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The central nervous system is the most important nervous system in

vertebrates, which is responsible for transmitting information to the

peripheral nervous system and controlling the body’s activities. It mainly

consists of the brain and spinal cord, which contains rich of neurons, the

precision of the neural structures susceptible to damage from the outside

world and from the internal factors of inflammation infection, leading to a

series of central nervous system diseases, such as traumatic brain injury, nerve

inflammation, etc., these diseases may cause irreversible damage on the

central nervous or lead to subsequent chronic lesions. After disease or injury,

the immune system of the central nervous system will play a role, releasing

cytokines to recruit immune cells to enter, and the immune cells will

differentiate according to the location and degree of the lesion, and become

specific immune cells with different functions, recognize and phagocytose

inflammatory factors, and repair the damaged neural structure. However, if the

response of these immune cells is not suppressed, the overexpression of some

genes can cause further damage to the central nervous system. There is a need

to understand the molecular mechanisms by which these immune cells work,

and this information may lead to immunotherapies that target certain diseases

and avoid over-activation of immune cells. In this review, we summarized

several immune cells that mainly play a role in the central nervous system and

their roles, and also explained the response process of the immune system in

the process of some common neurological diseases, which may provide new

insights into the central nervous system.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1063928/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1063928/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1063928&domain=pdf&date_stamp=2022-11-16
mailto:wujianglinxing@163.com
https://doi.org/10.3389/fimmu.2022.1063928
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1063928
https://www.frontiersin.org/journals/immunology


Xu et al. 10.3389/fimmu.2022.1063928
Introduction

The immune processes involved in these two types of

immunity and the therapeutic regulation of disease and injury

by immune cells are not unidirectional in their effects on the

CNS, for the reason that the wrong activation or over-response

can cause damage to the central nervous system. The developed

nervous system of vertebrates is an important sign of high

evolution (1, 2). Central Nervous System (CNS) is the main

component of the human nervous system, including the brain,

which is located in the skull cavity, and the spinal cord, which is

located in the spinal canal. CNS can accept incoming

information from all over the body, integrate and process it,

and finally control the body through outgoing signals (3), or use

this information to complete memory and learning, so that the

organism can carry out a series of thinking activities.

Because the CNS is the most important vertebrate nervous

system, and the brain and spinal cord, the two main components

of the CNS, have been shown to be non-renewable (4).

Therefore, CNS injury and disease and the subsequent repair

of immune responses are crucial for the CNS. Like the immune

system of most other tissues, the immune system of CNS is

composed of the innate immune system and the specific immune

system (5, 6). The innate immune system is mainly composed of

congenital macrophages. The main process of specific immunity

is the specific immune response produced by the specific

combination of antigens and antibodies. The immune process

involved in these two immune modes and the therapeutic

regulation of immune cells on diseases and injuries have a

non-unidirectional effect on the CNS —— incorrect activation

or excessive response may cause damage to the central nervous

system (7).

At present, there is a relatively clear understanding of the

birth and differentiation of immune cells, and more

understanding of the possible functions of most immune cells

after differentiation. Studies on CNS immunity from 2020 to the

present have mainly focused on the molecular mechanism of

immune cells entering the CNS and promoting CNS

inflammation, and on this basis, how to regulate the response

degree of immune cells. For some immune cells, the researchers

found other types of differentiation and other effects. Other

studies have attempted to explain the link between CNS

immunity and other diseases, and have attempted to use CNS

immunotherapy as a clinical treatment (8, 9).

In this review, we illustrated the immune components of

CNS and their roles, observe the performance of these immune

components in different neurological diseases, and judged

whether they are beneficial or harmful for CNS diseases. Based

on this information, we may find ideas and methods of

immunotherapy for these diseases.
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Central nervous system

Composition of CNS

The central nervous system of the human body consists of

the brain and the spinal cord (Figure 1). The spinal cord is the

lowest level of motor center, and it is also the basic reflex center

to complete the movement of the organism, under the control of

the brain, through the neural circuit signal conduction, so as to

achieve motor regulation. The spinal cord is composed of gray

and white matter and contains nerve cell bodies and their

ascending and descending conduction tracts (10). Classical

studies of spinal cord function have focused on well-defined

neural pathways that are thought to mediate automatic functions

of stereotyping, such as stretch and flexion reflexes, and allocate

inputs from sensory and descending fibers to appropriate

targets (11).

Brain, generally refers to three parts which are: cerebellum,

brainstem, diencephalon. The brainstem is an important part of

the brain responsible for sensing injury and processing pain

signals, and transmits and processes signals between the brain,

cerebellum and spinal. The conventional wisdom about the

cerebellum is that it is essential for motor function and

contributes little to cognitive function (12). However, multiple

studies by Middleton FA et al. showed that cerebellar output

targets involved multiple cortical regions, including not only

primary motor cortex (13, 14), but also oculomotor nerve (15,

16), prefrontal lobe and inferior temporal region (17, 18), which

indicates that cerebellum plays a role in both motor and

cognitive function.
Working mechanism of CNS

The sensory organs with receptors establish communication

with the central nervous system through the afferent nerves, so

as to realize the regulation of the central nervous system.

