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Osteonecrosis occurs when, under continuous stimulation by adverse factors

such as glucocorticoids or alcohol, the death of local bone and marrow cells

leads to abnormal osteoimmune function. This creates a chronic inflammatory

microenvironment, which interferes with bone regeneration and repair. In a

variety of bone tissue diseases, innate immune cells and adaptive immune cells

interact with bone cells, and their effects on bone metabolic homeostasis have

attracted more and more attention, thus developing into a new discipline -

osteoimmunology. Immune cells are the most important regulator of

inflammation, and osteoimmune disorder may be an important cause of

osteonecrosis. Elucidating the chronic inflammatory microenvironment

regulated by abnormal osteoimmune may help develop potential treatments

for osteonecrosis. This review summarizes the inflammatory regulation of bone

immunity in osteonecrosis, explains the pathophysiological mechanism of

osteonecrosis from the perspective of osteoimmunology, and provides new

ideas for the treatment of osteonecrosis.

KEYWORDS

osteonecrosis, inflammation, immune cells, osteoimmunology, cytokines,
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1 Introduction

Osteonecrosis is the death of bone and marrow cells as a result of chronic

inflammation. Continuous stimulation by various adverse factors induces an immune

response that, if unchecked, creates a chronically inflamed microenvironment that inhibits

bone regeneration and repair. Osteonecrosis can be triggered by drugs, alcoholism,

presence of sickle cell disease, or treatment with radiotherapy or chemotherapy (1–4).

Osteonecrosis can occur in many parts of the body, especially around the joints, causing

the collapse of mechanically encumbered subchondral bone and secondary osteoarthritis,

which in turn causes pain and dysfunction that seriously affect the patient’s quality of life
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and eventually require surgery (1, 5–9). Each year, 20,000-30,000

new cases of osteonecrosis of the femoral head (ONFH) are

diagnosed in the United States (10, 11) and about 150,000 cases of

osteonecrosis in China (10, 12). Among cancer patients who

received zoledronic acid for three years, the incidence of

bisphosphonate-related osteonecrosis of the jaw is

approximately 1.3% to 3.2% (13). As osteonecrosis can be a

slow, progressive disease, its cumulative, long-lasting

consequences place a significant burden on society, especially as

populations around the world live longer.

The original intention of inflammation is to remove harmful

stimuli or pathogens and promote tissue repair. The

inflammatory response helps recruit factors that remove

necrotic bone and intramedullary tissue. Indeed, bone injury

causes an inflammatory response in bone tissue that is necessary

for repair. Pro-inflammatory chemokines are secreted from

injured tissues to recruit macrophages, neutrophils and other

immune cells to remove harmful stimuli and regulate the

resolution of inflammation. Bone marrow mesenchymal stem

cells are also recruited to initiate bone repair (14, 15). Under

normal conditions, the inflammatory response needs to dissipate

in order to give way to regenerative processes. Otherwise,

inflammation can become prolonged and thus impair tissue

regeneration. In osteonecrosis, the persistence of harmful factors

stimulates local immune cells to continuously secrete

inflammatory factors, prolonging inflammation until it

becomes chronic and impairing bone repair (16–18).

Osteoimmunology is an academic discipline that studies the

interactions between bone cells (e.g., osteoblasts, osteoclasts,

bone marrow mesenchymal stem cells) and immune cells (e.g.,

macrophages, T cells, B cells, neutrophils, dendritic cells) in the

same microenvironment (19–22). These interactions are

mediated by cytokines and signal transduction pathways. In

the past, osteonecrosis was considered to result from the death of

osteoblasts and osteocytes as well as abnormal activation of

osteoclasts. However, studies have found a close link between

abnormal immune responses and immune cell infiltration in

osteonecrotic tissues, which show signs of uncontrolled

inflammation (23–28). How various immune cells regulate

inflammation in osteonecrosis has not been fully elucidated.

