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When the viruses invade the body, they will be recognized by the host pattern

recognition receptors (PRRs) such as Toll like receptor (TLR) or retinoic acid-

induced gene-I like receptor (RLR), thus causing the activation of downstream

antiviral signals to resist the virus invasion. The cross action between

ubiquitination and proteins in these signal cascades enhances the antiviral

signal. On the contrary, more andmore viruses have also been found to use the

ubiquitination system to inhibit TLR/RLR mediated innate immunity. Therefore,

this review summarizes how the ubiquitination system plays a regulatory role in

TLR/RLR mediated innate immunity, and how viruses use the ubiquitination

system to complete immune escape.
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Introduction

The ubiquitination system is extensively involved in the regulation of innate immune

signaling during virus invasion. Pattern recognition receptors (PRRs), such as Toll like

receptor (TLR) and retinoic acid-induced gene-I like receptor (RLR), will trigger various

host countermeasures in response to pathogen-associated molecular patterns (PAMPs)

or pathogen-induced cell physiology disturbance upon binding to ligand (1). In innate

immune signaling, ubiquitin chains serve as platforms to facilitate protein-protein

interactions that activate downstream innate immune pathways. Conversely, viruses

will also utilize the host ubiquitination system to negatively regulate innate immune

pathways and promote their proliferation. Therefore, the pivotal target for viruses to

bypass antiviral signaling pathways is the ubiquitination system. Viruses utilize the

ubiquitination system in ways including substrate molecular simulation, binding and
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blocking E3-substrate pairs, expressing virus-encoded E3s/

deubiquitinating enzymes (DUBs), and hijacking host E3s/

DUBs (2). Moreover, a method involving the packaging of

ubiquitin chains into newborn virus particles for propagation

in the host has recently been described (3).

Ubiquitin (Ub) is a highly conserved protein found in most

eukaryotic cells. Ubiquitin is composed of 76 amino acids with a

molecular weight of around 8.6 kDa. Ubiquitination refers to the

process of binding ubiquitin to specific target proteins under the

synergistic effect of ubiquitin-activating enzyme E1, ubiquitin-

conjugating enzyme E2, and ubiquitin ligase E3. The human

genome encodes 2 E1s, about 40 E2s, and more than 600 E3s (4–

6), of which E3s play a significant role in the specificity of

ubiquitination. The specific process of ubiquitination is shown

in the figure (Figure 1A). The isopeptide bond formed between

the glycine residue at the carboxyl-terminal of ubiquitin and

another ubiquitin amino-terminal methionine (M1) or the

internal lysine (K) residue connects multiple ubiquitin to form

polyubiquitin chains. The existence of seven Ks and M1 will

create all sorts of ubiquitin chains, including K6-, K11-, K27-,

K29-, K33-, K48-, K63-, and M1 connected homotype or

multiple mixed ubiquitin chains. In addition, similar to the

reversibility of phosphorylation, the conjugated ubiquitin

chains can also be precisely cleaved by the DUBs, resulting in

enhanced protein stability or weakened ubiquitination signal

(1) (Figure 1A).

Ubiquitination was initially found to be involved in protein

degradation, but later studies have found that ubiquitination can

also mediate processes such as protein-protein interactions and

cell signaling (8). For example, proteins modified by ubiquitin

chains linked to K11 and K48 are typically targeted for

degradation by the 26s proteasome (9, 10). When proteins are

modified byM1 or K63-linked ubiquitin chains, these conjugates

adopt extended conformations and enable reversible assembly of

multiprotein complexes, which mainly involves in various non-

proteolytic events. For example, K63-linked ubiquitination

regulates kinase activation in the nuclear factor-kB (NF-kB)
pathway (11). However, there are some exceptions, such as

under autophagic conditions, the adaptor protein p62 is

modified by K63-linked ubiquitin chains, which are recognized

and degraded by lysosomes. Ubiquitination regulates

thefunction, abundance, or subcellular distribution of

proteins involved in almost every cellular process, and its role

in modulating TLR/RLR mediated innate immunity is

increasingly evident (Figure 1B).

In this review, we first introduce the role of the

ubiquitination system in the TLR/RLR mediated innate

immune pathway, further focus on how the body takes

advantage of its ubiquitination system to negatively regulate

the TLR/RLR mediated innate immune pathway and finally

focus on how different viruses use the ubiquitination system to

assist their proliferation.
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Ubiquitination is involved
in TLR signaling

Virus induced TLR signal transduction

At present, 13 TLR family members have been found in

mammals, which recognize different PAMPs (12). TLR3, TLR7,

TLR8, and TLR9 distributed in intracellular vesicles are

primarily involved in recognizing virus-related ligands. For

example, the double-stranded RNA (dsRNA) formed during

virus replication is recognized by TLR3, the viral single-stranded

RNA (ssRNA) is recognized by TLR7 and TLR8, and the

unmethylated DNA sequence of the virus is recognized by

TLR9. TLRs distributed on the cytoplasmic membrane are

mainly involved in bacterial recognition. For example, TLR4 is

ma in l y invo l ved in the recogn i t i on o f bac t e r i a l

lipopolysaccharides (LPS).

TLRs are classified into two categories based on whether they

contain the signaling protein myeloid differentiation factor 88

(MyD88). Except for TLR3, all TLRs mediate immune signal

transduction through MyD88-dependent pathways, while TLR3

induces cytokine production through MyD88-independent

pathways (ie the Toll interleukin 1 receptor homology (TIR)

domain-containing adapter-inducing interferon-b (TRIF)

pathways) (13). Furthermore, TLR4 not only relies on MyD88

to complete signal transduction but also interacts with

recombinant translocation-related membrane protein (TRAM)

to target TRIF to complete downstream signal transduction (14).

After TLR recognized the ligand, all TLRs except for TLR3

recruited the downstream signaling molecule MyD88 through

their TIR domain. Upon ligand stimulation and the interaction

of the death domains of the two molecules, MyD88 recruits IL-1

receptor-related kinase-4 (IRAK4). Due to conformational

change, IRAK4-IRAK1 loses affinity for MyD88 and binds to

tumor necrosis factor (TNF) receptor-associated factor 6

(TRAF6) through its TRAF6 binding motif to promote the

activation of downstream signaling molecules. TRAF6 is an E3

that catalyzes the formation of K63-linked ubiquitin chains

through Ubc13 and Uev1A to recruit and activate

transforming growth factor-b (TGF-b) activated kinase 1

(TAK1), TAK1 binding protein 1 (TAB1), TAB2/3 kinase

complex (15). Upon stimulation, TAB2 recognizes the

unanchored K63-linked polyubiquitin chains to bind to

TRAF6, thereby promoting the binding of TAK1 to TRAF6.

This combination leads to the autophosphorylation of TAK1.

Phosphorylated TAK1 will further activate the IkB kinase (IKK)

complex and eventually lead to the activation of MAP kinase (c-

Jun N-terminal kinase (JNK) -p38, MAPK) and NF-kB to induce

the production of inflammatory factors (15–17) (Figure 2).

Unlike other members of the TLR family, TLR3 signaling is

entirely dependent on the TRIF. This pathway can mediate the

production of pro-inflammatory cytokines and type I interferon
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(IFN-I) (19–22) (Figure 2). TLR3 activates TRAF3 through

TRIF, thereby recruiting IKK/TRAF family member-associated

NF-kB activator (TANK) binding kinase 1 (TBK1) and

promoting TBK1 phosphorylation. The phosphorylation of

TBK1 further leads to the phosphorylation and nuclear

translocation of IFN regulatory factor 3 (IRF3), thereby

facilitating IFNb expression. The TLR3-TRIF pathway also

activates NF-kB in a similar way to the MyD88-dependent
Frontiers in Immunology 03
pathway and ultimately induces various inflammatory

