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Introduction: Metabolic rewiring satisfies increased nutritional demands and

modulates many oncogenic processes in tumors. Amino acid metabolism is

abnormal in many malignancies. Metabolic reprogramming of amino acids not

only plays a crucial role in sustaining tumor cell proliferation but also influences

the tumor immune microenvironment. Herein, the aim of our study was

to elucidate the metabolic signature of amino acids in hepatocellular

carcinoma (HCC).

Methods: Transcriptome profiles of HCC were obtained from the TCGA and

ICGC databases. Based on the expression of amino acid metabolism-related

genes (AAMRGs), we clustered the HCC samples into two molecular subtypes

using the non-negative matrix factorization algorithm. Then, we constructed

the amino acid metabolism-related gene signature (AAMRGS) by Cox

regression and LASSO regression. Afterward, the clinical significance of the

AAMRGS was evaluated. Additionally, we comprehensively analyzed the

differences in mutational profiles, immune cell infiltration, immune

checkpoint expression, and drug sensitivity between different risk subgroups.

Furthermore, we examined three key gene expressions in liver cancer cells by

quantitative real-time PCR and conducted the CCK8 assay to evaluate the

influence of two chemotherapy drugs on different liver cancer cells.

Results: A total of 81 differentially expressed AAMRGs were screened between

the two molecular subtypes, and these AAMRGs were involved in regulating

amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a
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high value for prognosis prediction in HCC patients. Besides this, the two

AAMRGS subgroups had different genetic mutation probabilities. More

importantly, the immunosuppressive cells were more enriched in the

AAMRGS-high group. The expression level of inhibitory immune checkpoints

was also higher in patients with high AAMRGS scores. Additionally, the two

AAMRGS subgroups showed different susceptibility to chemotherapeutic and

targeted drugs. In vitro experiments showed that gemcitabine significantly

reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly

inhibited Huh7 proliferation. The five HCC cells displayed different mRNA

expression levels of GLS, IYD, and NQO1.

Conclusions: Our study explored the features of amino acid metabolism in

HCC and identified the novel AAMRGS to predict the prognosis, immune

microenvironment, and drug sensitivity of HCC patients. These findings

might help to guide personalized treatment and improve the clinical

outcomes of HCC.
KEYWORDS

hepatocellular carcinoma, amino acid metabolism, prognosis, immune
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Introduction

According to the global cancer statistics of 2020,

hepatocellular carcinoma (HCC) is still one of the top 10 most

common malignancies and the third leading cause of cancer-

related death (1). The high mortality rate of HCC is mainly due to

the fact that symptoms are often insidious until the late stage, and

the diagnosis is delayed (2). In such cases, the majority of patients

with advanced HCC are not amenable to curable surgical

treatment. Over the past decade, multi-targeted tyrosine kinase

inhibitors, including sorafenib and lenvatinib, have been regarded

as the first-line treatment drug for late-stage HCC patients (3). In

recent years, immune checkpoint inhibitors have been used as

second-line drugs with the development of immunotherapy (4).

However, the survival time of HCC patients is only extended by a

few months, and the overall prognosis is still unsatisfactory.

Exploring the intrinsic features of HCC and identifying a new

predictive biomarker are imperative to improving the clinical

efficacy and prognosis of HCC patients.

Metabolic reprogramming is a well-known hallmark of cancer.

When suffering from a severe nutritional crisis, the metabolism of

tumor cells is significantly altered to meet their growth requirements

(5). In recent decades, increasing studies have revealed the alteration

of metabolic profiling in cancers (6–8). The activation of abnormal
AMRGs, amino acid

tabolism-related gene

02
metabolic pathways not only causes persistent proliferation of tumor

cells but also affects the tumor microenvironment (9). Amino acid

metabolism is critical for maintaining redox homeostasis,

biosynthesis, providing energy-producing metabolic intermediates,

and modulating epigenetic modifications (10). Recently, many

studies have emphasized the vital role of amino acid metabolism

reprogramming in tumors. For instance, reprogramming glutamine

metabolism provides a carbon source for de novo synthesis of fatty

acids to support tumor growth, leading to liver cancer cells being

resistant to sorafenib (11). Tong et al. reported a close relationship

between impaired tyrosine catabolism and poor prognosis in HCC

(12). Silencing tyrosine catabolic enzyme in liver cells increases

cellular dependence on glutamine. Additionally, amino acid

metabolism has essential effects on the immune response. As the

predominant immune effector cells, the functional status of T cells is

related to anti-tumor immunity. Some studies found that elevated 5-

methylthioadenosine and S-adenosylmethionine drive T cells from

effector to depleted state (13). Targeting the methionine recycling

pathway may be a feasible therapeutic strategy to enhance immunity

in HCC. Besides, enhanced glutamine metabolism driven by

HMGB1 promotes tumorigenesis and hampers immunotherapy

efficacy (14). Thus, a better understanding of the amino acid

metabolic profile in HCC is necessary to improve prognosis and

treatment sensitivity for patients.

