r s i gna l i n g i n th e t umor

microenvironment and tumor neovascularization (16). Non-

catalytic functions targeting MMP are now an emerging

researchhotspot. For example, the cytoplasmic tail of MT1-

MMP canbind to Factor inhibiting hypoxia-inducible factor-1

(FIH-1) and promoting stable FIH-1-Munc18-1-interacting

protein three interaction, which enhances hypoxia-inducible

factor (HIF) target gene expression, thereby promoting

Warburg effect and angiogenesis in a non-proteolytic

manner (17).

This review focuses on the role of MMP in early pregnancy.

The primary reproductive events include endometrial

decidualization, uterine spiral artery remodeling, trophoblast
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cell invasion and differentiation, and placenta formation. MMP

may be involved in uterine placental and vascular remodeling

during normal pregnancy, as MMP is significant in tissue

regulation remodeling (18).
2.3 MMP and ovarian sex
hormone regulation

Apart from being expressed by cells, the expression of MMP

can also be induced by various exogenous signals, such as

cytokines, growth factors, hormones, and changes in cell-

matrix and cell-cell interplay (7). Noticeably, during the

implantation window period in early pregnancy, a large

number of factors such as cytokines, adhesion molecules, and

proteolytic enzymes are secreted by the endometrium under the

mediation of estrogen and progesterone, which play critical roles

in the identification and adhesion of the embryo and

endometrium, and further regulate the process of embryo

implantation. The interactions between steroid hormones and

MMP need to be fully understood.

Affected by steroid hormones secreted by the ovary, the

endometrium undergoes continuous cyclic exfoliation and

remodeling throughout the female reproductive phase:

estradiol stimulates endometrial proliferation during the

proliferative phase of the menstrual cycle, while progesterone

further acts on the estrogen-affected endometrium to induce its

glandular secretion and stromal cell differentiation into

metaphase cells (19). Endometrial MMP and TIMP expression

regulations are essential for endometrial growth, rupture of

circulating tissue, and pregnancy establishment, yet the

mechanisms regulating the expression patterns of MMP and

TIMP during the menstrual cycle have not been fully elucidated

(20). Ovarian sex hormones (e.g., estrogen and progesterone)

affect the expression of MMP, which in turn can coordinate with

ovarian sex hormones to co-involve in the endometrial tissue

remodeling and shedding process (21). Steroid hormone

regulation of the MMP system includes direct or indirect

regulation of gene transcription, specific changes in the

expression, and action of local cytokines (20).

The relationship between estrogen and the specific

expression of MMP family members remains unclear.

Activator protein-1 (AP-1) transcription consists of c-Jun and

c-Fosproteins, proven to be a significant regulator of multiple

MMP transcription under multiple conditions (22). The

promoters of most MMP genes contain AP-1 elements, and

upon increased estrogen exposure, the ligand-bound estrogen

receptor complex can increase the expression of the AP-1-bound

transcription factors Fos and Jun (23).

Vitro research has shown that the addition of progesterone

to endometrial explants or isolated stromal cells downregulates

MMP expressions (24). Specifically,10-8m-1 estrogen and

10-7m-1 medroxyprogesterone acetate inhibited the pro-MMP-
Frontiers in Immunology 03
1 secreted by cultured human endometrial stromal cells (25).

MMP-3 mRNA was remarkably curbed by estrogen and

progestin medroxyprogesterone acetate (10-8mol/L-10-6mol/L)

(26). An animal experiment using an estrogen-progestin

subcutaneous implantation device to mimic the proliferative

and secretory phases of the menstrual cycle in de-ovulatory

rhesus monkeys found that all the MMP expressions were

upregulated after progesterone withdrawal and spontaneously

downregulated after menstruation in the absence of

progesterone effects (27). The pattern of regulations of MMP

by progesterone differs from that of estrogen. First, progesterone

receptors can induce AP-1 activation in the absence of ligands,

and the effect of progesterone receptors on AP-1 activity was

shown to be cell type-specific (28). Second, progesterone can

reverse AP-1 activation, and animal experiments suggest that

progesterone can inhibit estrogen-induced c-fos mRNA

expression (29). Finally, progesterone also indirectly affects the

expressions of MMP by regulating cytokines (19), and IL-1a
released from epithelial cells induces its expression in

surrounding stromal cells through paracrine and autocrine

amplification loops, thereby increasing the total amount of

endometrial IL-1a and triggering MMP-1 expression (30). In

contrast, progesterone at the stromal cells at the mRNA level

inhibits IL-1a (19).