This review summarizes current knowledge about the regulation

of inflammation in osteonecrosis, and how immune cells

perpetuate or abrogate osteonecrosis. In this way, the review

elaborates the pathophysiological mechanism of osteonecrosis

from an immunological perspective.
2 Uncontrolled inflammation leads
to the failure of bone repair
in osteonecrosis

The healing process after bone injury can be divided into

three general stages: inflammation, callus formation, and
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remodeling (18). Bone injury results in death of bone cells and

bone marrow cells, release of platelet-derived factors and

complement fragments, and damage to the extracellular

matrix. The net effect is that endogenous molecules act as

damage-associated molecular patterns (DAMPs) that are

recognized by pattern recognition receptors (PRRs) on local

cells, which in turn activates inflammatory cascades (14, 18).

Stimulated cells release cytokines and chemokines that induce

immune cells to release even more pro-inflammatory factors,

such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-a,
C-C motif chemokine ligand 2 (CCL2) and stromal cell-derived

factor 1 (SDF1) (14). This inflammatory response is a critical

first step for eradicating harmful stimuli and removing cellular

debris in order to help initiate the reconstruction of normal bone

tissue. Inflammatory factors recruit neutrophils, macrophages,

and osteoclasts to phagocytose and remove bone fragments and

cell debris, while also activating mesenchymal stem cells to

initiate osteogenic and angiogenic activities (14, 29–31).

(Figure 1) The initial inflammatory response to bone injury

usually dissipates within one week after the stimulus is removed.

In the callus formation stage, bone marrow mesenchymal stem

cells and osteoprogenitor cells participate in bone formation,

which usually takes 1-3 months. The final remodeling stage takes

months to years, during which new bone tissue is formed and

shaped (14, 18).

Bone tissue repair depends on successful removal of harmful

stimuli and suitable regulation of inflammation. An uncontrolled

inflammatory response, either excessive or insufficient, is

deleterious to bone repair. In the case of excessive

inflammation, an overabundance of reactive oxygen species is

produced, and proteases that damage the surrounding normal

tissue are activated (32). Persistently high levels of inflammation

inhibit the normal osteogenic response (16, 33). In the early stage

of bone injury, transient signaling by TNF-a and IL-6 recruit the

progenitors of osteoblasts required for bone regeneration, but

persistently high levels of TNF-a and IL-6 inhibit osteogenesis

and further damage bone tissue (14, 34). Excessive inflammation

also stimulates osteoclast differentiation and activation, resulting

in inflammatory osteolysis. Conversely, when the inflammatory

response to bone injury is insufficient, local dead cell debris and

bone debris are not completely removed, allowing DAMPs to

persist in the microenvironment (14, 16). In either case, an

excessive or insufficient inflammatory reaction eventually

translates to chronic inflammation, which is the bridge between

bone injury and osteonecrosis. Chronic inflammation hinders

bone repair and regeneration following bone injury, which finally

leads to osteonecrosis (10, 14, 16, 35–40). (Figure 2)
3 Immune cells and osteonecrosis

Chronic inflammation, the most prominent feature of

osteonecrosis, occurs when inflammation prolongs resulting
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from the impaired resolution program (41–47). Persistent

production of pro-inflammatory cytokines, progressive tissue

injury and aberrant tissue remodeling are vital characteristics of

this process (46, 48). In necrotic bone tissue, inflammatory

cytokines/chemokines continuously recruit innate immune

cells (macrophages, neutrophils, dendritic cells) and adaptive

immune cells (T cells and B cells), which further release

inflammatory factors in a positive feedback loop in order to

amplify the overall inflammatory response (19, 20, 49).

Furthermore, chronic inflammation excessively activates bone

resorption and inhibits bone formation, driving osteonecrosis. In

this way, disruption of the normal coordination between pro-

inflammatory activation and anti-inflammatory silencing during

bone repair may be the pathophysiological basis of
Frontiers in Immunology 03
osteonecrosis. Given that immune cells are the most important

“modulators” of inflammation, elucidating how innate and

adaptive immune cells regulate inflammation associated with

osteonecrosis could provide insights into its pathogenesis

and treatment.
3.1 Innate immune cells in osteonecrosis

3.1.1 Macrophages
Macrophages are sentinels of the immune system. They

identify and remove pathogens, kill target cells, present

antigens, and regulate immune functions (50, 51).