factors (Figure 2).
Ubiquitination mediates TLR signaling

Activation of downstream signaling molecules NF-kB and

IRF3 in TLR signaling requires polyubiquitination of
FIGURE 1

(A) The dynamic balance between ubiquitination and de-ubiquitination. First, in the ATP energy supply and the presence of magnesium ions, E1
(blue) activates the ubiquitin by forming a covalent thioester bond through the cysteine at its catalytic site and the diglycine motif at the
carboxyl end of ubiquitin (shown in yellow). The rest of ubiquitin (shown in gray) is non-covalently bound to the adenylation domain of E1
through its AMP-modified carboxyl terminal. The activated ubiquitin is transferred to the cysteine of the catalytic site of E2 through the diglycine
motif of E1 to form the E2~ubiquitin thioester complex. Finally, E3 and E2-ubiquitin bind and jointly recognize and bind to the substrate.
Depending on the type of E3, the way ubiquitin binds to the substrate is also different. For example, RING E3 ligase directly promotes the
transfer of ubiquitin from E2 to the substrate. In contrast, HECT or RBR E3 ligase forms a thioester intermediate with ubiquitin before the
transfer and then promotes the binding of ubiquitin to the substrate. Monoubiquitin chains or polyubiquitin chains are formed on substrates
under the catalysis of ubiquitin-specific protease. Moreover, DUBs can deconjugate ubiquitin chains from ubiquitinated substrates, thereby
reversing the ubiquitination process and regenerating free ubiquitin molecules. The figure is referenced from Figure 1 of the ubiquitin system: a
critical regulator of innate immunity and pathogen-host interactions (1). (B) The classification of ubiquitin chains and the functions of various
ubiquitin chains. Different types of ubiquitination modifications lead to different physiological activities of substrates. Branched, K48-, and K11-
linked ubiquitin chains typically target substrates for degradation in the 26s proteasome, while K63- and M1-linked ubiquitin chains and mono-
or multi-mono-ubiquitin chains are mainly involved in non-proteolytic events, such as signaling cascades, protein interactions. The figure is
referenced from Figure 1 of Ubiquitin-binding domains - from structures to functions (7).
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intermediate signaling molecules such as MyD88, TRIF, TRAF6,

TAB2/3, NF-kB essential modulator (NEMO), and TRAF3.

Ubiquitination in TLR signaling is mainly divided into K48-

linked and non-K48-linked ubiquitination. Generally, K48-

linked ubiquitination is involved in the negative regulation of

excessive innate immune response, while non-K48-linked

ubiquitination promotes TLR signal transduction during

pathogen infection.

MyD88 recruits signal intermediates including IRAK1,

IRAK4, and TRAF6 through its death domain, and mediates

NF-kB and IRF7 downstream signal transduction. TRAF6

further promotes IRF7 ubiquitination. Activated IRF7

undergoes nuclear translocation and drives the production of

IFN-I (23). TRAF6 also encourages K63-linked ubiquitination

of NEMO, which can recruit the TAB-TAK1 kinase complex

(24). TRAF6 is a signal adaptor molecule essential for TLR

signal transduction (25–27). TRAF6 binds to the Pro-Xaa-Glu

motif at the carboxyl-terminal of IRAK1 and IRAK2 to trigger

the dimerization of its really interesting gene (RING) domain

and activate its E3 activity (28, 29). TRAF6 further cooperates

with the E2 dimer Ubc13/Uev1A to catalyze the K63-linked

ubiquitination of IRAK1 and promote IKK activation (16, 30).

In addition, TRAF6 acts as an intermediate platform

by binding to the K63-linked ubiquitin chain to assist in

the recruitment and activation of TAK1 and IKK (31).

NEMO and TAB1, and TAB2 have ubiquitin-binding

functions. As mentioned earlier, TAB2/3 recruits TAK1 to

ubiquitinated TRAF6.
Frontiers in Immunology 04
However, the role of TRAF6 auto-ubiquitination in TLR

signaling is controversial. Studies have shown that mutations in

the key ubiquitination site K124 of TRAF6 severely impair the

TRAF6-mediated NEMO ubiquitination, and the activation of

TAK1 and IKK (32). Moreover, it was shown that although the

RING finger (RF) domain of TRAF6 is necessary for the

activation of TAK1, the auto-ubiquitination of TRAF6 is not

necessary for the recruitment and activation of TAK1 (33).

However, the above studies all emphasize the importance of

the RING domain of TRAF6 for downstream signal

transduction. It is generally believed that the key of MyD88

signal transduction is the E3 activity of TRAF6. However, when

the E3 inactivated mutants of TRAF6 are expressed in TRAF6 -/-

cells, these mutants can partially retain the TLR/IL-1 signal. It is

worth noting that TLR/IL-1 signal is completely destroyed when

the Pellino1 and Pellino2 inactivated mutants are expressed in

TRAF6 -/- cells (34). In addition, impaired MyD88 signaling was

found in knock-in mice of TRAF6 E3 activity deletion mutants.

MyD88 signaling was also partially preserved in the primary

macrophages and mouse embryonic fibroblasts (MEFs) of the

mice (35). This indicates that Pellino1, Pellino2, and TRAF6

encourage the formation of MyD88-dependent K63-linked

ubiquitin chains in certain cells, but the role of TRAF6 in this

pathway has nothing to do with its E3 activity.

Similar to TRAF6, E3 Pellino can also be combined with E2

Ubc13-Uev1a to catalyze the formation of K63-linked

polyubiquitin chains in vitro, but its activation way is different.

Pellino1 realizes the conversion between active and inactive
FIGURE 2

Ubiquitination and de-ubiquitination in the TLR signal. Upon ligand recognition, most TLR family members (shown in yellow), except TLR3,
recruit the adaptor protein MyD88 and thus initiate a MyD88-dependent pathway involving the signal transduction mediators IRAKs, TRAF6,
TAK1, TAB1, and TAB2, ultimately activating NF-kB transcription factors and MAPKs (shown in green), thereby inducing the production of IFN-I
and inflammatory cytokines. Unlike other TLR family members, TLR3 (shown in yellow) signaling is completely dependent on TRIF (shown in
green). This TRIF-dependent pathway mediates not only the production of proinflammatory cytokines but also the production of IFN-I upon
activation of TLR3 and TLR4. In the blue boxes are the E3s or the DUBs involved in the regulation of this signaling protein. “-” means removing.
The figure is referenced from Figures 1 and 2 of Regulation of Toll-like receptor signaling in the innate immunity (18).
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forms through reversible phosphorylation in vitro. Its

phosphorylation and activation are mainly mediated by signal

molecules such as IRAK1, IRAK4, IKK, and TBK1 (36–38).

Furthermore, studies have shown that in IRAK-deficient cells,

co-transfection of DNA encoding wild-type IRAK1 and Pellino2

can still facilitate the formation of the K63-linked polyubiquitin

chains of IRAK and its binding to the NEMO complex, which

indicates that the formation of K63-linked polyubiquitin chains

can be assisted by Pellino subtypes, thereby contributing to the

activation of downstream signals that depend on IRAK1/

IRAK4 (36).

TLR3/4 agonists can cause the polyubiquitination of kinase

receptor-interacting protein 1(RIP1), but unlike TRAF6, RIP1

itself does not have the function of E3. Therefore, there are

speculations that TRAF6 may mediate the polyubiquitination of

RIP1. Still, the absence of TRAF6 does not affect the signal

transduction of the TRIF-dependent pathway, so the

ubiquitination of RIP1 is mediated by another E3 (39, 40). A

recent study found that the K63-linked polyubiquitination of

RIP1 caused by TLR signal stimulation is mediated by Pellino1, a

member of the highly homologous E3s family (41). Studies have

shown that the loss of Pellino1 can disrupt the ubiquitination of

RIP1 and lead to impaired NF-kB signaling upon TLR3/4 ligand

poly(I:C) stimulation. Consistent with this, Pellino1-/- mice are

resistant to LPS-induced septic shock, so Pellino1 is essential for

TRIF-dependent TLR signal transduction (41). In contrast, in

the MyD88-dependent pathway, Pellino1 seems to have no

activating effect on key intermediate signaling molecules but

instead promotes MyD88 signaling by mediating the K48-linked

ubiquitination degradation of TRAF3 (42). Recently, it has been

discovered that during vesicular stomatitis virus (VSV)

infection, the E3 Triple motif (TRIM) 24 catalyzes the binding

of residues K429/K436 of TRAF3 to the ubiquitin chains linked

to K63, so that TRAF3 can better bind to downstream signal

molecules mitochondrial antiviral signal protein (MAVS; also

known as VISA/Cardif/IPS-1) and TBK1, thereby promoting the

production of related antiviral molecules (43).

The classical IKK complex is composed of three components:

protein kinases IKKa and IKKb, and NEMO (44, 45). Among

them, NEMO, which has no catalytic activity, is pivotal for the

activation of NF-kB signaling. The study found that NEMO

contains a C-terminal zinc finger (ZF) domain and a new type

of bipartite ubiquitin-binding domain (also known as NOAZ) that

can recognize the K63-linked polyubiquitin chains (46, 47).