Human chorionic gonadotropin (HCG) has both local and

systemic functions in early pregnancy (31). HCG can affect

embryo attachment, embryo formation, trophoblast

infiltration, and other pregnancy-related processes by up-

regulating leukemia inhibitory factor (LIF), vascular

endothelial growth factor (VEGF), MMP-9 and other factors,

and it was reported that 500 IU/ml of HCG administration

inhibited intrauterine insulin-like growth factor-binding

protein-1 and macrophage-stimulating factor while elevating

the level of LIF, VEGF and MMP-9 (32).The rapid increase of

serum progesterone due to the rise of systemic HCG level in

early pregnancy also has effects on MMP; as mentioned above,

the inhibitory effect on MMP of progesterone may help limit

trophoblast invasion in the proper range.
3 MMP and maternal-fetal
interface events

3.1 Trophoblast invasion

Trophoblast invasion is a critical process in human placental

formation, involving the regulation of cell adhesion and the

degradation process of the ECM, which underlies the conversion

of the uterine spiral arteries (33). To dilate the vasculature and

provide adequate nutrition for embryonic growth, the

extravillous trophoblast invades the maternal endometrium

and remodels the spiral arteries, which allows sufficient
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uteroplacental perfusion (34, 35). Increased expression levels/

activity of MMP-2 and MMP-9 can be found in the aorta of

normal pregnant rats (36). It is suggested that these altered

MMP-2 and MMP-9 may be associated with a series of cellular

events at the maternal-fetal interface. EGF-mediated trophoblast

invasion may be related to altered MMP-2 expression/activity

(37). High levels of MMP-9 facilitate the degradation of the

endometrial ECM and loosen intercellular junctions, thus

favoring the invasion of extravillous trophoblast cells.With the

highest levels of mRNA and protein during pregnancy at week 6-

7, MMP-26 decreases gradually before reaching a minimum

level at mid-gestation, and this is inconsistent with the

spatiotemporal regulation of trophoblast invasive capacity (38,

39). Mishra (40) suggested that the extracellular matrix

metalloproteinase inducer (EMMPRIN) may also affect

embryonic adhesion and fusion with the tubular epithelium by

influencing the expression of MMP-2 andMMP-14. EMMPRIN,

serving as an MMP inducer, expresses membrane protein in the

immunoglobulin superfamily with two heavily glycosylated

extracellular structural domains (41, 42).

Notably, Nissi (43) et al. monitored serum concentrations of

MMP-9, TIMP-1, TIMP-2, and MMP-2/TIMP-2 complexes in

normal pregnant women at different gestational weeks, finding

no statistically significant changes in levels during normal

pregnancy. Few studies have been conducted on maternal

serum MMP and TIMP during normal pregnancy, and further

experimental studies with expanded sample sizes are needed in

the future.
3.2 Angiogenesis and remodeling

Angiogenesis and remodeling are complex series of

processes including recruitment, migration, proliferation, and

apoptosis of vascular cells consisting of stem/progenitor cells,

endothelial cells (ECs), vascular smooth muscle cells (VSMC),

etc., while the ECM plays its essential role in vascular

development and morphogenesis by providing matrix

scaffolds, interacting with matrix receptors or providing

growth factors (44). MMP regulates VSMC growth,

proliferation, and migration processes critical in vascular

remodeling. MMP-2 secretion is closely associated with the

migration of VSMC from rat thoracic aorta cultured in vitro,

involving the breakdown of the basement membrane and

pericellular ECM, while in bovine studies, it was found that

MMP-2 induces the migration of VSMC by triggering oxidized

low-density lipoprotein (OxLDL)-induced activation of the

sphingomyelin/ceramide pathway, which ultimately leads to

smooth muscle cell (SMC) proliferation and migration, and

that this MMP-2 activation process is mediated by MT1-MMP

(45, 46). Additionally, animal studies demonstrate that MMP-2

mRNA is increased in the uterine artery at day 7 and day 21 of
Frontiers in Immunology 04
gestation in rats, which suggests its pregnancy-associated

vascular remodeling role (47).
4 MMP and immune
microenvironment at the maternal-
fetal interface