Macrophages differentiate mainly from monocytes and can be
FIGURE 2

Uncontrolled inflammation promotes osteonecrosis. A controlled inflammatory response to bone injury activates immune cells to remove
damaged tissue, then returns to baseline levels conducive to bone regeneration. Excessive inflammation maintains high levels of inflammatory
factors that further destroy bone, while an insufficient inflammatory response fails to clear immune-activating factors. Either inflammatory
disorder eventually leads to chronic inflammation and osteonecrosis. The green curve represents the change in the inflammatory level of
controlled inflammation over time, while the orange and blue curves represent the inflammation level of excessive inflammation and insufficient
inflammation, respectively. Abbreviations: IL-6, interleukin 6; ROS, reactive oxygen species; TNF-a, tumor necrosis factor–alpha.
FIGURE 1

Inflammation initiates bone repair. When bone injury occurs, damage-associated molecular patterns (DAMPs) are recognized by pattern
recognition receptors (PRRs) expressed on the surface of local cells. These cells are activated to release inflammatory factors that recruit
immune cells, which can phagocytose bone fragments and cell debris or produce pro-inflammatory factors to recruit mesenchymal stem cells
and initiate osteogenesis and angiogenesis. The overall result is resolution of inflammation and new bone tissue. Abbreviations: CCL2, C-C motif
chemokine ligand 2; ECM, extracellular matrix; IL-1, interleukin 1; IL-6, interleukin 6; PMN, polymorphonuclear leukocytes; SDF1, stromal cell-
derived factor 1; TNF-a, tumor necrosis factor–alpha.
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divided into classically activated macrophages (M1 phenotype)

or alternatively activated macrophages (M2 phenotype) (50, 51).

After bone injury, DAMPs released by bone and marrow cells

recruit macrophages to the injured area and polarize them to the

M1 phenotype, leading them to secrete pro-inflammatory factors

such as TNF-a, IL-1b, and IL-6, which initiate and maintain

inflammation (52–54). Four to seven days after bone tissue

injury, secretion of anti-inflammatory factors such as tumor

growth factor (TGF)-b and IL-10 into the microenvironment

polarize M1 macrophages to the M2 phenotype. This shift in

phenotype helps resolve inflammation, promotes secretion of

mineralized matrix by bone marrow mesenchymal stem cells,

and induces expression of the osteogenic factors alkaline

phosphatase and osteocalcin, which enhance the osteogenic

activity of osteoblasts. At the same time, anti-inflammatory

factors inhibit osteoclast-mediated bone resorption, further

supporting bone tissue repair (14, 55, 56). The regeneration

and repair of bone tissue after injury depend on the precise order

of macrophage polarization from M1 to M2.

In osteonecrosis, macrophages become locked in the M1

phenotype and continue to release inflammatory factors that

exacerbate the initial tissue injury. Animal models of

osteonecrosis showed high numbers of macrophage infiltration

in areas with osteonecrosis, high ratio of M1 to M2

macrophages, and significant upregulat ion of pro-

inflammatory factors TGF-b, IL-1b and IL-6 (57–59).

Interestingly, a recent study of specimens from patients with

non-traumatic ONFH also found that the main macrophage

subset in the osteonecrosis area had the M1 phenotype, the local

microenvironment was enriched with IL-1b and IL-6, and the

ratio of M1 to M2 macrophages was significantly increased as

osteonecrosis progressed (35). Inhibiting M1 macrophage

polarization and reducing the M1/M2 ratio in femoral head

and jaw reduced the secretion of local pro-inflammatory factors

and the apoptosis of bone cells caused by inflammation, relieving

steroid-induced osteonecrosis of the femoral head (SONFH) and

bisphosphonate-related osteonecrosis of the jaw to some extent

(60, 61). In addition, specifically regulating macrophage

polarization from M1 to M2 to reduce the M1/M2 ratio

downregulated the expression of pro-inflammatory factors in

the osteonecrotic area, promoted the secretion of anti-

inflammatory factors such as TGF-b and IL-10, reduced

osteocyte apoptosis and promoted bone formation, allowing

the regeneration and repair of necrotic bone tissue to a certain

extent (62, 63). These findings suggest that M1 macrophage

enrichment is an important osteoimmune feature of

osteonecrosis and that targeting M1 macrophages is a

promising therapeutic approach to treating osteonecrosis.