Here, we focused on the characteristics of amino acid

metabolism in HCC and systematically analyzed its clinical

significance for immunotherapy and molecular therapeutics.

First, we identified two molecular subtypes based on the
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expression of amino acid metabolism-related genes (AAMRGs)

and compared the different molecular features between the

subtypes. Then, the amino acid metabolism-related gene

signature (AAMRGS) was constructed for prognosis prediction.

Further, we explored the implications of the AAMRGS on

mutational profile, immune microenvironment, and drug

sensitivity. The results suggested that the novel AAMRGS is of

significant value in improving outcomes and therapeutic efficacy

of HCC.
Materials and methods

Data collection and processing

The genomic data of RNA sequencing and clinical

information for HCC were acquired from the TCGA (https://

portal.gdc.cancer.gov/) and ICGC databases (https://dcc.icgc.org/

). Samples with survival time ≥ 30 days were included in the study.

To ensure the validity of the results, we took the TCGA dataset as

the training cohort and the ICGC dataset as the validation cohort.
Clustering analysis

We downloaded the set of AAMRGs (REACTOME_

METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES)

from the Molecular Signatures Database (MSigDB, version 7.5.1).

After overlapping with TCGA-LIHC RNA sequencing data, we

acquired the expression profile of 374 genes related to amino acid

metabolism in all liver cancer samples. Before clustering analysis,

AAMRGs were subjected to the univariate Cox regression analysis

to obtain the genes associated with the overall survival (OS) (p <

0.01). Then, we performed the non-negative matrix factorization

(NMF) consensus clustering with the R package NMF, which was

based on the expression of AAMRGs in each sample. The optimal k

value for the clustering was determined when the cophenetic

correlation coefficient started to fall. Besides, we conducted the

principal component analysis (PCA) to assess whether samples

were grouped correctly.
Gene set variation analysis

The gene set variation analysis (GSVA) was used to compare

the enrichment of KEGG and hallmark gene sets in

clustering groups.
Differentially expressed AAMRGs

The limma package was applied to screen the differentially

expressed AAMRGs between the clustered subgroups. The |log2
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fold change (FC) | > 1 and false discovery rate (FDR) < 0.05 were

set as filtering criteria. To further understand the potential

molecular functions of genes, we conducted the GO and

KEGG enrichment analysis.
Construction and verification of the
AAMRGS

Univariate Cox regression analysis was performed to screen

out the differentially expressed AAMRGs related to prognosis (p

< 0.05) in the training cohort. Next, prognostic AAMRGs were

further screened by the least absolute shrinkage and selection

operator (LASSO) regression analysis to eliminate over-fitting

between genes. Then, we obtained AAMRGs and their

corresponding regression coefficients included in the final

signature construction using the multivariate Cox regression

analysis. Based on this, AAMRGS score = expressiongene1 ×

coefficientgene1 + expressiongene2 × coefficientgene2 + … +

expressiongene(n) × coefficientgene(n). We calculated the

AAMRGS score of all samples in the training and validation

cohorts. According to the median AAMRGS score, patients were

stratified into the AAMRGS-low and the AAMRGS-high groups.

The Kaplan-Meier (KM) survival analysis was performed to

compare the difference in survival time between the two

subgroups. To assess the predictive performance of the

AAMRGS score, we conducted the time-dependent ROC curve

analysis and calculated the area under curve (AUC) value at 1, 3,

and 5 years of the AAMRGS. Subsequently, the Cox

proportional hazards regression model was used to evaluate

the independent prognostic value of the AAMRGS. In addition,

we probed the correlation of the AAMRGS score with

clinicopathological factors.
Estimation of mutation status

Somatic mutation data of HCC samples were downloaded

from the TCGA portal. We calculated the tumor mutation

burden (TMB), which was defined as the total number of

somatic gene coding errors, base insertion, deletion, or

substitution detected per million bases. The mutation

landscape in the AAMRGS-low group and the AAMRGS-high

group was created by the R package maftools. Furthermore, we

evaluated whether the TMB combined with the AAMRGS was

an essential factor influencing survival.
Immunocyte infiltration and
immune function

The CIBERSORT algorithm with 1000 permutations was

applied to infer the relative fraction of 22 types of infiltrating
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immunocytes based on the expression profile of HCC samples

(15). Then, we compared the differences in the level of immune

cell infiltration between subgroups. According to the 29

immune-related gene sets, the single sample gene set

enrichment analysis (ssGSEA) was carried out to evaluate the

immune status (16). Subsequently, the analysis results of

differences in immune function were visualized by bar graphs.
Immune checkpoint and
immunologic signature