The maternal-fetal interface is a critical site for the

establishment and maintenance of normal pregnancy, where

immune cell populations such as macrophages, T cells, natural

killer cells, and Dendritic Cells (DCs) accumulate (48).
4.1 Macrophage

Macrophages are primary monocyte-derived intrinsic

immune cells with remarkable heterogeneity and plasticity that

are essential for homeostasis and host defense (49, 50). As the

second most abundant population of leukocytes in the decidual

cells, macrophages are actively involved in coordinating the

apoptotic process during tissue remodeling, thereby preventing

the release of potentially pro-inflammatory and pro-

immunogenic cellular contents during secondary necrosis,

current studies suggest that CD14 or CD68 can be used as

immune markers to identify decidual macrophages (51, 52). The

percentage of macrophages in leukocytes showed no significant

change in early and mid-pregnancy, while the percentage of

CD14+ macrophages tended to decrease significantly by late

pregnancy (53).

It is currently believed that the phenotypic characteristics of

macrophages reflect the local microenvironment response,

including various cytokines and other mediators secreted by

adventitial cells, and that during the embryonic implantation

window, macrophages establish a pro-inflammatory

microenvironment for embryonic implantation (54). In vitro,

macrophages are usually classified into M1 and M2 phenotypes:

pro-inflammatory M1 macrophages based on classical activation

(LPS+ Interferon-g (IFN-g)), NFkB pathway, JAK/STAT

signaling or IFN regulatory factor (IRF) induction and IL-4 or

IL-4/IL-3-induced anti-inflammatory M2-type macrophages

(55–57). Induced by IL-4, IL-10 and IL-13, M2-type

macrophages have the function of anti-inflammatory by

producing a large amount of IL-10 and TGF-b; Besides, its
immune regulatory function is critical for early pregnancy

maintenance (58).

It has been proven that decidual macrophages involved in

ECM degrading in vascular remodeling are mediated by MMP-3

(59). Macrophages are an important source of MMP, and

inflammatory factors can regulate the expression of

macrophage proteases, including MMP (16, 60). For example,

the expression of MMP-9 can be induced by TNF-a at the
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transcriptional level (61). Also, the MMP-9 promoter is subject

to IL-18-mediated AP-1 and NF-kappaß-dependent activation

(62). It was shown that MT1-MMP can control macrophage

invasion by ECM components and cell surface molecular

signaling (63, 64). Recent studies revealed that the

transcriptional target phosphoinositide 3-kinase d (PI3Kd)-
expressing MT1-MMP can dependently trigger Akt/GSK3

cascade signaling and ultimately restrict the expression of

macrophage-derived pro-inflammatory mediators (44). The

potential link between MMP and macrophages and their

expression products before may be one of the directions for

further work in the future.
4.2 Dendritic cell

Maternal immune cells and fetus-derived trophoblasts have

bidirectional regulation interaction in early pregnancy, and

polarization toward Th2 in the immune response is considered

to be the key to successful pregnancy (65). Generally, DCs play a

pivotal role in this process. Even though only approximately 1%

of early pregnancy DCs are present in the decidual cells, they

have a dual critical role as potent antigen-presenting cells

mediating immune activation and immune tolerance, which is

particularly important during pregnancy (48, 66–68). These

paradoxical dual functions of DCs seem to depend on their

different stages of differentiation: immature dendritic cells

(iDC), characterized by DC-SIGN, promote T-cell tolerance,

whereas CD83+ mature DCs function as an inducer of T-cell

immunity (69–72). It should be noted that there also existed

DEC205+ DCs in the metaphase stromal cells that were activated

but still showed an immature state (73).

DCs are critical effectors of TGF-b activity, promoting both

Peripheral T-regulatory cell production during TGF-b activation
and inducing differentiation of pathogenic Th17 cells for T-cell

tolerance (74). MMP may provide an alternative pathway for the

proteolytic activation of potential TGF-b in vivo. An in vitro

experiment demonstrates that MMP-9 depends on CD44 for cell

surface localization in TA3 mouse breast cancer cells, activating

TGF-b2 and TGF-b3, which promote cell invasion and

angiogenesis (75).
4.3 Natural killer cell

Natural killer cells (NK cells), which account for more than

70% of metaphase leukocytes in early pregnancy, are represented

by the CD56+CD16- phenotype (48). According to the type of

cytokines secreted, NK cells can be divided into NK1 (mainly

secreting IFN-g, TNF-a) and NK2 (mainly secreting IL-4, IL-5,

IL-10, IL-13). However, the number of uterine NK (uNK) cells in

the placenta decreases in late pregnancy (76). The complete

spectrum of MMP expressed by NK cells and macrophages has
Frontiers in Immunology 05
not been determined, while in vitro, experimental studies have

identified NK cells and macrophages expressing MMP-2, MMP-

7, MMP-9, MMP-11, MMP-16, MMP-19, and TIMP (77).