Strategies employed so far have targeted the upstream

signaling pathways responsible for M1 polarization.

Extracellular DAMPs released from injured bone bind to

pattern recognition receptor toll-like receptor 4 (TLR4) on cell

membranes and thereby activate the TLR4/MyD88/NF-kB
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signaling pathway, which promotes macrophage recruitment

and M1 polarization (57, 64–66). Inhibition of TLR4/MyD88/

NF-kB signaling in vivo by calycosin or TLR-4 inhibitor TAK-

242 reduced the expression of various pro-inflammatory factors

and promoted bone formation, effectively alleviating

osteonecrosis in animals with SONFH and in bisphosphonate-

related osteonecrosis of the jaw (33, 61, 66). On the other hand,

some extracellular pro-inflammatory factors could activate the

JAK/STAT1 pathway, which is another important pathway to

promote M1 macrophage polarization (61, 67). Inhibition of the

JAK/STAT1 pathway by using IL-17 inhibitor or curcumin

inhibited the polarization of M1 macrophages in mice,

significantly reduced the ratio of M1 to M2 macrophages, and

prevented inflammatory-mediated apoptosis of osteocytes (60,

61). Therefore, methods to inhibit M1 polarization need to be

further explored in order to develop potential therapeutic

strategies for osteonecrosis. (Figure 3)

3.1.2 Neutrophils
Neutrophils are derived from hematopoietic stem cells and

mainly circulate in the peripheral blood. They have strong

chemotactic and phagocytic properties (68). Once recruited to

sites of bone injury, neutrophils secrete inflammatory and

chemotactic mediators, such as IL-6 and MCP-1, which

further recruit monocytes and macrophages (14).

The ability of neutrophils to promote inflammation in

necrotic bone tissue is one of the important causes of

osteonecrosis. Strong neutrophil infiltration occurs within one

week of injury in ischemic osteonecrosis, but then neutrophil

numbers taper off over time, although a low number persists in

the microenvironment. These remaining neutrophils foster the

occurrence and development of osteonecrosis through immune

regulation of acute and chronic inflammation (49). The

percentage of neutrophils in blood has been associated with

the severity of SONFH, which may be because neutrophils

promote osteoclast formation to accelerate bone resorption

(23, 68). At the same time, neutrophils activated by necrotic

tissue secrete neutrophil extracellular traps (NETs), which

directly or indirectly induce the secretion of inflammatory

factors (69–71). In ONFH patients, neutrophils are enriched in

femoral head microvessels and the corresponding NETs

interfere with blood flow, resulting in ischemic necrosis (69).

Further studies in rats found that intravenous administration of

neutrophils capable of forming NETs promoted the

development of SONFH (69). Given the deleterious role of

neutrophils in osteonecrosis, the removal of neutrophils may

be a treatment for osteonecrosis. (Figure 3)

3.1.3 Dendritic cells
In innate immunity, the main functions of dendritic cells

(DCs) are phagocytosis and antigen presentation. DCs express a

large number of PRRs, such as TLRs, C-type lectin receptors and

NOD-like receptors, which recognize various DAMPs and
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pathogen-associated molecular patterns and quickly amplify

local immune responses (72, 73). The contribution of DCs in

osteoimmunology is two-fold: (1) DCs can differentiate into

osteoclasts when stimulated by receptor activator of nuclear

factor kappa-B ligand (RANKL) released from T cells, and the

new osteoclasts participate in local bone remodeling; and (2)

DCs can heavily influence the type of T cell responses by

presenting processed antigen via major histocompatibility

complex (MHC) class I and class II molecules, or by secreting

pro- or anti-inflammatory cytokines such as IL-12 p70, IL-4, and

IL-17 (45, 73, 74). (Figure 3) Which T-cell subtypes become

involved and whether their net effect is to exacerbate or mitigate

osteonecrosis will be discussed later in this review.