Considering that immune checkpoints are important targets

for immunotherapy, we contrasted their expression level in the

AAMRGS-low and the AAMRGS-high groups. Besides, we

downloaded immunologic signature gene sets from the

MSigDB database. Gene set enrichment analysis (GSEA) was

performed to acquire the enrichment score of immune features

among the two groups.
Screening for potential drugs

The Cancer Genome Project (CGP) database contains

whole-genome gene expression data before drug treatment and

the sensitivity of 138 drugs in over 700 cell lines (17). Based on

the data from the CGP, we predicted the cl inical

chemotherapeutic response in different AAMRGS groups

using the R package pRRophetic (18), which provides a

statistical model to derive the IC50 value of drugs.
Cell culture

The human normal hepatocyte MIHA and HCC cell lines

(Hep3B, Huh7, HepG2, HCCLM3) were derived from our

laboratory depository (19). The SNU449 cell line was kindly

gifted by Professor Yilei Zhang (Xi’an Jiaotong University). All

cells were cultured in the Dulbecco’s Modified Eagle’s Medium

(DMEM, CellMax) supplemented with 10% fetal bovine serum

(ExCell Bio) and antibiotics (100 mg/mL streptomycin and

100 U/mL penicillin, Gibco) at 37°C with 5% CO2.
RNA extraction and quantitative
real-time PCR

Total RNA was extracted from cells by the Trizol method

(Invitrogen). According to the manufacturer’s instruction, 1mg
of RNA was reverse transcribed to cDNA using the ABScript III

RT Master Mix for qPCR (ABclonal). Then, gene expression

levels were measured by Bio-Rad CFX96 real-time system using
Frontiers in Immunology 04
2X Universal SYBR Green Fast qPCR Mix (ABclonal). For

normalization, GAPDH was used as the internal reference

gene. The relative gene expression was calculated using the

2−DDC t method . Pr imer sequences were l i s t ed in

Supplementary Table S1.
Drug treatment and cell
proliferation assay

HCC cells (5000 cells/well) were seeded in 96-well plates and

grown overnight. Then, the cells were treated with rapamycin

(10 nM, MCE) or gemcitabine (16 mM, MCE) for 48h. Control

cells were treated with DMSO. CCK8 assay (Elabscience) was

performed to detect cell proliferation according to

the instruction.
Statistical analysis

In this study, all statistical analyses were completed in R

software (version 4.1.1). The Wilcoxon rank-sum test was used to

compare the two groups. Multiple group comparison was

performed by the Kruskal-Wallis test. The log-rank test was

applied to survival analysis. The prognostic value of the

AAMRGS was assessed by the Cox regression model.

Correlations were performed using Spearman’s rank correlation

test. A p-value less than 0.05 was considered significant.
Results

Identification of two amino acid
metabolism-related molecular subtypes

There were 374 AAMRGs ob ta ined f rom the

“REACTOME_METABOLISM_OF_AMINO_ACIDS_

AND_DERIVATIVES” gene set. In the TCGA cohort, we

screened 75 AAMRGs associated with the prognosis through

the univariate Cox regression analysis (Supplementary

Table S2). Then, the HCC samples from the training cohort

were subjected to NMF consensus clustering analysis based on

the expression matrix of prognostic AAMRGs. As shown in

Figure 1A, when the value of k was 2, the cophenetic correlation

coefficient began to decline. In addition, the heatmap revealed

the consensus matrix for k = 2 (Figure 1B). Consequently, the

HCC samples were separated into two clusters, including C1 (n

= 128) and C2 (n = 215). To validate the grouping result of the

cluster analysis, we performed the PCA. The samples of two

molecular subgroups were clearly separated as in Figure 1C.

Meanwhile, the KM survival curve showed the difference in OS

between the C1 and C2 groups (Figure 1D).
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Characteristics of the two
molecular subtypes

To better understand the molecular features of the two

clusters, we performed the GSVA to determine KEGG and

hallmark gene sets enriched in different clustering groups. As a

result, amino acid metabolism-related signaling pathways were

more enriched in the C2 group, such as alanine aspartate,

glutamate, arginine, and proline metabolism (Figure 2A). The

enrichment results of hallmark gene sets showed that the
Frontiers in Immunology 05
metabolism and synthesis of substances were more active in C2

(Figure 2B). Therefore, the two clusters had different molecular

characteristics and displayed different metabolic states.
Functional analysis of differentially
expressed AAMRGs

There were 81 differentially expressed AAMRGs between C2

and C1 groups. Among them, 52 AAMRGs were upregulated in
A B

DC

FIGURE 1

The NMF consensus clustering analysis identified two amino acid metabolism-related molecular subtypes for HCC samples. (A) Factorization
rank for k = 2 to k = 10. (B) The heatmap of consensus clustering matrix when the k=2. (C) PCA validated the sample clustering analysis results.
(D) KM survival analysis of the two molecular subgroups.
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the C2 group, while 29 AAMRGs were down-regulated

(Supplementary Figure S1). The GO enrichment results

indicated that differentially expressed AAMRGs were mainly

involved in the amino acid metabolic process and binding with

bioactive substances (Table 1). Results of KEGG showed that

these genes participated in the metabolism and biosynthesis of

amino acids (Table 2).
Frontiers in Immunology 06
Development of the AAMRGS and
evaluation of its prognostic significance

To construct the AAMRGS, first, we screened 28 differentially

expressed AAMRGs associated with OS in the training cohort

using the univariate Cox regression analysis (Supplementary

Table S3). Then, by the LASSO algorithm and multivariate Cox
A

B

FIGURE 2

Heatmap showed the molecular characteristics of two different clustering groups. (A) KEGG. (B) Hallmark gene sets.
TABLE 1 GO enrichment results of differentially expressed AAMRGS.