Current clinical studies suggest that protein array studies of

CD56+uNK cells collected at 8-10 weeks of gestation indicate

that uNK cells are the primary producers of angiogenic growth

factors, but uNK cells collected at 12-14 weeks of pregnancy are

the primary producers of cytokines (78).

With strong secretion of pro-inflammatory factors,

angiogenic factors, etc., previous studies have reported a

regulatory interaction of decidual NK cells (dNK cells) in

trophoblast invasiveness through the secretion of IL-8 and

interferon-inducible protein-10 (IP-10), which further

stimulate CXCR1 and CXCR3-mediated pathways and thus

exert regulatory effects (79). It has been suggested that IL-6

and IL-8 secreted by CD56+uNK cells and CD14+ macrophages

are involved in uterine spiral artery remodeling either by

secreting IFN-g (80, 81).
Exploration of the functions of immune cells at the

maternal-fetal interface throughout pregnancy is almost

impossible due to the limited access to specimens, and the

speculated role of immune cells at the maternal-fetal interface

in human early pregnancy is revealed in Figure 1. Existing

studies have adequately demonstrated their essential part

during pregnancy, and an in-depth understanding of their

interactions can assist in identifying potential immune risks in

pathological pregnancies and thus responding to them.
5 MMP and pregnancy-related
diseases

5.1 Preeclampsia

Insufficient remodeling of the uterine spiral arteries is one of

the necessary pathological changes in Preeclampsia (PE). The

association with an acute atherosclerotic response may be one of

the interactions by which inadequate spiral arterial remodeling

induces placental malperfusion, in which arteries undergo an

atherosclerotic process, form intimal plaques, and enter a vicious

cycle of ischemia and reperfusion with an extensive intravascular

inflammatory response (82, 83). Dysregulated endogenous

immune responses may lead to excessive inflammatory

responses, such as a significant increase in pro-inflammatory

cytokines in patients with PE;At the same time, a significantly

increased risk of PE in pregnant women who are in a state of

inflammatory overreaction early in pregnancy (84). Abnormal

immune factors inducing trophoblast under invasion and

endothelial cell dysfunction are considered significant causes

of PE, including innate and adaptive immune factors (85, 86).

Studies have shown that pregnant women with human

immunodeficiency virus infection have a lower incidence
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ofPEor hypertensive pregnancy (HTN-Preg), providing evidence

for a strong association between organismal immunity and

PE (87).

The level of MMP-2 expression in patients with PE remains

controversial: some studies have found high levels of MMP-2 in

the plasma or amniotic fluid of patients with PE or subsequent

development of PE, while others have suggested that there is no

statistical difference in the level of MMP-2 expression (88–91).

However, the results of most experimental studies showed low

expression or low activity of MMP-9 in serum and placental

tissues of patients with PE (92). Moreover, the decrease in MMP-

9 is found to be more pronounced in patients with early-onset

PE (93). These findings suggest that abnormal expression of

MMP-2 and MMP-9 may be involved in the pathogenesis of PE.

Since MMP has a significant proteolytic effect on ECM,

downregulation of MMP expression in patients with PE may

lead to impaired growth, proliferation, and migration of SMC,

thus interfering with the process of uterine spiral artery

remodeling, which is consistent with the findings of Li (94)

et al. on increased collagen content in the uterus, placenta, and

aorta in mice with a model of PE. Another study showed a

decrease in MMP-2 expression levels in the placenta of patients

with severe PE under hypoxic conditions, mediated by the

Nodal/ALK7 signaling pathway, acting in coordination with

taurine upregulated protein 1 (TUG1) to achieve an invasive

impaired trophoblast outcome (91).