Moreover, mutations in the above domains, such as NEMO

[D311N], would prevent NEMO from undergoing K63-linked

ubiquitination and impair IKK complex activation, leading to

pigment incontinence and hypohidrosis ectoderm development

poor and immunodeficiency. This indicates that the activation of

the classical IKK complex requires NEMO, which is activated by

ubiquitination. It was proposed that the IKK and TAK1 complex

could be recruited through the K63-linked ubiquitin chains,

thereby assisting TAK1-dependent IKK activation (48). The key
Frontiers in Immunology 05
to TAK1-mediated phosphorylation of IKKa and IKKb is the

linear ubiquitination of NEMO, which is mediated by the linear

ubiquitin assembly complex (LUBAC) (49, 50). The activated

IKKa continues to phosphorylate the IkBa subunit, causing it to

be modified by the K48-linked ubiquitin chains and proteasome

degradation, thereby releasing NF-kB from the cytoplasm and

causing its nuclear translocation (49). With the deepening of

research, it was discovered that NEMO can also bind to K48- and

K27-linked ubiquitin chains (51). It will be very fascinating to

explore the cross-regulatory effects of different types of

polyubiquitination on NEMO.

LUBAC is a heterotrimeric complex composed of SHANK-

associated RH domain-interacting protein (SHARPIN), heme-

oxidized IRP2 ubiquitin Ligase 1 (HOIL-1), and HOIL-1

interacting protein (HOIP, catalytic subunit). LUBAC is also

an E3, which mainly catalyzes the formation of linear ubiquitin

chains (52–55). The discovery of LUBAC has taken a new twist

in the regulation of the IKK complex. Studies have shown that

the affinity of NEMO to the linear ubiquitin chains is one

hundred times higher than that of the K63-linked ubiquitin

chains (56, 57). Furthermore, in HOIL-1-deficient MEFs, IL-1-

induced activation of the classical IKK complex is impaired (49),

and the activation of the IKK complex is restored by adding

LUBAC to the Hela extract lacking this E3 in vitro (58).

Similarly, the IL-1-dependent linear ubiquitin chains could not

be detected in the MEFs of the mutant knock-in mouse [C879S]

in which the E3 HOIP was inactivated, and this blocked the

activation of the classical IKK complex (59). From this, it can

speculate that LUBAC-mediated linear ubiquitin chain

production is indispensable for activating the classical IKK

complex. A recent study showed that the activation of IKKb
was proved to be completed in two steps. First, TAK1 catalyzes

the phosphorylation of IKKb at Ser177, followed by IKKb
autophosphorylation at Ser181 (50). The IL-1-dependent

phosphorylation of IKKa at Ser176 (or IKKb at Ser177) was

blocked in the MEFs of HOIP[C879S] or NEMO [D311N] mice.

Therefore, the linear ubiquitination of NEMO is essential for

TAK1-mediated activation of the IKK complex in vivo (50). The

activation of IL-1-dependent P38a MAPK, JNK1, and JNK2

does not require the formation of linear ubiquitin chains (59).
Ubiquitination negatively
regulates TLR signaling

When compared to other types of ubiquitin chains, K48-

linked polyubiquitin chains typically degrade the target protein

via the proteasome and then quickly terminate signal

transduction to prevent an excessive immune response from

harming the body. In addition, the host DUBs can terminate

innate immune signaling by removing the ubiquitin chain of the

target protein. Such a negative regulation mechanism is

abundant in TLR signals.
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TLR itself is a target of ubiquitination degradation. For

example, the RF protein Triad3A, as an E3, can mediate the

degradation of TLR4/9 without affecting the expression and

signal transduction of TLR2 (60). Similarly, RING finger

protein (RNF) 170 is also an E3, which mediates K48-linked

polyubiquitination after binding to TLR3 and leads to

proteasomal degradation of TLR3 (61). Besides, under poly(I:

C) stimulation, compared with mice lacking the RNF170 gene,

the macrophages of wild-type mice initiate a weaker TLR3-

mediated innate immune response, which further confirms the

above conclusion (61).

Neuregulin receptor degradation protein-1 (Nrdp1) appears

to play a dual role in TLR signaling. On the one hand, it mediates

K48-linked ubiquitination and proteasomal degradation of the

MyD88 to inhibit MyD88-dependent activation of NF-kB and

activator protein-1 (AP-1), as well as the production of

inflammatory factors. On the other hand, Nrdp1 mediates the

K63-linked ubiquitination of TBK1, thereby promoting IFN-I

production (62). Furthermore, the E3 casitas B-lineage

lymphoma (c-Cbl) can also negatively regulate the TLR

signaling by mediating the proteasome degradation of MyD88

and TRIF (63). Through biochemical purification and mass

spectrometry analysis, atrophin-1 interacting protein 2 (AIP2)

was identified as an interacting protein of TRIF. AIP2 interacts

with TRIF and boosts its K48-linked polyubiquitination and

subsequent proteasomal degradation. Moreover, the up-

regulation of pro-inflammatory cytokines and IFN-I was

detected in macrophages of AIP2 knockout mice (64). In

addition, Pellino binds to MyD88 through its C-terminal

extension domain and accumulates on the plasma membrane

in a MyD88-dependent manner, promoting the ubiquitination

and degradation of MyD88, thereby completing the negative

regulation of TLR signaling (65). The K48-linked ubiquitination

and proteasome degradation of MyD88 is also induced by TGF-

b, and this process is mediated by the E3s Smad ubiquitination

regulatory factor 1 (Smurf1) and Smurf2 recruited by Smad6,

which ultimately negatively regulates the pro-inflammatory

signal mediated by MyD88 (66).

Although many E3s are involved in catalyzing the

ubiquitination of TRIF and MyD88, DUBs that mediate the

de-ubiquitination of TRIF and MyD88 are rarely reported.

Although infection with non-typeable Haemophilus influenzae

has been reported to induce K63-linked polyubiquitin at the

K231 residue of MyD88 to promote proinflammatory cytokine

production, cylindromatosis (CYLD) will remove the K63-

linked ubiquitin chain at this residue of MyD88 to negatively

regulate MyD88-mediated signaling (67). Furthermore, studies

have shown that DUB ovarian tumor family deubiquitinase 4

(OTUD4) negatively regulates TLR signaling by removing K63-

linked ubiquitin chains on MyD88 (68). TRIM38 mediates the

binding of TRAF6 and TRIF to the K48-linked ubiquitin chains

to boost their proteasome degradation, thereby negatively

regulating TLR signals and preventing excessive innate
Frontiers in Immunology 06
immunity from damaging the body (69, 70). The study found

that in TANK-/- cells, TLR-mediated activation of NF-kB was

accompanied by increased polyubiquitination of TRAF6, so

TANK may negatively regulate TLR signals by inhibiting the

ubiquitination level of TRAF6 (71). Moreover, after TRAF6

ubiquitinates cellular inhibitor of apoptosis 2 (cIAP2), cIAP2

as an E3 will target the proteasome degradation of TRAF3,

thereby restraining TLR4-mediated signal transduction (24, 72).

b-arrestin belongs to the family of multi-functional proteins. It

forms a complex with TRAF6 after TLR signal activation, and

the formation of this complex inhibits the auto-ubiquitination of

TRAF6, thereby inhibiting the activation of NF-kB and AP-1

(73). Similarly, nucleotide-binding leucine-rich repeat-

containing receptor (NLR) family pyrin domain-containing 3

(NLRC3) can also interact with TRAF6 to attenuate K63-linked

polyubiquitination on TRAF6, resulting in NF-kB signal

transduction being blocked (74). As a DUB, DUBA can

selectively weaken the K63-linked ubiquitination of TRAF3,

assist in the dissociation of TRAF3 from the signal complex

containing TBK1, and negatively regulate the production of

IFN-I mediated by TRAF3 (75).

At rest, NF-kB binds to its inhibitor IkBa and is sequestered

in the cytoplasm. Upon stimulation by upstream signals, IKKb
will specifically phosphorylate Ser32 and Ser36 at the N-

terminus of IkBa. Phosphorylation at these sites is recognized

by the SCFbTrCP complex. The SCFbTrCP complex will further

promote K48-linked ubiquitination and proteasomal

degradation of IkBa. Eventually, the p65 and p50 of NF-kB
combine to form heterodimers, which are released from the

cytoplasm and transferred to the nucleus, thereby promoting the

production of downstream NF-kB-dependent genes (76–78).
Continuous incorrect activation of NF-kB signals will cause

autoimmune diseases, cancer, and inflammation-related

diseases. Therefore, the body will have a negative regulation

mechanism of NF-kB signaling. The orphan nuclear receptor

small heterodimer partner (SHP) has a dual role in regulating

NF-kB signaling. Firstly, SHP prevents the trans-activation of

p65 subunits. Secondly, SHP inhibits TRAF6 ubiquitination and

the activation of NF-kB mediated by TLR signals (79). As a

nuclear E3, PDZ-LIM domain-containing protein 2 (PDLIM2)

can specifically bind to the p65 subunit of NF-kB to promote its

nuclear dissociation and ubiquitin-dependent proteasomal

degradation, thereby negatively regulating NF-kB signaling

(80). Besides, mass spectrometry analysis revealed that

suppressor of cytokine signaling 1 (SOCS1) is a binding ligand

for p65. SOCS1 and p65 associate with each other only within

the nuc leus , SOCS1 fur ther media te s K48- l inked

polyubiquitination and proteasomal degradation of p65

through its SOCS BOX, thereby limiting NF-kB signaling (81).