DCs serve as an important link between innate and adaptive

immune responses by maintaining osteoimmune homeostasis. In

contrast to the other innate immune cells, DCs may actually

ameliorate osteonecrosis. In a mouse model, bisphosphonates

impaired DC differentiation, maturation, migration and antigen

presentation, ultimately inhibiting T cell activation and local

immune responses, which translated to a higher risk of

osteonecrosis of the jaw (75, 76). Two bioinformatic analyses
Frontiers in Immunology 05
showed decreased infiltration of activated DCs in ONFH (23, 27).

These observations suggest that osteonecrosis may be due in part

to DCs deficiency that impairs osteoimmune functions.
3.2 Adaptive immune cells in
osteonecrosis

3.2.1 T cells
T cells or T lymphocytes are an important component of cell-

mediated adaptive immunity, and antigen-specific receptors on

their surface can recognize antigens that antigen-presenting cells

display on MHC complexes (77, 78). T cells can be divided into

several subgroups based on their functions, and these subgroups

can influence bone homeostasis. Various T cell subtypes work

together to maintain the balance between osteogenic and

osteoclastic metabolism by secreting osteoprotegerin (OPG) and

RANKL or regulating the local inflammatory microenvironment,

which in turn affects bone metabolism (77–79).

Interestingly, T helper (Th) cells and cytotoxic T

lymphocytes (CTLs) contribute to the progression of
FIGURE 3

Innate immune cells in osteonecrosis. Neutrophils cause microvascular blockage and osteolysis by secreting, respectively, NETs and pro-
inflammatory factors, resulting in osteonecrosis of the femoral head. Activation of the TLR4/MyD88/NF- kB and JAK/STAT1 pathways polarizes
macrophages to the M1 phenotype, and they secrete inflammatory factors TNF-a, IL-1b and IL-6 to promote osteoclast differentiation and
osteolysis. In osteonecrosis, macrophage polarization to the M2 phenotype is blocked, further impairing bone repair. DCs can differentiate into
osteoclasts and participate in bone remodeling under the stimulation of RANKL secreted by T cells. DCs present processed antigens and secrete
inflammatory factors that affect T cell differentiation. Abbreviations: DCs, dendritic cells; IL-1b, interleukin 1 beta; IL-4, interleukin 4; IL-6,
interleukin 6; IL-10, interleukin 10; IL-12 p70, interleukin 12 p70; IL-17, interleukin 17; M0, Macrophages; M1, classically activated macrophages;
M2, alternatively activated macrophages; NETs, neutrophil extracellular traps; RANKL, receptor activator of nuclear factor kappa-B ligand; TGF-b,
tumor growth factor beta; TNF-a, tumor necrosis factor–alpha.
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osteonecrosis, while regulatory T cells (Tregs) alleviate it. Th17

cells are enriched and activated in local tissues of ONFH and

osteonecrosis of the jaw, and Th17 cells secrete IL-17 to maintain

a chronic inflammatory microenvironment (80). IL-9 secreted

by Th2, Th9 and Th17 cells upregulates inflammatory factors

and enzymes related to cartilage degradation, promoting ONFH

progression (42, 81). High numbers of CTLs infiltrate areas of

osteonecrosis and contribute to it (24). They promote

interactions between T cells and osteoclasts and enhance the

activity of osteoclasts by secreting cytotoxic T lymphocyte-

associated protein 4 (CTLA-4) (79). Conversely, Tregs may

play a positive role in osteonecrosis, unlike Th and CTLs. The

number of Tregs was found reduced in areas of osteonecrosis in

mice (82). Further research found that Tregs secrete anti-

inflammatory factors such as IL-4, IL-10 and TGF-b in non-

traumatic ONFH in order to promote the resolution of

inflammation while inhibiting osteoclast activity and osteolysis

(79). Therefore, regulating the differentiation of T cells may be a

strategy to treat osteonecrosis. (Figure 4)
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3.2.2 B cells
B cells or B lymphocytes secrete antibody molecules to

initiate adaptive humoral immune responses and present

antigens to activate specific T cell immunity (83, 84). B cells

help maintain a normal bone microenvironment, and abnormal

numbers of some B cell subtypes may be associated with

osteonecrosis. Compared to healthy people, ONFH patients

show significantly higher numbers of CD5+CD19+ B1 cells,

CD86+CD19+ and CD95+CD19+ activated B cells, and CD27

+CD95+CD19+ memory B cells in the blood (79, 85).