There is extensive evidence that placental ischemia and

hypoxia promote the release of a variety of active growth
Frontiers in Immunology 06
factors, including pro-angiogenic factors such as VEGF and

placental growth factor (PlGF), as well as anti-angiogenic factors

such as soluble fms-like tyrosine kinase-1 (sFlt-1), anti-

inflammatory cytokines TNF-a as reactive oxygen radicals

(ROS), IL-6, and HIF (18, 95). VEGF is a supergene family

derived from a platelet growth factor, while sFlt-1 is a soluble

antagonist of VEGF, both of which function importantly in the

regulation of angiogenic homeostasis (96). An elevated sFlt-1/

PIGF ratio is observed in patients with late-onset PE, and several

authors have proposed sFlt-1/PIGF as an early predictor of PE

(97–100). Studies support sFlt-1 as a potential upstream

mechanism linking placental ischemia and reduced MMP-2 and

MMP-9 content in HTN-Preg, of which VEGF can reverse this

reduction in MMP content induced by sFlt-1 (94). Removal of

circulating sFlt-1 in patients with early PE by a plasma-specific

dextran sulfate column may reduce urinary protein and prolong

pregnancy with no significant adverse fetal effects (101). sFlt-1/

PIGF offers new ideas for optimizing the management of PE.

In addition to the abnormal remodeling process of spiral

arteries, PE is also closely associated with inflammatory immune

hyperactivation. Previous studies have found an excess of

macrophages in placental biopsy specimens from patients with

PE and that these excess macrophages tend to be located in and

around the spiral arteries, separating them from trophoblast cells

rather than in the stroma surrounding the spiral arteries and

extravillous trophoblast (52). Apoptosis of extravillous

trophoblast cel ls induced by macrophages through

inflammatory mediators such as TNF-a is associated with
FIGURE 1

Maternal-fetal interface immune microenvironment on early pregnancy and role of MMP on embryo implantation. (A) This figure demonstrates
the relative location of the fetus and its appendages on the maternal uterus; (B) This figure shows the composition of the maternal-fetal
interface immune microenvironment, including fetal-originated cytotrophoblast cell, immune cell subsets: NK cells, macrophages, T cells, DC
cells, cytokines, etc., maternal uterine spiral artery: vascular smooth muscle cells and vascular endothelial cells, MMP and TIMP families; (C) This
figure illustrates the enlarged view of the functions of MMP on early pregnancy. MMP and TIMP assist the process of trophoblast invasion and
uterine spiral artery remodeling by degrading ECM.
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damaged intravascular trophoblast invasion in PE (102). Altered

MMP-9 expression in the serum of patients with PE is associated

with type I TNFR, suggesting an underlying inflammatory

process, especially in early PE (103). The immune mechanisms

underlying the association of MMP with the development of PE

are not yet clear. Here we propose the following hypothesis

based on the available evidence: differential expression levels

or activity of MMP (especially MMP-9) are induced by

mutual promotion with various inflammatory factors (e.g.,

TNF-a, IL-6), causing damage to vascular ECs, and the release

of ROS in hypoxic conditions to stimulate oxidative stress-

inducing vascular endothelialand smooth muscle cell

dysfunction (Figure 2).

It is also worth mentioning that MMP is involved in

atherogenesis by taking an essential role in the immune

response and vascular inflammation (5). The balance between

synthesis and degradation of ECM components is crucial for

plaque stability, and MMP, in addition to its role in degrading
Frontiers in Immunology 07
the ECM of patients with atherosclerosis, reflects a systemic

inflammatory response whose imbalance with TIMP may be the

result of changes in the environment of pro- and anti-

inflammatory factors in advanced clinical stages of coronary

artery disease (104). However, most of these studies were

oriented towards the assessment of the role of carotid or

coronary arteries, and whether MMP exerts the same effect

during atherosclerosis of the uterine spiral arteries at the

maternal-fetal interface in patients with PE is not yet

supported by precise experimental results, which may be one

of the directions worthy of future research.
5.2 Recurrent spontaneous abortion

Recurrent spontaneous abortion (RSA) is a severe

reproductive disorder of pregnancy that remains an

incomplete problem in obstetrics and gynecology (105). In
FIGURE 2

Schematic diagram of uterine spiral artery remodeling in non-pregnant women, PE, and normal pregnant women. (A) The uterine spiral arteries
extend into the functional layer of the endometrium, of which the lumen diameter changes periodically under the influence of ovarian hormone
levels; (B) Remodeling of the uterine spiral arteries is insufficient compared to normal pregnant women; (C) Physiological remodeling of the
uterine spiral arteries is witnessed with the thickened spiral arteriole, enlarged lumen, and increased blood flow speed.
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addition to the removal of the N-terminal structural domain by

hydrolases and regulation by endogenous inhibitors, the

regulation of MMP at the gene transcription level is influenced

by various cytokines and growth factors, which may closely

related to abortion.