SOCS1 also interacts with Mal (the adaptor protein for

downstream signa ls of TLR2/4) and mediates i t s

ubiquitination-dependent degradation to rapidly limit the

innate immune response signal transduction (82).
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The ubiquitin-modifying enzyme A20 is necessary for the

termination of TLR signaling, which inhibits TLR signaling-

induced proinflammatory factor production and NF-kB
signaling by removing the polyubiquitin chains of TRAF6

(83), and it can also inhibit TRIF mediated NF-kB signaling to

limit MyD88-independent TLR signaling (84). In addition, A20

can disrupt the binding of TBK1-IKKi to the K63-linked

ubiquitin chains by acting independently of its de-

ubiquitination domain, thereby limiting the activation of IRF3

downstream signals (85). In dendritic cells, the ubiquitin-

binding association domain of rhomboid protease Rhbdd3

binds to the K27-linked polyubiquitin chains of NEMO and

recruits A20. A20 further weakens the K63-linked

polyubiquitination of NEMO and negatively regulates TLR-

dependent NF-kB signaling (86).
Ubiquitination is involved
in RLR signaling

Virus induced RLR signal transduction

Cytoplasmic virus dsRNA is recognized by RLR, including

ret inoic acid- inducible gene I (RIG-I) , melanoma

differentiation-associated protein 5 (MDA5), and laboratory of

genetics and physiology (LGP2). Only RIG-I and MDA5 have an

N-terminal caspase activation and recruitment domain (CARD)

that can mediate downstream signaling. Although LGP2 does
Frontiers in Immunology 07
not have CARD, it regulates the activation of RIG-I and MDA5

(87). The C-terminal domain (CTD) of RIG-I and MDA5 is

mainly involved in recognizing viral RNA. RIG and MDA5

recognize different types of viral RNA due to their different

CTDs. For example, RIG-I identifies relatively short dsRNA (<1

kbp), while MDA5 identifies longer dsRNA (> 1 kbp) (88).

Virus infection activates RLR to promote the expression of

two subtypes of IFN-I, IFN-a, and IFN-b, which stimulate the

transcription of hundreds of IFN-stimulated genes (ISGs) (2).

The IFN-I production pathway mediated by the RLR signaling

pathway is as follows: As RIG-I and MDA5 recognize PAMPs

together, proteins assemble along dsRNA to form nucleoprotein

filaments (89, 90). The formation of nucleoprotein filaments

leads to the binding of RIG-I-CARD molecules to produce a

2CARD tetramer structure (91). This tetramer structure, as the

core of MAVS oligomerization, leads to the formation of MAVS

prion-like fibers, which are activated as an important

intermediate in the downstream signaling pathway (92).

MAVS coordinates and recruits TRAFs, TANK, NEMO, and

other proteins to co-localize on the outer membrane surface of

mitochondria, thereby activating TBK1 and IKKϵ. TBK1 and

IKKϵ are responsible for the activation of IRF3, 7, and NF-kB,
respectively. The activated IRF-3, 7, and NF-kB enter the

nucleus and cooperate to initiate IFN-I and inflammatory

cytokines expression (93) (Figure 3). MAVS is a crucial signal

platform that links mitochondria with intracellular antiviral

signals. Furthermore, the endoplasmic reticulum (ER) is also

an intermediate that mediates signal transduction, and the ER
FIGURE 3

Ubiquitination and de-ubiquitination in the RLR signal. RIG-I/MDA5 undergoes significant conformational changes upon ligand binding. Then
they bind to the adaptor protein MAVS on the outer membrane of mitochondrial through CARD-CARD homotypic interactions. These further
triggers MAVS to recruit other signaling partners including TRAFs, TANK, and NEMO to activate IKKϵ and TBK1. Ultimately, the transcription
factors IRF3 and IRF7 are phosphorylated by activated TBK1 and then translocated into the nucleus to initiate antiviral gene transcription. K63-
linked polyubiquitination of signaling molecules such as RIG-I, MDA5, MAVs, and STING is critical for RLR signaling. Conversely, K48-linked
ubiquitination and subsequent proteasomal degradation play important roles in fine-tuning RLR antiviral innate immunity. In the blue boxes are
the E3s or the DUBs involved in the regulation of this signaling protein. “-” means removing. The figure is referenced from Figure 2 of Ubiquitin
in the activation and attenuation of innate antiviral immunity (2).
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protein stimulator of IFN genes (STING) plays a vital role in this

process (94–96) (Figure 3).
Ubiquitination of RIG-I and MAD5

RIG-I has many complex post-translational modifications

(PTMs), among which polyubiquitination modification is one of

the most important modifications for RIG-I activation and

degradation. It is worth noting that although MDA5 protein is

mainly regulated by phosphorylation, there are also reports on

polyubiquitination modification of MDA5 protein in recent

years. For example, the K174 residue of MDA5 CARD

activates the downstream pathway by binding to the K63-

linked polyubiquitin chain (97). In addition, the K174A

ubiquitination-deficient mutant of MDA5 failed to induce

IFN-I production (98). Current studies have found that

TRIM25 and TRIM65 mediate the K63-linked ubiquitination

of MDA5. The RNA co-sensor zinc finger CCHC-type

containing 3 (ZCCHC3) promotes the K63-l inked

ubiquitination of MDA5 by recruiting TRIM25 (99), while

TRIM65 directly catalyzes the K63-linked ubiquitination of the

K743 residue in the MDA5 helicase domain (100). Furthermore,

TRIM40 binds to the first CARD of MDA5 to promote K27- and

K48-linked polyubiquitination and subsequent proteasomal

degradation of MDA5 (101). However, how these E3 ligases

cooperate to regulate MDA5-mediated innate immune

responses needs to be further explored.

RIG-I mainly undergoes modification of ubiquitin chains

linked by K48 and K63. These two types of ubiquitin

modifications play a pivotal role in the activation and

regulation of the RIG-I signaling pathway. Currently, four

E3s have been reported to assist in K63-linked ubiquitination

of RIG-I: TRIM25, RNF135 (also known as Riplet/REUL),

Mex-3 RNA-Binding Family Member C (Mex3c), and

TRIM4. Studies have shown that MEX3c, TRIM25, and

TRIM4 can synergistically catalyze the ubiquitination of

multiple lysine residues in RIG-I CARD domain to promote

downstream signal transduction. Unlike E3 above, RNF135

appears to play an associated role primarily in the CTD domain

of RIG-I.

Many studies have proved the critical role of TRIM25 in the

activation of the RIG-I signaling. Gack et al. reported for the first

time that TRIM25 mediated the K63-linked ubiquitination at the

K172 residue of the N-terminal CARD of RIG-I, which was

essential for downstream immune signal activation (102).

Further studies showed that TRIM25 could not bind to RIG-I

after the mutation of threonine 55 residue in the first CARD of

RIG-I. Furthermore, after the mutation of K172 residue in the

second CARD of RIG-I, the related ubiquitination level was

down-regulated, indicating that TRIM25 first binds to the first

CARD of RIG-I and then mediates the ubiquitination of the

second CARD of RIG-I (103).
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K63-linked polyubiquitin modification can stabilize the

RIG-I 2CARD tetramer and drive the mitochondrial

accumulation of RIG-I, assist the binding between RIG-I and

MAVS, and activate MAVS to target mitochondrial signals to

stimulate downstream signaling pathways. But it seems that as a

means to limit the selection of escape mutations, in addition to

the above activation mechanism, more ways have been found to

activate RIG-I. For example, TRIM4 can not only act on K172 of

RIG-I, but it can also mediate the K63-linked ubiquitination at

residues K164 and K154, thereby participating in the activation

of RIG-I (104). Mex3c-mediated RIG-I ubiquitination is

attenuated due to amino acid substitutions at K45, K99, and

K169 (105). However, contrary to previous studies, the

activation of MAVS after RIG-I stimulation will not be

interrupted by the knockout of TRIM4 and Mex3c (106).