Ontology ID Description Count Adjust p-value

BP GO:0006520 cellular amino acid metabolic process 53 3.21E-71

BP GO:1901605 alpha-amino acid metabolic process 46 1.87E-69

BP GO:0009063 cellular amino acid catabolic process 38 7.95E-64

BP GO:1901606 alpha-amino acid catabolic process 34 5.50E-58

BP GO:0016054 organic acid catabolic process 42 3.86E-55

CC GO:0005759 mitochondrial matrix 23 9.53E-17

CC GO:0022626 cytosolic ribosome 13 2.05E-14

CC GO:0044391 ribosomal subunit 13 2.08E-11

CC GO:0005840 ribosome 13 4.33E-10

CC GO:0022625 cytosolic large ribosomal subunit 7 5.68E-08

MF GO:0019842 vitamin binding 13 1.16E-11

MF GO:0016645 oxidoreductase activity, acting on the CH-NH group of donors 8 3.62E-11

MF GO:0003735 structural constituent of ribosome 13 6.36E-11

MF GO:0030170 pyridoxal phosphate binding 9 7.83E-11

MF GO:0070279 vitamin B6 binding 9 7.83E-11
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regression analysis, three AAMRGs were selected as optimal

prognosis-related genes to build the final model (Figures 3A–C).

After that, the AAMRGS score of each patient in the training and

validation cohorts was calculated. Based on the following formula:

AAMRGS score = GLS expression × 0.061 + IYD expression ×

(-0.132) + NQO1 expression × 0.002. The median value of the

AAMRGS score was served as the cut-off to classify patients into

two subgroups, including the AAMRGS-low and the AAMRGS-

high groups. To assess the predictive value of the AAMRGS, we

performed the KM and ROC analysis. As shown in Figure 3D, the

OS and median survival were significantly short in the AAMRGS-

high group compared with the AAMRGS-low group.

Additionally, we conducted the subgroup survival analysis to

exclude the influence of other clinicopathological parameters.

The results of subgroup analysis also demonstrated that patients

with high AAMRGS scores had poor prognoses (Supplementary

Figure S2). Besides this, the time-dependent ROC showed that the

area under the curve (AUC) value was 0.717, 0.655, and 0.660,

respectively, at one, three, and five years (Figure 3E). Compared to

other clinical factors, the AAMRGS score remained superior for

predicting the prognosis (Supplementary Figure S3). More

importantly, the validation cohort results were consistent with

the above results (Figures 3G, H). In Figures 3F, I, the plots

displayed the distribution of the AAMRGS score, survival status,

and three important genes in the TCGA and ICGC cohorts. To

further assess the independence of the AAMRGS in predicting

prognosis, we performed univariate and multivariate Cox

regression analyses, which suggested that the AAMRGS score

was an independent prognostic factor (Table 3). Furthermore, the

AAMRGS score was closely correlated with clinicopathological

features, including pathological grade, T staging, clinical-stage,

vascular invasion, and virus infection (Figure 4). That viewed, the

AAMRGS was a risk factor and affected the progression of HCC.
Frontiers in Immunology 07
Mutational profile and biological
characteristics of different
AAMRGS subgroups

Genomic mutations are a pathogenic and defining

characteristic of all cancers. The accumulation of genetic

mutations can affect the function phenotype and drive tumor

development. We found that missense mutation was the most

common type of somatic mutation. Besides this, in the

AAMRGS-high group, the top ten genes in terms of mutation

probability were TP53, CTNNB1, TTN, MUC16, MUC4, PCLO,

APOB, RYR2, LRP1B, and OBSCN, while the most frequently

mutated genes were CTNNB1, TTN, TP53, MUC16, ALB,

PCLO, ABCA13, APOB, XIRP2, and AXIN1 in the AAMRGS-

low group (Figures 5A, B). Somatic mutations have an influence

on clinicopathological outcomes and prognosis. Then, according

to the number of gene mutations in each sample, we calculated

the TMB and explored its effect on the prognosis. The KM

survival analysis showed that HCC patients with high TMB had

a shorter survival time than patients with lower TMB

(Figure 5C). Moreover, the group with high TMB and high

AAMRGS scores had the worst prognosis compared with other

groups. The patients with low TMB and low AAMRGS scores

had the best outcome (Figure 5D). These findings indicated that

the genetic mutations differed in the two AAMRGS subgroups,

and the TMB combined with the AAMRGS score was an

important factor affecting survival.

Next, we used the GSEA to gain further biological insight

into the molecular processes of the different AAMRGS

subgroups. We found that the biological processes of the

AAMRGS-high group were mainly enriched in external

encapsulating structure organization, leukocyte migration,

positive regulation of cell activation, adhesion, and locomotion
TABLE 2 KEGG enrichment results of differentially expressed AAMRGS.