VEGF plays a vital role in embryo implantation by

participating in placental development and improving

endometrial tolerance. It acts mainly through binding to

tyrosine kinase receptors, including Flt-1, kinase insert domain

receptor (KDR, also termed VEFGR-2), Flt-4 (also termed

VEGFR-3), with Flt-1 also being expressed in macrophage cell

lineage cells (106–108). Lash (109) explored changes in the

expression of VEGF and its receptors in the endometrium of

women possessing a history of recurrent miscarriage and

proposed that the expression level of VEGF-A was decreased.

In another study,He and Chen (110) detected the amount of

VEGF protein in the early chorionic villous tissue of patients

with recurrent miscarriage by western blot and found that the

amount of VEGF protein was downregulated in the early

chorionic villous tissue of patients with recurrent miscarriage

(0.79 ± 0.40) compared to the control group (1.01 ± 0.37). The

association of the ERK-VEGF/MMP-9 signaling pathway with

the epithelial-mesenchymal transitionprocess can be observed in

primary hepatocellular carcinoma cells (111, 112). Indeed, the

underlying cause of VEGF dysregulation in recurrent

miscarriage remains unknown, and genetic variation may be

one of the potential causes (113). Yan, Fang (33) showed that the

MMP2-735T allele and the MMP9-1562T allele might be

associated with RSA risk. Among them, the MMP9-1562T

allele was also associated with preterm birth (114). Due to the

critical role of VEGF and MMP in the placental implantation

process, in an analysis of blood and follicular fluid from women

with multiple implantation failures,Benkhalifa (115) suggested

that circulating MMP-7 and VEGF could serve as potential

predictive biomarkers for recurrent implantation failure.

IFN-g is a soluble dimeric cytokine,which are higher in the

peripheral blood of non-pregnant women with recurrent

miscarriage than in the healthy population, suggesting IFN-g
as a potential risk factor for patients with RSA (116, 117). This is

consistent with the finding that IFN-g reduces MMP-2 secretion

and trophoblast invasiveness (118). Recognizing the relationship

between maternal Th1/Th2 cytokines and unexplained recurrent

spontaneous abortion (URSA) helps in the early diagnosis of

URSA as well as treatment monitoring, and IFN-g/IL-4 in the

early diagnosis of URSA reduces the rate of missed diagnoses

(119, 120). In addition to IL-4, IL-6, IL-1, and IL-12 can be

found at altered levels in patients with RSA (121–123) (Table 1).
5.3 Trophoblastic disease of pregnancy

Gestational trophoblastic disease (GTD) is caused by

allogeneic embryo transfer and includes a series of interrelated
Frontiers in Immunology 08
disorders, staphyloma, invasive staphyloma, choriocarcinoma,

placental site trophoblastic tumors, and epithelioid trophoblastic

tumors (136). Gestational trophoblastic diseases are

characterized by vascular abnormalities in the trophectoderm

with an imbalance in the expression of MMP and its

inhibitors (137).

Several clinical studies have shown that the imbalance

between activation and inhibition of MMP-2 plays an

important role in the pathogenesis, progression, and metastasis

of GTD and that MMP-2 is predominantly expressed in the

syncytial trophoblast of gravida (138), as well as a higher positive

rate for MMP-2 and TIMP-2 in gestational trophoblastic tumors

compared to normal villi (139). In addition, those with

malignant potential had higher MMP-9/TIMP-1 ratios than

those without malignant transformation and normal villous

tissues, illustrating its potential as a predictor (140). In an in

vitro study using 0,5,10,25,50,100,200 mg/L IL-12 to treat human

choriocarcinoma cell line JEG-3, it was observed that the overall

expression level of MMP-9 was reduced by IL-12 treatment

compared to the control, but increased with increasing IL-12

concentration, while application of 5 mg/L IL-12 observed that

MMP-9 expression was downregulated with time (0,24,36,48,72

hours) (141). IL-12 coordinates the involvement of MMP-9 in

cell invasion in a dose- and time-dependent manner and is one

of the possible mechanisms of choriocarcinoma development.