Studies have shown that the deficiency of E3 RNF135 can

cause severe damage to the innate antiviral immune response in

mice, such as increased mortality and blocked induction of IFN-I

in mice infected with the virus (107). RNF135 can bind to K909,

K907, K888, K851, K849, and K788 of RIG-I CTD and mediate

its K63-linked ubiquitination (108, 109). Furthermore, RNF135

also promotes ubiquitination of RIG-I at multiple sites,

including 2CARD, and generates unanchored polyubiquitin

chains that activate RIG-I signaling (110, 111). Moreover,

studies have shown that RNF135 can facilitate the

combination of TRIM25 and RIG-I CARD (109). The specific

mechanism is: RNF135 triggers the open conformation of RIG-I

and exposes RIG-I CARD by mediating the combination of

K788 residues in the CTD of RIG-I with the K63-linked

ubiquitin chains. Then TRIM25 catalyzes the ubiquitination of

RIG-I CARD, which eventually promotes the interaction of RIG-

I with MAVS and TBK1 (109). Supporting the above conclusion

is that RNF135 knockdown can inhibit the association between

RIG-I and TRIM25 and eliminate the recruitment of TBK1

(108). However, the role of RNF135 in the RIG-I signaling

pathway remains controversial. Studies have shown that

RNF135 can activate IRF3 in a RIG-I-independent way (112).

Furthermore, it was found that RNF135 can synergistically boost

the downstream RIG-I signaling in a ubiquitination-dependent

and independent manner. On the one hand, RNF135 recognizes

and ubiquitinates RIG-I pre-oligomerized on dsRNA. On the

other hand, on longer dsRNA, RNF135 can bridge RIG-I

filaments and induce aggregate-like RIG-I assembly (111).

Why does RIG-I require four E3s to participate in its

ubiquitination modification, and do these different E3s have

redundant functions, or do they act in an environment- or cell-

t ype -dependen t manne r ? Th i s i s wor thy o f our

further exploration.

Currently, there are mainly these E3s that mediate the K48-

linked ubiquitination of RIG-I: RNF125, c-Cbl, TRIM40,

RNF122, and CHIP (also known as STIP1 homology and U-

box-containing protein 1(STUB1)). IFN-a and the dsRNA

analogue poly(I:C) induce the production of RNF125, and
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RNF125 promotes the K48-linked polyubiquitin chains labeling

of RIG-I, MDA5, and MAVS, and their proteasomal

degradation, ultimately inhibiting the production of IFN-I

(113). RNA virus infection upregulates Siglec-G, a member of

the lectin family, through RIG-I dependent mechanism. The

upregulated Siglec-G induces SHP2 and E3 c-Cbl to recruit to

RIG-I, which eventually leads to c-Cbl assisted in K48-linked

ubiquitination of RIG-I at K813 residue and proteasome

degradation of RIG-I, thus limiting the production of IFN-I

(114). TRIM40 not only mediates the degradation of MDA5 but

also promotes the binding of RIG-I to K27 and K48-linked

ubiquitin chains, leading to its proteasomal degradation.

Knockout of TRIM40 has been shown to significantly enhance

RLR signaling and antiviral immune response in mice (101).

RNF122 is an E3 that is significantly expressed in macrophages.

Wang et al. found that in RNA virus-infected cells, RNF122 can

directly bind to RIG-I CARD, and RNF122 promotes K48-linked

ubiquitination of K115 and K146 residues of RIG-I CARD

through its RF domain, resulting in proteasome degradation of

RIG-I and limiting RIG-I mediated antivirus signal (115). Mixed

lineage leukemia 5 (MLL5) is an essential epigenetic modifier

distributed in both cytoplasm and nucleus. Studies have shown

that upon virus infection, MLL5 is translocated from the nucleus

to the cytoplasm, and part of MLL5 interacts with RIG-I and E3

CHIP to boost CHIP to catalyze the K48-linked ubiquitination

of RIG-I, thereby inhibiting innate immunity (116). Since the

over-activation of RLR signals can lead to auto-immune diseases,

the above-mentioned E3s that mediate RLR K48-linked

ubiquitination may play a key role in RLR negative feedback.

Still, the clinical application of these E3s in innate immunity

remains to be explored.

In addition to negatively regulating RLR signaling by

mediating K48-linked ubiquitination and proteasome

degradation of RLR receptors, hosts can also negatively

regulate RLR signaling through LUBAC and DUBs. A recent

study showed that LUBAC suppressed virus-induced IFN-I by

targeting the RIG-I/TRIM25 signal axis. The specific mechanism

is: Firstly, HOIL-1L and HOIP boost the connection of K48-

linked ubiquitin chains to TRIM25 to mediate its proteasomal

degradation. Secondly, HOIL-1L competes with TRIM25 to bind

to RIG-I, so these two mechanisms effectively inhibit the K63-

linked ubiquitination of RIG-I and the production of IFN-I

(117). In addition, the NLR family pyrin domain-containing 12

(NLRP12) can physically bind TRIM25 to reduce TRIM25-

mediated K63-linked ubiquitination of RIG-I (118). Recently,

four DUBs Ub specific protease 21 (USP21), USP14, USP3, and

CYLDmediate negative regulation of RIG-I ubiquitination. Both

USP21 and CYLD can remove the K63-linked ubiquitination of

RIG-I and restrict RIG-I-mediated innate immunity (119, 120).

USP3 can simultaneously encourage the de-ubiquitination of

RIG-I and MDA5 (121), and USP14 catalyzes the de-

ubiquitination of RIG-I through its USP domain (122). Unlike

the DUBs mentioned above, USP4 is the only DUB that removes
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the K48-linked polyubiquitin chains from RIG-I to increase the

stability of RIG-I (123).
Ubiquitination of MAVS

MAVS plays a connecting role in RLR signal transduction,

so its ubiquitination modification plays a vital important role in

RLR signal transduction. Most of the ubiquitination of MAVS

only occurs during viral infection. At present, at least 6 E3s lead

to the ubiquitination mediated degradation of MAVS. For

example, RNF125 furthers the ubiquitination and proteasome

degradation of MAVS (113). TRIM25 mediates K48-linked

ubiquitination of K7 and K10 residues of MAVS, leading to its

proteasomal degradation and inhibition of IFN-I production

(124). The study found that the expression of E3 MARCH5 is

up-regulated during virus infection, and it can catalyze the

ubiquitination of K7, and K500 residues of MAVS to mediate

the proteasomal degradation of MAVS (125). Furthermore, E3

RNF5 also interacts with MAVS during viral infection, and it

catalyzes K48-linked ubiquitination of K362 and K461 residues

of MAVS, leading to its degradation by the proteasome (126).

Poly(C)-binding protein 2 (PCBP2) is also one of the negative

regulators of MAVS-mediated signaling. During viral infection,

PCBP2 is induced to recruit the HECT domain-containing E3

ligase AIP4 by interacting with MAVS. AIP4 further promotes

the K48-linked ubiquitination of K371 and K420 residues of

MAVS, which eventually leads to the proteasomal degradation

of MAVS (127). Besides, Nedd4 family interacting protein 1

(Ndfip1) is also involved in the negative regulation of MAVS-

media ted ant iv i ra l s igna l ing . Ndfip1 fur thers the

polyubiquitination and degradation of unknown sites of

MAVS by recruiting the E3 Smurf1 (128). Unlike the above-

mentioned E3, TRIM29 mediates its degradation by catalyzing

the binding of the polyubiquitin chains linked by K11 instead of

K48 to MAVS (129). Furthermore, MARCH8 and RNF34

degrade MAVS in a unique way by catalyzing the

ubiquitination of MAVS for autophagy (130, 131). It is worth

noting that MARCH 8 interacts with MAVS in a CD317-

dependent manner. Meanwhile, RNF34 directly binds to

MAVS and promotes the binding of polyubiquitin chains

linked by K27 and K29 to K297, K362, K348, and K311

residues of MAVS, and this ubiquitination modification is a

key signal for inducing nuclear dot protein 52 kDa-dependent

autophagic degradation.