ID Description Count Adjust p-value

hsa00260 Glycine, serine and threonine metabolism 15 1.58E-19

hsa01230 Biosynthesis of amino acids 15 3.49E-15

hsa00250 Alanine, aspartate and glutamate metabolism 12 5.12E-15

hsa00270 Cysteine and methionine metabolism 11 8.69E-12

hsa00220 Arginine biosynthesis 8 1.27E-10

hsa00380 Tryptophan metabolism 9 1.07E-09

hsa00330 Arginine and proline metabolism 9 5.85E-09

hsa03010 Ribosome 12 1.40E-07

hsa00350 Tyrosine metabolism 6 5.18E-06

hsa05171 Coronavirus disease - COVID-19 12 7.21E-06

hsa00340 Histidine metabolism 5 7.21E-06

hsa00310 Lysine degradation 7 7.83E-06

hsa00280 Valine, leucine and isoleucine degradation 6 2.07E-05

hsa00630 Glyoxylate and dicarboxylate metabolism 5 2.89E-05

hsa01240 Biosynthesis of cofactors 9 4.01E-05
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A B
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FIGURE 3

Construction of the AAMRGS and assessment of its prognosis value in TCGA and ICGC cohorts. (A) Variation of LASSO coefficients in different
tuning parameters (l). (B) Partial likelihood deviance was plotted against log (l), where l was the tuning parameter. (C) Forest plot of three
AAMRGs screened by multivariate Cox regression analysis. (D) Difference in survival time between the AAMRGS-high and the AAMRGS-low
groups in the TCGA cohort. (E) ROC analysis for the AAMRGS at one, three, and five years in the TCGA cohort. (F) The distribution of the
AAMRGS score, survival status of patients, and expression level of three AAMRGs between the two AAMRGS subgroups in the TCGA cohort.
(G) KM survival analysis for the ICGC cohort. (H) ROC curves for the ICGC cohort. (I) The distribution of the AAMRGS score, survival status of
patients, and expression level of three AAMRGs between the two AAMRGS subgroups in the ICGC cohort.
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(Figure 5E). In contrast, the gene sets of the AAMRGS-low

group were predominantly enriched in the amino acid catabolic

process, fatty acid, and lipid oxidation (Figure 5F). These results

indicated the different biological processes between the two

AAMRGS subgroups.
Frontiers in Immunology 09
Immunocyte infiltration and immune
function in different AAMRGS subgroups

The functional status of the immune microenvironment is

now understood to be inextricably linked to metabolism, which
TABLE 3 Univariate and multivariate Cox regression analyses of the AAMRGS score in the TCGA.

Variable Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

AAMRGS score 4.163 2.249-7.707 5.657E-06 3.224 1.550-6.704 0.002

Age 0.998 0.979-1.016 0.799 1.003 0.984-1.023 0.731

Gender 0.819 0.488-1.376 0.451 1.232 0.672-2.258 0.500

Grade 0.917 0.654-1.286 0.617 1.113 0.756-1.637 0.588

Clinical Stage 2.157 1.649-2.821 1.988E-08 0.738 0.254-2.148 0.578

T 2.098 1.634-2.694 6.461E-09 2.436 0.927-6.400 0.071

N 2.290 0.557-9.419 0.251 1.907 0.317-11.467 0.481

M 4.401 1.371-14.132 0.013 1.233 0.312-4.872 0.765

Fibrosis 0.357 0.201-0.633 0.000 0.580 0.292-1.149 0.118

Vascular invasion 0.950 0.506-1.784 0.873 0.672 0.334-1.352 0.265

Virus infection 3.442 2.039-5.810 3.713E-06 2.031 1.132-3.644 0.018
front
HR, hazard ratio; 95%CI, 95% confidence interval.
A B

D E
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FIGURE 4

Correlation of the AAMRGS score with clinicopathological features in the TCGA-HCC cohort. (A) Pathological grade. (B) T staging. (C) Clinical
staging. (D) Vascular invasion. (E) Virus infection.
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FIGURE 5

Mutational landscape and biological characteristics in the AAMRGS-high and AAMRGS-low groups. (A) Top 10 genes with high mutation
probability in the AAMRGS-high group. (B) Top 10 genes with high mutation probability in the AAMRGS-low group. (C) KM survival analysis of
the TMB. (D) Influence of the AAMRGS score combined with TMB on OS. (E) Enrichment of gene sets associated with biological processes in
the AAMRGS-high group. (F) Enrichment of gene sets associated with biological processes in the AAMRGS-low group.
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is vital for the survival, proliferation, and activation of immune

cells (20). Hence, we explored the relative proportions of 22

immunocytes in different AAMRGS subgroups via the

CIBERSORT algorithm. Our results showed that the

abundances of CD8+ T cells, activated memory CD4+ T cells,

activated natural killer (NK) cells, monocytes, and resting mast

cells were higher in the AAMRGS-low group. Furthermore, the

infiltration of follicular helper T (Tfh) cells, regulatory T cells

(Tregs), M0 macrophages, M2 macrophages, and neutrophils

was significantly higher in the AAMRGS-high group

(Figure 6A). Interestingly, the results of the ICGC cohort

indicated that naive B cells, naive CD4+ T cells, monocytes,

and resting mast cells were more abundant in the AAMRGS-low

group, while M0 macrophages and resting dendritic cells (DCs)

infiltrated more in the AAMRGS-high group (Figure 6B).