MMP may be involved in the invasive and metastatic

potential of choriocarcinoma, which has high expression of

MMPand low expression of its inhibitors. Compared to

choriocarcinoma, placental site trophoblastic tumor has low

expression of MMP and increased expression of inhibitors of

MMP, which explains the lower invasiveness of placental site

trophoblastic tumor compared to choriocarcinoma (142).
6 Therapeutic potential of
MMP and inhibitor in
pregnancy-related diseases

The role of MMP in the maternal-fetal interface makes it a

promising target for immunotherapy. Overall, MMP is inhibited

by both endogenous and exogenous inhibitors, with TIMP

acting as the predominant endogenous inhibitor of MMP (143).

TIMP N-terminus folds as a single unit with TIMP attached

to the active sites of MMP to inhibit its functions, and TIMP-1,

TIMP-2, TIMP-3, and TIMP-4 homologous TIMP have been

identified, of which TIMP-1 and TIMP-3 are glycoproteins

(144). Intriguingly, in general, a single TIMP can inhibit

multiple MMP with different effects, e.g., TIMP-1 can act

simultaneously on MT1-MMP, MT3-MMP, MT5-MMP, and

MMP-19 (145). Furthermore, TIMP-3 can even inhibit

metalloproteinases other than MMP (146). The inability to

specifically target specific MMP may be one of the reasons for
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the multiple side effects seen in clinical trial studies related to

TIMP. This problem seems to be solved by monoclonal

antibodies with high specificity and affinity for specific MMP,

such as monoclonal antibodies REGA-3G12 and REGA-2D9

that react specifically with MMP-9 without cross-reacting with

MMP-2 (5).

Currently, there are extensive mechanistic studies and

preliminary clinical attempts regarding MMP and its inhibitor

in intestinal inflammatory diseases, vascular diseases, fibrotic

lesions, and tumor-related diseases. Serum MMP-3 and MMP-9

levels have been considered good markers of ulcerative colitis

(UC) and inflammatory bowel disease (IBD) associated with

some clinical stages (147–149). The selective MMP inhibitor

ND-322 in a melanoma orthotopic mouse model can inhibit

tumor growth and metastatic processes by targeting MMP-2 and

MT1-MMP, providing a new avenue for adjuvant treatment

options for aggressive melanoma (150). In addition, EMMPRIN

is an attractive target in the treatment of oncological diseases due

to its pro-angiogenic and pro-metastatic properties. Walter,

Simanovich (42) designed a novel epitope-specific antibody

against EMMPRIN that inhibits the secretion of MMP-9 and
Frontiers in Immunology 09
VEGF, shifting the tumor microenvironment of macrophages

from an anti-inflammatory microenvironment dominated by

TGF-b to one that is less immunosuppressive, thus allowing

stimulated macrophages to perform antibody-dependent

cytotoxic effects (ADCC) and kill tumor cells. There are

clinical applications for EMMPRIN antibodies, such as

Licartin, which has been approved by the Chinese Food and

Drug Administration as a therapeutic anti-hepatocellular

carcinoma radioimmune agent that is effective in reducing

recurrence of hepatocellular carcinoma and prolonging

survival in patients with advanced hepatocellular carcinoma

after in situ liver transplantation (OLT) (151). Application of

50 mM concentration of docosahexaenoic acid (DHA) in human

breast cancer cell line MDA-MB-231 resulted in 80% cell growth

inhibition observed, while DHA inhibited breast cancer

proliferation in vitro mainly by blocking the Cox-2-PGE2-NF-

kB cascade to achieve inhibition of MMP-2 and MMP-9

transcription (152). DHA, a typical w3-polyunsaturated fatty

acid (w3-PUFA), is one of the important unsaturated fatty acids

in the body, generally from fat-rich fish, and is now widely

recommended in cl inical applicat ions for nutrient
TABLE 1 Interleukin levels in normal human pregnancy and recurrent spontaneous abortion.

Interleukin(IL) Specimen Number(n) Normal Pregnancy
(pg/ml)

RSA
(pg/ml)

Trend Method Reference

IL-1b Placenta 15:15 1.00* 53.58* ↑ qPCR (123)

IL-2 Peripheral blood mononuclear cell 32:21 378.6 ± 64.9 1829.4 ± 514 ↑ ELISA (124)

IL-4 Serum 135:135 22.72 ± 15.34 8.76 ± 2.60 ↓ ELISA (125)

IL-6 Decidua 40:35 – – ↑ RT-PCR (126)

IL-6 Serum 40:60 0.6 ± 0.2 6.7 ± 0.9 ↑ ELISA (127, 128)

IL-10 Serum 25:24 307.7 ± 188.6 144.0 ± 106.5 ↓ ELISA (117, 129)