Up to now, only four DUBs, OTUD4, OTUD3, OTUD1, and

YOD1 have been found to mediate the de-ubiquitination of

MAVS. Among them, OTUD4 is induced in an IRF3/7-

dependent manner, and OTUD1 increases the stability of

MAVS during viral infection by directly removing the K48-

linked ubiquitination of MAVS, thereby promoting RLR-

mediated innate immune signals (132). During RNA virus

infection, OTUD1 is induced through the NF-kB pathway,
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1065211
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.1065211
and OTUD1 deubiquitinates Smurf1 to up-regulate the protein

level of Smurf1 in cells. Smurf1 directly binds to signal

components such as MAVS, TRAF3, and TRAF6 and catalyzes

their ubiquitination and proteasome degradation to negatively

regulate the production of IFN-I (133). As a member of the

ovarian tumor family, YOD1 is recruited to mitochondria

following viral infection. YOD1 interacts with MAVS through

its ubiquitin regulatory X and ZF domains and removes K63-

linked polyubiquitin chains on MAVS, thereby inhibiting the

formation of MAVS prion-like aggregates (134). OTUD3 is an

acetylation-dependent DUB. Studies have found that OTUD3

can directly bind to MAVS and remove its K63-linked ubiquitin

chains to turn off the antiviral signal (135).

K63-linked ubiquitination of MAVS plays a crucial role in

the recruitment of IKKϵ, IRF3, and the occurrence of antiviral

signaling. A recent study found that viral infection leads to the

recruitment of TRIM31 to mitochondria. TRIM31 further

catalyzes the K63-linked polyubiquitination of K461, K311,

and K10 residues of MAVS, which ultimately promotes the

accumulation of MAVS and antiviral signal transduction (136).

Furthermore, viral infection induces TRIM21 production in an

IFN/Janus kinase/signal transducer and activator of

transcription-dependent pathway, and loss of TRIM21 results

in impaired innate immune responses. The specific mechanism

is that TRIM21 interacts with MAVS through its PRY-SPRY

domain, and TRIM21 catalyzes the binding of the K325 residue

of MAVS to the K27-linked polyubiquitin chains through its

RING domain, thereby promoting the innate immune response

(137). This is consistent with the observation of interactions that

TBK1 undergoes K27- but not K63-linked ubiquitination in vitro

(138). However, the reason why so many E3s are involved in the

regulation of MAVS is still unknown. Therefore, the research on

solving the dynamic network relationship of polyubiquitination

connected by K48 and K63 on MAVS will be very meaningful.
Ubiquitination of STING

The ubiquitination of STING is also a crucial part of

immune signal transduction. For example, TRIM56 and

TRIM32, these two E3s can interact with STING to facilitate

the binding of K63-linked ubiquitin chains to STING, thereby

facilitating the production of IFN-I (139, 140). STING recruits

autocrine motor factor receptors (AMFRs) upon stimulation of

cytoplasmic DNA. AMFR interacts with STING in an insulin-

inducible gene 1-dependent manner and catalyzes the binding of

K27-linked polyubiquitin chains to STING, thereby recruiting

TBK1 to generate antiviral genes (138). RNF26 promotes K11-

linked ubiquitination of STING, and it can effectively prevent

STING from RNF5-mediated K48-linked polyubiquitination

and proteasome degradation. This is because they compete to

catalyze the polyubiquitination of the K150 residue of STING

(141, 142). It was found that DUB USP18 can recruit USP20 to
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remove K48-linked polyubiquitin chains on STING and enhance

the stability of STING, which will benefit the production of

downstream IFN-I and antiviral signals (143).

The ubiquitination of RLR signaling is a very complex

process, and the same protein may involve multiple E3s or

DUBs to regulate its ubiquitination. However, what is the

inextricable relationship between them, and whether these

studies can be used to provide possibilities for the design of

immune drugs remains to be considered.
Viruses use ubiquitination system to
escape innate immunity

Because ubiquitination plays a vital regulatory role in innate

immunity, it is not surprising that viruses take advantage of this

feature of ubiquitination to promote their proliferation in the

host. Viruses mainly manipulate the ubiquitination system

through substrate molecular simulation, binding and blocking

E3-substrate pairs, expressing virus-encoded E3s/DUBs, and

hijacking host E3s/DUBs. In the following, we will summarize

the relevant research in recent years.
Substrate molecular simulation

There is no shortage of such examples in recent research. For

example, recent research indicates that the rotavirus non-

structural protein (NSP1) can target the proteasome

degradation of b-transducin repeat-containing protein (b-
TrCP). b-TrCP is a recognition substrate for the multi-subunit

E3 complex Skp1/Cul1/F-box, which catalyzes the degradation

of IkBa by recognizing b-TrCP to promote NF-kB signaling

activation. Therefore, the degradation of b-TrCP will assist the

virus to escape innate immunity (144). Another example is the

varicella-zoster virus immediate-early protein open reading

frame 61 (ORF61) interacts with phosphorylated IRF3. It

mediates the ubiquitination of IRF3 and subsequent

proteasome degradation to antagonize the production of IFN-

b (145).

Pro teomics ana ly s i s r evea l ed tha t the human

cytomegalovirus (HCMV) protein pUL21a interacts with the

anaphase-promoting complex (APC). APC is an E3, which has a

certain limiting effect on virus infection by regulating the

ubiquitination and degradation of cell cycle regulatory

proteins, while pUL21a mediates the ubiquitination and

proteasome degradation of APC and destroys the restriction of

APC to viral infection and facilitates HCMV infection (146).

HCMV also utilizes its own encoded US7/US8 proteins to

inhibit signaling downstream of TLR3/TLR4. The specific

mechanism is as follows: Firstly, US7 interacts with ER-related

degradation components Derlin-1 and Sec61 to promote TLR3/4

ubiquitination and proteasomal degradation. Secondly, US8
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mediates their degradation by targeting TLR3/TLR4 to the

proteasomal or lysosomal pathways (147). It was found that

the hemagglutinin (HA) protein of IAV can further the

ubiquitination and degradation of IFNAR, thereby destroying

the host’s innate immune system (148) (Table 1).
Binds and blocks E3-substrate pairs

It is not uncommon for viruses to antagonize innate

immunity by blocking or binding substrate pairs of the

ubiquitin system. Studies have found that during RNA virus

infection, Trithorax group protein MLL5 will be transported

from the nucleus to the cytoplasm to further the binding of E3

STUB1 and RIG-I. STUB1 catalyzes the K48-linked

ubiquitination of RIG-I and mediates its proteasome

degradation, thereby inhibiting the antiviral immune response

(116). Viruses can also promote this process by using their own

encoded protein. For example, Porcine delta coronavirus

(PDCoV) nucleocapsid (N) protein can suppress the

expression of IFN-I induced by VSV infection or poly(I:C)

stimulation. The specific mechanism is: pRiplet is an E3,

which can catalyze the binding of RIG-I and K63-linked

ubiquitin chains to activate the RLR signal and boost the

production of IFN-I, while the PDCoV N protein interacts

with pRiplet, thereby shutting down the ubiquitination process

and inhibiting the innate antiviral response (149). Besides,

through mass spectrometry analysis, it was found that PDCoV

N protein could also interact with IRF7 and facilitate its

ubiquitination-mediated proteasome degradation, thereby

restricting the expression of IFN-I and promoting virus

proliferation (150).

The non-structural proteins of the viruses seem to play a

vital role in this link. IAV NS1 protein inhibits antiviral response

by inhibiting TRIM25-mediated RIG-I ubiquitination (151).

Further studies have found that the binding of NS1 will affect

the positioning of the CTD PRY/SPRY of TRIM25, which in

turn will affect the binding of the ubiquitin chains linked by K63

to RIG-I (152). Moreover, NS1 of avian and human IAV strains

bind to TRIM25 in a species-specific manner. It is worth noting

that some IAV strains will also attach to another E3 RNF135,

and this E3 will also catalyze the binding of RIG-I to the K63-
TABLE 1 Substrate molecular simulation.

Virus protein Target Effect

Rotavirus NSP1 b-TrCP NF-kB signal ↓

Varicella-zoster virus ORF61 IRF3 IFN-b production ↓

HCMV pUL21a APC Viral infection ↑

HCMV US7/US8 TLR3/TLR4 Viral infection ↑

IAV HA IFNAR Viral infection ↑

↑ increases; ↓ decreases.
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linked ubiquitin chains (153). Similarly, Respiratory syncytial

virus NS1 binds to the PRY/SPRY domain of TRIM25, thereby

blocking the K63-linked ubiquitination of RIG-I CARD (154).