Additionally, based on the 29 immune-related gene sets, we

characterized the immune landscape of different AAMRGS

subgroups (Figures 6C, E). As a result, the activity and

abundance of the pathway, molecular function, and immune

cells displayed significant differences in the two subgroups

(Figures 6D, F). There were more infiltrating immune cells

and immune-modulating molecules in the AAMRGS-high

group. Intriguingly, interferon (IFN) response activity was

visibly higher in the AAMRGS-low group. These findings

suggested that amino acid metabolism influenced the tumor

immune microenvironment (TIME) and functional status.
The differences in immune checkpoints
between the two AAMRGS subgroups

Given the importance of immune checkpoints in anti-tumor

immune response and immunotherapy, we further compared

the expression level of immune checkpoints among the two

AAMRGS subgroups. As a result, in the TCGA cohort, TIM3,

CD96, CTLA4, TIGIT, and PD1 displayed significantly higher

expression in the AAMRGS-high group than in the AAMRGS-

low group (Figure 7A). Meanwhile, correlation analysis

indicated that the expression of these immune checkpoints

was positively associated with the AAMRGS score (Figure 7B).

Similar results were acquired from the ICGC cohort

(Supplementary Figure S4).
Drug sensitivity in the different
AAMRGS subgroups

Apart from impacting the immune microenvironment and

anti-tumor immune response, amino acid metabolism also plays

an essential role in driving drug resistance (21). Herein, we

detected the sensitivity of the different AAMRGS subgroups to

chemotherapy drugs and molecularly targeted drugs. The CGP

database was used to predict the IC50 value of each drug for the
Frontiers in Immunology 11
two subgroups. We found that samples in the AAMRGS-high

group were more sensitive to bleomycin, bortezomib,

doxorubicin, gemcitabine, and paclitaxel (Figure 8A).

Meanwhile, samples with low AAMRGS scores showed higher

sensitivity to axitinib, bosutinib, cyclopamine, dasatinib,

docetaxel, erlotinib, gefitinib, nilotinib, and rapamycin

(Figure 8B). These results indicated that there existed

substantial heterogeneity between the two subgroups, and the

AAMRGS score might be a great indicator for predicting

drug responses.
The expression of three AAMRGs in
cells and cell proliferation under
drug treatment

According to the TCGA and ICGC cohorts, the expressions

of GLS and NQO1 were upregulated, and IYD expression was

downregulated in the HCC tissues compared with normal tissues

(Figure 9A, Supplementary Figure S5). To validate the

expression of three signature genes, we examined the mRNA

expression of these genes in the normal liver cell MIHA and liver

cancer cells. The results showed that GLS expression was

elevated in HepG2, HCCLM3, Hep3B, Huh7, and SNU449 cell

lines compared with MIHA. The expression of NQO1 was

increased in HepG2, HCCLM3, and SNU449, while it

decreased in Hep3B and Huh7. IYD expression by HepG2,

HCCLM3, Hep3B, Huh7, and SNU449 cell lines was

significantly lower than that in MIHA (Figure 9B). It could be

seen that the mRNA expression level of the three signature genes

varied among the five liver cancer cell lines. Then, we measured

the proliferation capability of these liver cancer cells under the

predicted drug treatment. The CCK8 assay showed that

gemcitabine significantly reduced SNU449 cell proliferation,

and rapamycin remarkedly inhibited the proliferative ability of

Huh7 (Figure 9C).
Discussion

Metabolic reprogramming is one of the most features of

cancer (22). Tumor cells alter metabolic patterns to meet their

increased nutritional requirements for exponential growth and

proliferation (23). Although it is widely accepted that

dysregulated glucose metabolism is prevailing in many cancer

types, the increased demand for amino acids is also necessary to

sustain cell proliferation and tumor progression. Amino acids

are used not only to synthesize proteins but also to produce

energy or to convert them into other physiologically active

substances (24). Aberrant amino acid metabolism has been

reported to play a crucial role in malignant biological

behaviors of tumors and treatment resistance (25, 26). As the

major metabolic organ, the liver is essential in regulating
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FIGURE 6

The differences in immune cell infiltration and immune function between the different AAMRGS subgroups. (A) The abundance of immune cells
in the AAMRGS subgroups in the TCGA cohort. (B) The abundance of immune cells in the AAMRGS subgroups in the ICGC cohort. (C) Heatmap
of the 29 immune-related gene sets enriched among the AAMRGS-high and AAMRGS-low groups in the TCGA cohort. (D) Differences in
immune function among the two AAMRGS subgroups in the TCGA cohort. (E) Heatmap of the 29 immune-related gene sets enriched among
the AAMRGS-high and AAMRGS-low groups in the ICGC cohort. (F) Differences in immune function among the two AAMRGS subgroups in the
ICGC cohort. * P < 0.05, ** P < 0.01, *** P < 0.001.
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metabolism homeostasis. Alterations in hepatic metabolism

drive the development and progression of HCC. Previous

studies have identified glucose metabolism-related signatures

for HCC to predict prognosis and tumor microenvironment (27,

28). However, there are few studies focused on amino acid

metabolism. Systematically elucidating the metabolic

characteristics of amino acids in HCC is vital for

understanding the mechanisms of pathogenesis to improve

cancer therapy.