IL-12 Serum 18:29 8.00 12.40 ↑ ELISA (121)

IL-15 Placenta 15:12 1.00* 31.70* ↑ qRT-PCR (130)

IL-17 Serum 40:60 1.5 ± 0.1 62.7 ± 7.8 ↑ ELISA (127)

IL-18 Placenta 15:15 1.00* 4.90* ↑ qPCR (131)

IL-22 Decidua 11:9 5.1(3.1-5.8)** 2.9(2.0-4.4)** ↓ qRT-PCR (132)

IL-25 Trophoblast cell 20:11 3.85(3.6-4.51)# 5.18(4.46-5.76)# ↓ qPCR (133)

IL-27 Decidua 18:16 – – ↓ qRT-PCR (134)

IL-33 Decidua 6:6 – – ↓ qPCR (135)

IL-35 Serum 40:60 89.36 ± 33.5 54.48 ± 3.1 ↓ ELISA (127)

Values represent means ± standard deviation. Numbers shows n(normal pregnancy):n(recurrent spontaneous abortion).
* means the concentration multiplier of RSA based on normal pregnancy, which is considered to be base 1.
** means the results are calculated in DDCt, and # in DCt. The range of quartiles is shown in parentheses.
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supplementation and preventing preterm birth in pregnant women

(153, 154), for which the preventive function is supported by in

vitro experiment, animal experiment and clinical study (155–157).

These findings provide crucial preclinical evidence for using DHA

in chemoprevention to overcome potential therapeutic options for

the corresponding cancers.

In the field of female pregnancy, MMP and its inhibitors

have also shown surprising promise for application. Currently,

the most effective treatment for PE remains the termination of

pregnancy, while the incidence of preterm births will inevitably

increase. Measuring the expression levels of MMP-2 or MMP-9

in serum or amniotic fluid during pregnancy may serve as a new

biomarker for predicting or monitoring PE while quantifying

changes in the activity of MMP by, for example, measuring

protein hydrolysis products in serum may also help in the

diagnosis, condition monitoring and treatment evaluation of

patients with PE. Immunotherapeutic approaches play an active

role in RSA (158). Since the underlying cause of RSA is still

unknown, several new therapeutic approaches have been

proposed to treat RSA, including low-molecular heparin,

corticosteroids, intravenous immunoglobulin, or leukapheresis,

but none of them have proven their effectiveness with large-scale

data to date (116). Immunotherapy regimens based on MMP

may be able to give a new direction to RSA. Interestingly,

patients with RSA may be associated with metabolic

dysregulation, such as hyperglycemia, which can affect MMP/

TIMP regulation, which may provide new evidence to support

clinical glycemic regulation in RSA patients (159, 160).

Exploring the expression studies of MMP and TIMP members

in different gestational trophoblastic diseases can help screen

potential molecular biological markers for GTD diagnosis,

determine the degree of disease malignancy and prognosis,

and also provide possible therapeutic targets. Selective

inhibitory antibodies related to MMP could be used for future

treatment of gestational trophoblastic diseases. Particular

inhibitory antibodies to MMP-9 and MMP-14 have been

developed and shown to be effective in inhibiting tumor

growth and metastasis (161), but their clinical efficacy is

currently uncertain.

Despite the significant progress now acquired in MMP

inhibitor research, doxycycline is the only MMP inhibitor

approved by the FDA (44). Currently, MMP inhibitor

therapies have not been applied in clinical practice in

obstetrics and gynecology. Until we fully understand their

potential mechanisms and corresponding pharmacokinetic

profiles in embryo implantation and pregnancy-related

diseases, the related clinical applications of MMP inhibitor

immunotherapy should be cautious.
Frontiers in Immunology 10
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MMP can be secreted by various cells and is involved in

processes such as tissue remodeling and angiogenesis. This paper

covers the immunomodulatory mechanisms of MMP and its

inhibitors at the maternal-fetal interface. However, due to the

difficulty of obtaining specimens at all stages of gestational age,

most existing studies have focused on maternal-fetal interface

studies at early gestation or delivery, and how MMP plays a role

in mid-and late pregnancy has not been elucidated, which may be

one of the future research directions. This paper offers the possibility

of using MMP and TIMP as targets or clinical protocols for

immunotherapy in pregnancy-related diseases. However, future

challenges, such as preparation of specific targeting agents and

clinical side effects beyond expectations, still need to be addressed.
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