West Nile virus NS1 protein binds to RIG-I instead of TRIM25

to form steric hindrance and affect the ubiquitination of RIG-I

(155). Hepatitis C virus (HCV) NS3/4A is a serine protease that

limits the expression of IFN-I. Studies have found that when

NS3/4A is overexpressed in vivo, RNF135-mediated K63-linked

ubiquitination of the RIG-I CTD domain is blocked. Meanwhile,

this blocking is accompanied by a weakening of the combination

between TRIM25 and RIG-I. Therefore, HCV antagonizes the

innate immune pathway by targeting RNF135 and affecting the

K63-linked ubiquitination of RIG-I (109, 156). Porcine

reproductive and respiratory syndrome virus encoded nsp1a
can interact with HOIP/HOIL-1L to weaken the combination of

HOIP and SHARPIN, which not only affects the formation of

the LUBAC complex but also weakens the linear ubiquitination

of NEMO that depends on LUBAC, which ultimately leads to

impaired NF-kB signaling (157).

TRIM25 and TRIM6 seem to be vital targets for viral

proteins to suppress innate immunity. Paramyxovirus V

protein is a known inhibitor of RLR signaling. Research

indicates that V protein blocks the ubiquitination of RIG-I

catalyzed by TRIM25 by combining with RIG-I and TRIM25,

thereby destroying RLR signaling (158). In addition, the

oncoprotein E6 encoded by human papillomavirus (HPV)

targets the TRIM25-USP15-RIG-I axis. Normally, USP15

deubiquitinates TRIM25 to maintain TRIM25 stability,

enabling TRIM25 to effectively promote RIG-I ubiquitination

and activation. However, HPV E6 protein combines with

TRIM25 and USP15 to boost the ubiquitination and

degradation of TRIM25, which ultimately disrupts RIG-I

signal transduction (159). Studies have found that the

nucleocapsid protein of severe acute respiratory syndrome

coronavirus (SARS-CoV) can also bind to the SPRY domain

of TRIM25, which affects the binding between TRIM25 and

RIG-I and disrupts TRIM25-mediated ubiquitination activation

of RIG-I, eventually leading to impaired signal transduction

downstream of RIG-I (160). Viral RNA can also bind to TRIM25

to inhibit RIG-I signaling. Sub-genomic flavivirus RNA (sfRNA)

is a unique non-coding RNA of flavivirus, which is the

incomple te degradat ion product o f ce l lu lar 5 ’ -3 ’

exoribonuclease 1 (XRN1) (161–163). It was found that the

sfRNA of Dengue virus (DENV) serotype two strain (PR-2B

strain) binds TRIM25 to block TRIM25 de-ubiquitination and

attenuate RIG-I signaling, finally achieving the unique immune

escape mechanism of Flaviviridae virus (164).

Nipah virus (NiV) is a highly pathogenic virus belonging to

the Paramyxoviridae family. Studies have shown that NiV

matrix protein binds to TRIM6 and degrades TRIM6, leading

to the reduction of unanchored K48-linked ubiquitin chains of

IKKϵ catalyzed by TRIM6, which ultimately disrupts the

oligomerization and phosphorylation of IKKϵ and weakens
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production of IFN-I (165). Furthermore, Ebola virus (EBOV)

VP35 binds to polyubiquitin chains non-covalently. Meanwhile,

VP35 also binds to TRIM6, antagonizes IFN-I production by

ubiquitinating TRIM6, and ultimately promotes EBOV

replication (166) (Table 2).
Express virus-encoded E3s/DUBs

Virus-encoded E3s typically degrade key signaling molecules

in innate immunity to evade immune responses, while virus-

encoded DUBs generally have a papain-like protease (PLP)

structure that targets relevant immune factors. Studies have

found that the arterial virus family has a PLP2 conserved

domain with DUB activity, which can inhibit RIG-I

ubiquitination, antagonize RLR innate immune signals, and

facilitate the virus to escape innate immunity (167). Similarly,

the OTU domain-containing-like protease encoded by the Nairo

virus has DUB activity, and this structure also inhibits RIG-I

ubiquitination. Furthermore, the catalytic domain PLP2 of

mouse hepatitis virus A59 NSP3 can not only remove the

ubiquitin chains of TBK1 and reduce its kinase activity but

also de-ubiquitinate IRF3 and prevent IRF3 nuclear

translocation, thus inhibiting the production of IFN-I (168,

169). Similarly, the precursor protease (L(pro)) of the foot-

and-mouth disease virus (FMDV) is also a kind of PLP2.

Further research found that L (pro) can significantly inhibit

the ubiquitination of RIG-I, TRAF3, TRAF6, and TBK1 to

inhibit the production of IFN-I, thereby promoting FMDV

proliferation (170). Human coronavirus and SARS-CoV PLP

can also reduce the ubiquitination level of proteins such as

STING, RIG-I, TBK1, and IRF-3, thereby interfering with the

production of IFN-I (171). Porcine epidemic diarrhea virus
TABLE 2 Binds and blocks E3-substrate pairs.

Virus protein/RNA Target

PDCoV N pRiplet
IRF7

IAV NS1 TRIM25
RNF135

RSV NS1 TRIM25

WNV NS1 RIG-I

HCV NS3/4A RNF135

PRRSV nsp1a HOIP/HOIL-1

Paramyxovirus V RIG-I and TR

HPV E6 TRIM25 and U

SARS-CoV TRIM25

DENV sfRNA TRIM25

NiV-M TRIM6

EBOV VP35 TRIM6

↑ increases; ↓ decreases.
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(PEDV) also encodes PLP2, which antagonizes IFN-I

production by deubiquitinating RIG-I and STING (172).

Moreover, the papain-like cysteine protease domain (PCP)

encoded by the hepatitis E virus (HEV) ORF1 also has DUB

activity, which antagonizes RLR signaling by deubiquitinating

RIG-I and TBK1 (173).

There is also a class of virus-encoded proteins that directly

have DUB activity. It was found that HSV VP1-2 can remove the

ubiquitin chains of STING and block the phosphorylation

activation of downstream genes TBK1 and IRF3, to reduce the

production of IFN-I and assist HSV in immune escape in the

brain (174). Besides, the Ubiquitin-specific protease UL36

(UL36USP) encoded by HSV is also a DUB. Firstly, UL36USP

can block IFN-stimulated DNA-induced IFN-b production and

NF-kB activation. Secondly, UL36USP can de-ubiquitinate IkBa
to prevent its degradation, which blocks the activation of NF-kB
(175). As a DUB, Hepatitis B virus (HBV) X protein (HBx) can

remove the K63-linked polyubiquitin chains on RIG-I and

TRAF3, resulting in the obstruction of downstream signal

transduction (176). Seneca Valley Virus (SVV) 3C protease

(3Cpro) also has DUB activity. Studies have found that the

Cys160 and His40 residues of 3Cpro are essential sites for its de-

ubiquitination activity. 3Cpro widely promotes RIG-I, TBK1,

and TRAF3 de-ubiquitination to stint the expression of IFN-b
and downstream ISG56 (177). Kaposi’s sarcoma-associated

herpesvirus (KSHV) ORF64 is an envelope protein with DUB

activity. ORF64 plays a crucial role in promoting KSHV

replication and antagonizing RIG-I-mediated innate immunity.

This is mainly because ORF64 can target RIG-I de-

ubiquitination, inhibiting its downstream signal transduction

(178, 179).

Viruses can also promote their own replication by encoding

E3 or proteins that mimic E3 functions. For example, the ORF73
Effect

RLR signal ↓
IFN-I production ↓

RLR signal ↓
RLR signal ↓

RLR signal ↓

RLR signal ↓

IFN-I production ↓

L NF-kB signal ↓

IM25 RLR signal ↓

SP15 RLR signal ↓

RLR signal ↓

RLR signal ↓

phosphorylation of IKKe ↓,
IFN-I production ↓

IFN-I production ↓
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TABLE 3 Express virus-encoded E3s/DUBs.

Virus protein Target Effect

Herpes virus ORF73 p65/RelA NF-kB signal ↓

HSV-1 ICP0 p65 and p50 NF-kB signal ↓
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protein encoded by the murine herpes virus contains a unique

SOCS box-like motif that can mediate the assembly of the

ElonginC/Cullin5/SOCS-like complex, and the complex

mimics the function of the E3 ligase to catalyze the

ubiquitination and subsequent proteasome degradation of p65/

RelA, ultimately blocking the activation of NF-kB and

promoting the continued infection of the virus (180). Herpes

Simplex Virus Type 1 (HSV-1) infected cell protein 0 (ICP0)

protein is a virus-encoded E3. It was found that ICP0 interacts

with NF-kB subunits p65 and p50, and mediates ubiquitination

and proteasome degradation of p50 through its RF domain,

thereby restricting the expression of NF-kB dependent genes

and achieving immune evasion (181). Toscana virus (TOSV) is

an intravenous virus, belonging to the Bunyaco virus. It was

found that TOSV NSs protein binds to RIG-I and targets its

degradation in a proteasome manner to interrupt the production

of IFN-b. Further research found that TOSV NSs protein has E3

activity, mainly through its CTD domain and amino-terminal to

exert enzyme activity (182, 183). Besides, HSV-2 ICP22 also

limits IFN-I signal transduction. The specific mechanism is that

ICP22 promotes the ubiquitination of STAT1, STAT2, and IRF9,

and ICP22 plays the role of E3s to catalyze the ubiquitination

and degradation of IFN-stimulated gene factor 3.