In this study, we concentrated on amino acid metabolism

and identified an AAMRGS to predict the prognosis, immune

microenvironment, and therapeutic sensitivity of HCC.

Differing from traditional approaches, we applied the NMF

consensus clustering analysis to identify amino acid

metabolism-related molecular subtypes based on 374 hallmark

genes of amino acid metabolism. Notably, NMF has become one

of the most potent clusterings and feature selection methods.
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NMF provides an efficient dimension reduction approach that

assists in precisely identifying molecular subtypes (29).

According to the results of NMF analysis, the HCC samples

were clustered into two subgroups, including C1 and C2, which

showed significant differences in prognosis and molecular

characteristics. In GSVA analysis, signaling pathways related

to amino acid metabolism and hallmark gene sets associated

with metabolism were markedly enriched in C2. The above

results verified that there was heterogeneity with regard to amino

acid metabolism between the two subgroups. Then, we

compared the differential expression of AAMRGs between the

C1 and C2 groups. Based on the differentially expressed

AAMRGs, the AAMRGS was constructed through Cox

regression analysis and the LASSO algorithm. Three essential

genes were included in this signature (GLS, IYD, and NQO1).

The expressions of GLS and NQO1 were significantly higher in

TCGA and ICGC cancer tissues, while IYD expression was
A

B

FIGURE 7

Association of the AAMRGS scores with immune checkpoints. (A) Differential expression of immune checkpoints between the AAMRGS-high
and AAMRGS-low groups. (B) Correlation analysis of immune checkpoints and the AAMRGS scores. **P < 0.01, ***P < 0.001.
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significantly lower in HCC tissues compared with normal

tissues. We also verified the expression of these genes in the

HCC cell l ine. GLS encodes a phosphate-activated

amidohydrolase, a vital enzyme involved in the modulation of

glutamine metabolism. It has been reported that aberrant GLS

expression promotes cancer cell proliferation (30). IYD is the

crucial regulator of the iodotyrosine metabolism pathway and is

associated with thyroid disease (31). NQO1, a member of the

NAD(P)H dehydrogenase family, has an important function in

redox processes and shows high expression in a variety of solid

tumors (32). Compared with the single gene, our risk signature

consisted of these three AAMRGs (GLS, IYD, and NQO1)

showed accurate predicting ability. Remarkably, the AAMRGS

could distinguish between high- and low-risk populations and

was an independent risk factor for prognosis. Besides, the

AAMRGS score had close correlations with clinical features

(pathological grade, T staging, clinical-stage, vascular invasion,

and virus infection), indicating that the AAMRGS was involved

in tumorigenesis and progression, making it a predictive

biomarker with high clinical value.

Except for the prognostic value of the AAMRGS, we further

explore the intrinsic molecular characteristics of the AAMRGS

subgroups. The missense mutation was most common in HCC,
Frontiers in Immunology 14
as previously reported (33). The genome mutation profile

showed that there were great differences in gene mutation

probabilities between the two AAMRGS subgroups. In the

AAMRGS-high group, the rate of mutation in TP53 was

greatest, up to 35%, compared with only 21% in the

AAMRGS-low group. It is clear that TP53 is the hotspot

mutation in all cancers. TP53 mutation contributes to

carcinogenesis and tumor development (34). Currently, many

studies revealed the critical roles of TP53 in regulating cellular

amino acid metabolism. P53 protein, encoded by TP53, protects

the cell from metabolic stress and facilitates tumor cell survival

by promoting aspartate and serine synthesis to produce energy

(35, 36). Besides, CTNNB1 had a higher probability of mutation

in the AAMRGS-low group. The mutation of CTNNB1 has been

implicated in controlling tumor cell proliferation, differentiation,

and progression, which due to its mutation, led to abnormal

activation of the Wnt/b-catenin signaling pathway (37).

Nevertheless, there were no studies about the function of

CTNNB1 in metabolism. Consequently, the poorer prognosis

in the AAMRGS-high group than in the AAMRGS-low group

might owe to the high TP53 mutation.

Next, we compared the differences in immune cell

infiltration between the two subgroups. The results of our
A

B

FIGURE 8

Drug sensitivity in the different AAMRGS subgroups. (A) Drugs with high sensitivity in the AAMRGS-high group. (B) Drugs with high sensitivity in
the AAMRGS-low group.
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study indicated that the proportions of Tfh cells, Tregs, M0

macrophages, M2 macrophages, and neutrophils infiltration

were significantly increased in the AAMRGS-high group than

in the AAMRGS-low group. It is well known that Tregs and M2

macrophages have negative regulation on anti-tumor immunity.