Conversely, osteonecrotic tissue shows local decreases in the

number of memory B cells and the total number of B cells (86).

These observations emphasize the importance of B cells in

maintaining the normal bone microenvironment and the

ability of different B cell subtypes to influence the progression

of osteonecrosis.

Different subtypes of B cells regulate bone metabolism by

exerting different regulatory effects on osteogenic and osteoclast

metabolism. Regulatory B cells (Breg) are a newly discovered
FIGURE 4

Adaptive immune cells in osteonecrosis. T cells can differentiate into the T helper cells (Th), cytotoxic T lymphocytes (CTLs) and regulatory T
cell (Tregs) subtypes, which secrete various cytokines to influence chronic inflammation and osteoclast differentiation in different ways. Pre-B-
cells and immature B cells are found only in bone marrow, while Bregs, plasma cells and activated B cells are recruited into osteonecrosis
tissue. Activated B cells affect differentiation of T cell subtypes by presenting processed antigens and secrete RANKL to promote osteoclast
differentiation. Bregs, plasma cells, Pre-B-cells and immature B cells secrete IL-10 and OPG respectively to inhibit osteoclast differentiation.
Abbreviations: Bregs, regulatory B cells; CTLA-4, cytotoxic T lymphocyte-associated protein 4; IL-4, interleukin 4; IL-9, interleukin 9; IL-10,
interleukin 10; OPG, osteoprotegerin; RANKL, receptor activator of nuclear factor kappa-B ligand; TGF-b, tumor growth factor beta.
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subpopulation of B cells, which can secrete the anti-

inflammatory factor IL-10 and inhibit osteoclast differentiation

(83, 87, 88). An in vivo study found that low levels of Bregs led to

low levels of IL-10 and activation of osteoclastic metabolism

(88). In an in vitro study, regulating Breg differentiation reduced

the levels of IL-6, IL-17 and TNF-a as well as promoted Treg

differentiation (87, 88). In addition, OPG/RANKL system is

another pathway through which B cells affect bone metabolism.

Pre-B cells, immature B cells, and antibody-secreting B cells

(plasma cells) inhibit osteoclast differentiation by producing

copious amounts of OPG to block the RANK/RANKL system.

(Indeed, this OPG production accounts for 40-60% of total OPG

in the bone marrow.) On the contrary, activated B cells secrete

RANKL under pro-inflammatory conditions to activate

osteoclast formation (89–91). Boosting beneficial B cell

subtypes over detrimental subtypes may be a treatment for

osteonecrosis, which future studies should explore. (Figure 4)
4 Conclusion

During the development of osteonecrosis, necrotic bone damages

local immune function, which leads to uncontrolled inflammation

that creates a chronic inflammatory microenvironment, hindering

bone regeneration and repair. This review summarizes the

importance of immune cells and the regulation of their

inflammatory responses in the pathogenesis of osteonecrosis on the

basis of several original theories of osteonecrosis. It explains the

pathophysiological mechanism of osteonecrosis from an

immunological perspective according to the literature.

The immune system clearly exerts complex, pleiotropic effects

on the development and severity of osteonecrosis. Abnormal

infiltration of injured bone by M1 macrophages, neutrophils,

and certain T cell subsets worsens disease by creating an

abundance of pro-inflammatory factors, while DCs, Bregs and

Tregs dampen immune responses by secreting anti-inflammatory

and osteoclast-inhibiting factors. Despite these insights, we still do

not understand the role of most immune cells in the progression

of osteonecrosis. This will require making sense of how specific

environmental cues influence the differentiation of immune cell

subtypes and sub-lineages, and how these various subpopulations

communicate with one another. The cellular heterogeneity in
Frontiers in Immunology 07
bone will make this work particularly challenging. Nevertheless,

such research is quite important for the development of potential

treatments for osteonecrosis.
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