Fish viruses also utilize the ubiquitin system to escape

immune mechanisms. For example, during spring viremia of

carp virus (SVCV) infection, the viral N protein inhibits the

K63-linked ubiquitination of p53 and assists its degradation. On

the contrary, SVCV P protein stabilizes p53 by binding to p53

and promoting its K63-linked ubiquitination. Therefore, the fish

virus SVCV uses this unique way to antagonize p53-mediated

innate immunity (184) (Table 3).
TOSV NSs RIG-I IFN-I production ↓

HSV-2 ICP22 STAT1, STAT2 and
IRF9

IFN-I production ↓

SVCV N p53 p53 mediated innate
immunity ↓

Arterial virus PLP2 RIG-I RLR signal ↓

Nairo virus OTU RIG-I RLR signal ↓

Hepatitis virus A59 TBK1, IRF3 IFN-I production ↓

NSP3

FMDV pro RIG-I, TRAF3, TRAF6
and TBK1

IFN-I production ↓

Human coronavirus and
SARS-CoV PLP

STING, RIG-I, TBK1
and IRF-3

IFN-I production ↓

PEDV PLP2 RIG-I and STING IFN-I production ↓

HEV ORF1 RIG-I and TBK-1 RLR signal ↓

HSV VP1-2 STING IFN-I production ↓

HSV UL36USP IkB-a NF-kB signal ↓, IFN-I
production ↓

HBV X RIG-I and TRAF3 Innate immunity ↓

SVV 3Cpro RIG-I, TBK1, and
TRAF3

Expression of IFN-b and
ISG56 ↓

KSHV ORF64 RIG-I RLR signal ↓

↑ increases; ↓ decreases.
Hijack the host’s E3s/DUBs

As intracellular parasites, the viruses exploit various

methods to manipulate the E3s/DUBs encoded by the host to

avoid innate immunity. For example, during severe fever with

thrombocytopenia syndrome virus infection, the virus utilizes its

self-encoded NSs protein to hijack TRIM25 into viral inclusion

bodies to inhibit TRIM25-catalyzed RIG-I K63-linked

ubiquitination, thereby promoting early host proliferation

(185). The V protein of Newcastle disease virus (NDV) can

interact with MAVS, and the V protein can recruit E3 RNF5

upon NDV infection. RNF5 further promotes the ubiquitination

and proteasomal degradation of MAVS, thereby inhibiting the

production of IFN-I and assisting the proliferation of the virus

(186). During DENV infection, the E3 seven in absentia

homolog 1 (SIAH1) is activated by an unfolded protein

response. Further studies have shown that SIAH1 binds to

MyD88 and mediates its ubiquitination and proteasome

degradation, thereby inhibiting the innate immune response

and promoting virus replication (187).
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The specific mechanism by which HBV infection cannot

cause IFN-I antiviral signals is unknown. A recent study found

that HBV infection induces parkin expression. Parkin can bind

to MAVS and recruit LUBAC to mitochondria, thereby

accumulating unanchored linear ubiquitin chains on MAVS,

which damages the MAVS signaling body and weakens the

activation of IRF3, eventually blocking IFN-I signal induction

during HBV infection (188). Fish viruses can also use host-

encoded E3s. Red-spotted grouper nervous necrosis virus

(RGNNV) infection can cause the E3 LjRNF114 of sea perch

(Lateolabrax japonicus) to up-regulate, and the up-regulated

LjRNF114 boosts the binding of MAVS and TRAF3 to the

ubiquitin chains linked to K27 and K48, which leads to MAVS

and TRAF3 degrade, RLR signal transduction is destroyed, and

ultimately facilitate virus infection (189).

Some viruses can also hijack the host’s DUBs by

manipulating the microRNA to facilitate their replication. For

example, during DENV infection, NS1 induces cells to release

lots of external vesicles containing miR-148a, while miR-148a

further inhibits the expression of USP33 protein, and USP33

affects the stability of activating transcription factor 3 (ATF3)

protein by deubiquitinating it. It is worth noting that ATF3 is an

essential inhibitor of pro-inflammatory gene expressions such as

TNF-a, and NF-kB. Hence DENV facilitates the inflammatory

response of the central nervous system through this pathway
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(190). Similarly, enterovirus 71 3Cpro inhibits the expression of

host miR-526, and miR-526 targets the DUB CYLD.

Overexpression of 3Cpro will cause the down-regulation of

miR-526 but facilitate the up-regulation of CYLD. CLYD

further eliminates the K63-linked ubiquitin chains of RIG-I,

thereby blocking RIG-I-mediated immune signals and

promoting virus replication (119, 191).

DUB USP27X is an antiviral signaling inhibitor. Studies have

found that USP27X interacts with RIG-I CARD and removes the

K63-linked polyubiquitin chains of RIG-I, thereby negatively

regulating RIG-I mediated antiviral signal (192). Viral infection

can cause upregulation of OTUD1, and OTUD1 as a DUB can

attenuate the K6-linked ubiquitination of IRF3 to affect the DNA-

binding ability of IRF3, thereby antagonizing the IRF3-mediated

innate immune pathway (193). Bovine viral diarrhea virus

infection of Madin-Darby bovine kidney cells will induce strong

expression of DNA damage-inducible transcript 3 (DDIT3)

protein and mRNA, and overexpression of DDIT3 will assist

viral replication. The specific mechanism is: DDIT3 expression

induces the production of OTUD1, which promotes the

upregulation of Smurf1 expression by deubiquitinating Smurf1,

and Smurf1 as E3 will degrade MAVS in a ubiquitin-dependent

manner to inhibit IFN-I signaling (194). Studies have found that

UBE2S binds to TBK1 and recruits DUB USP15 to specifically

remove the K63-linked polyubiquitin chains on TBK1, thereby

antagonizing the expression of IFN-I. In addition, the deletion of

UBE2S suppresses virus replication and boosts the antiviral

response in cells, which also confirms the above conclusions

(195). Similarly, RNA viruses can also target the ubiquitination

and proteasome degradation of IRF3 by hijacking the host’s E2

UBE2J1, thereby restraining the induction of IFN-I and

promoting virus replication (Table 4) (196).
Conclusion and future perspective

Numerous lines of evidence support the important

regulatory role of the ubiquitin system in host-pathogen

interactions. Although significant progress has been made in
TABLE 4 Hijack the host's E3s/DUBs.

Virus protein Target Effect

SFTSV NSs TRIM25 Viral infection ↑

NDV V RNF5 IFN-I production ↓

DENV SIAH1 MyD88 mediated innate immunity ↓

HBV Parkin IFN-I production ↓

RGNNV LjRNF114 RLR signal ↓

DENV USP33 Inflammatory response ↑

Enterovirus 71 3Cpro CYLD RLR signal ↓

BVDV OTUD1 IFN-I production ↓

↑ increases; ↓ decreases.
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exploring the function and mechanism of the ubiquitin system

in regulating innate immunity in the past few decades, there are

still many research gaps. Firstly, we need to dissect the

underlying molecular details: which protein targets, E3s or

DUBs, are responsible for the observed phenotype? How are

these E3s and DUBs regulated under normal and infectious

conditions? Considering that a particular protein is usually

regulated by several different E3s and/or DUBs, attention

should be paid to clarifying whether these different enzymes

have redundant functions or whether they perform related

functions in a cell-type and environment-related manner.

These studies will further reveal the crosstalk between immune

signal cascades and reveal a functional and self-regulated whole.

Secondly, in order to understand the specific mechanism of

different forms of PTMs of innate signaling molecules observed

in different organelles and responding to different pathogenic

stimuli, we need to develop and apply new “omics” to

comprehensively and dynamically understand the innate

immune system.

Finally, many gaps remain in our understanding of pathogen

immune evasion strategies associated with the ubiquitin system. How

are these pathogen-derived E3s and DUBs regulated upon entry into

the host environment? How do these multifunctional effector

proteins coordinate their various activities under physiological

conditions? Importantly, these explorations will provide a

theoretical basis for the development of vaccine strains to curb

infectious diseases and effective treatment methods in the future.
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