As the predominant suppressor cells of the immune system,

Tregs promote the M2-like tumor-associated macrophages

accumulation in the TME by inhibiting IFNg from CD8+ T

cells, which enhances their metabolic fitness and pro-tumor gene

expression (38). Besides, the high infiltration of Tregs

contributes to tumor malignancy and is associated with poor

prognoses (39, 40). The regulator effects of macrophages are a

double-edged sword, depending on their polarization state.

Proinflammatory M1 macrophages have anti-tumor properties,
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while anti-inflammatory M2 macrophages inhibit anti-tumor

immunity and promote tumor growth (41). Previous studies

reported the vital role of Hedgehog signaling in regulating the

metabolism and energy consumption of M2 macrophages (42).

Moreover, macrophages polarization towards the M1 state is

enhanced, and that towards the M2 state is reduced under amino

acid deficiency conditions. Except for the macrophages, Tfh cells

and neutrophils have also been reported to be affected by

microenvironmental metabolism (43, 44). Notably, the

infiltration of effector cells of anti-tumor immune response

was higher in the AAMRGS-low group, such as CD8+ T cells,

activated memory CD4+ T cells, activated NK cells, monocytes,

and mast cells. Consistently, the results of ssGSEA analysis also

indicated the two subgroups differed significantly in immune
A

B

C

FIGURE 9

Three signature gene expressions and cell proliferation under drug treatment. (A) Expression of GLS, IYD, and NQO1 between the HCC tissues
and normal tissues in the TCGA database. (B) Validation of the GLS, IYD, and NQO1 expression in the normal liver cell and liver cancer cells by
quantitative real-time PCR. (C) The cell proliferation rate of liver cancer cells after 48h of rapamycin or gemcitabine treatment. *P < 0.05, **P <
0.01, ***P < 0.001.
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cells, immune function, and related signaling pathways. From

these results, it could be seen that amino acid metabolism had a

vital influence on anti-tumor immunity. Therefore, our

AAMRGS score could provide worthy information to predict

immune cell infiltration and functional status in the TIME.

Individualized treatment targeting molecular and immune

characteristics is beneficial in improving the clinical outcomes of

HCC (45). Notably, immune checkpoint inhibitors have shown

great promise for curing malignancies. Antibody agents, such as

PD1/PD-L1 and CTLA4 inhibitors, demonstrate robust and

durable clinical responses (46). However, the therapeutic

efficiency of immunotherapy is not yet satisfactory, especially in

tumors with a low mutation burden. The major unresolved

challenge in immunotherapy for HCC is discovering and

validating predictive biomarkers (4). In our study, the AAMRGS

score exhibited positive correlations with immune checkpoints.

The patients with high AAMRGS scores had higher expression of

PD1, CTLA4, TIM3, CD96, and TIGIT, indicating that patients in

the AAMRGS-high group might be more sensitive to immune

checkpoint inhibitors. Meanwhile, the two AAMRGS subgroups

showed different drug sensitivity to chemotherapeutic and

molecularly targeted drugs. It is worth noting that amino acid

metabolism plays a vital role in anti-tumor immune response and

drug resistance (47). For example, the combination therapy of

arginine metabolizing enzymes and immune checkpoint

inhibitors increases intratumoral MHC expression and increases

the presence of M1 phenotype macrophages, resulting in

synergistic anti-tumor effects (48). Wang et al. reported that the

metabolic reprogramming of amino acids is involved in the

resistance of tumor cells to tyrosine kinase inhibitors (49). In

brief, the AAMRGS had a high value in guiding individualized

therapy. However, our study was based on public databases. We

simply verified the differential mRNA expression of the three

signature genes between the normal liver cell and HCC cells.

Clinically, gemcitabine is a commonly used drug for cancer

treatment (50, 51). Moreover, many kinds of literature have

reported that rapamycin displays anti-tumor activity in patients

(52, 53). So, we examined the inhibitory effect of these two

predicted chemotherapy drugs on different liver cancer cells.

The different HCC cell lines displayed different drug sensitivity

to predicted drugs. We speculated that this discrepancy could be

due to different expression levels of the three key genes. Due to the

highly heterogeneous characteristics of HCC, the intra-tumor and

surrounding microenvironment vary significantly from one

sample to another sample. As a result, our signature needs to be

validated in a large-scale, multicenter, prospective study.

In conclusion, we identified a novel AAMRGS and

comprehensively analyzed its role in prognosis, immune

microenvironment, and treatment sensitivity. The AAMRGS could

discriminate the molecular and clinical features of HCC. Besides, the

AAMRGS was an independent risk factor for prognosis. More

importantly, there was a close relationship between the AAMRGS

and the immune microenvironment. The immune cell infiltration
Frontiers in Immunology 16
and immune checkpoint expression could be predicted by the

AAMRGS, which might reflect anti-tumor immunity and

sensitivity to individualized therapy. Thus, our AAMRGS was a

robust and promising biomarker in predicting clinical outcomes,

immune status, and therapeutic sensitivity of HCC.
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