Peripheral nerve tissue is composed of afferent sensory fibers

and efferent motor fibers. When receptors such as the skin are

stimulated by the outside world, they will produce nerve

impulses. Nerve synapses release neurotransmitters, which are

received by cells, and the resting potential is converted into

action potential (19). After receiving the neurotransmitter, the

receiver may process it and react on the afferent nerve synapse

(20), and intercellular conduction and closed interaction of

nerve electrical signals are realized. The electrical signal is

transmitted to the CNS along the sensory fibers, and the CNS

processes the signal and transmits it along the motor fibers to

control the body movement (21). In this way, the CNS is

connected to the rest of the nervous system.
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Take, for example, the mechanism of regulation of renal

afferent sensory nerves in the central nervous system. Kidney is

an important sensory organ with abundant baroreceptors and

chemoreceptors, as well as a large number of afferent nerves.

Renal afferents can directly project to areas of the central

nervous system, such as the lateral thalamic area and the

paraventricular nucleus (PVN), and indirectly project to other

areas of the hypothalamus (22). During stimulation of the

afferent renal nerve, the firing frequency of the large-cell

neurons in the PVN increased (23). Renal afferents activate the

central nervous system and enhance sympathetic activity (24).

In simple terms, the peripheral nervous system gives

information to the CNS in the form of electrical stimulation

through the afferent nerve, which is processed by the CNS to

realize the regulation of the body.
Immune cells and immune system in
the CNS

Immune cells

Among all immune cells in the central nervous system,

macrophages and glial cells derived from them, as well as

lymphocytes including T cells, B cells and self-killing immune

cells, play a major role (Table 1).
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Microglia are the main cellular component of the innate

immune system of the brain. They are distributed in the whole

brain at different densities, accounting for 5%-20% of the total

brain cells, and are developed from primitive macrophages (25,

26). Microglia are activated and polarized after being exposed to

external stimuli (42), which will present two phenotypes M1/M2

with different functional status and markers (27). The M1

phenotype produced by the general activation pathway can

exert pro-inflammatory and neurotoxic effects, while the M2

phenotype produced by the selective activation pathway can

exert anti-inflammatory and neuroprotective effects (28, 29),

promoting medullary regeneration by inhibiting cell

differentiation (34). Such a classification of microglia was

originally proposed by Mills et al. (30). However, this

classification method based on stimuli does not reflect the

range and function of phenotypes well, and Mills himself has

also shown that the main existence should be a continuous

intermediate of M1 and M2 (43), so this once widely used

classification method has been questioned by many people (44,

45). Later, Devanney et al. proposed a function-based

classification method (27). For the function of microglia, there

has been a high similarity between microglia and macrophages

due to their structural characteristics (46), researchers have long

thought that its function is mainly an immune response, like

macrophages, to recognize and take up pathogens and other
FIGURE 1

The composition of the CNS, the location of its parts, and the major immune cells it contains.
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substances, and analyze their environment (33). However, many

subsequent experiments have shown that, especially when there

is no need for immunity, the role of microglia is mainly to carry

out sensing, information processing and nerve protection in the

CNS, Central Nervous System.
Frontiers in Immunology 04
central nervous system (25), and maintain the homeostasis of the

central nervous system (31, 47). It promotes neural development

over a period of time (48) and can affect nerve impulses in the

adult brain (49).
TABLE 1 The distribution, roles, types and relationships of immune cells in the CNS.

Authors Immunocyte Role Content References

Alliot et al. Microglia Microglia arise from the yolk sac and emerge during embryonic
development, increasing in number during gestation and steadily
increasing in number during the first two weeks postpartum,
when about 95% of microglia are born

The origin and proliferation of microglia (25)

Lawson et al. Microglia Microglia are abundant in the brain, but their distribution is not
uniform. They are more distributed in hippocampus, olfactory
skull, basal ganglia and substantia nigra, and less distributed in
fiber tracts, cerebellum and most brain stem

Morphology and distribution of microglia (26)

Devanney
et al.

Microglia and
macrophage

The M2 phenotype of macrophages is age-dependent and can play
an anti-inflammatory role, and the M1 phenotype is enhanced
phagocytosis, but the M1M2 classification has limitations

The role of immune metabolism in neurotrauma (27)

Gensel et al. Macrophage M1, M2a, M2b, and M2c macrophages were sequentially activated
during the healing phase, but the duration of this phase was
prolonged after the onset of injury inflammation

Role of macrophages in spinal cord injury (28)

Tang et al. Microglia M1 microglia dominate the injury site at the end stage of the
disease. At this time, the immunolysis and repair process of M2
microglia are inhibited, and endogenous stimulation may continue
to activate M1 proinflammatory response, eventually leading to
irreversible neuronal loss

Microglia can be classified into two phenotypes,
M1/M2, and this classification has important roles
in neurological diseases

(29)

Mills et al. Macrophage Lymphocyte Activation
Macrophage Activation

The division of two phenotypes and paradigms of
macrophages and their association

(30)

Wright-Jin
et al.

Microglia Microglia differentiate and remove brain inflammation to
maintain CNS homeostasis

Role of microglia in CNS homeostasis (31)

Takahashi
et al.

NK NK cells may actively inhibit potentially pathogenic autoimmune
T cells that may mediate CNS inflammation

Role of NK in multiple sclerosis (32)

Nimmerjahn
et al.

Microglia Microglia are highly active in their putative resting state,
continuously investigate their microenvironment, and have
extremely strong motility processes and protrusions

Highly dynamic monitoring of brain parenchyma
by microglia in vivo

(33)

Miron et al. M2 Microglia The dominant response of microglia and peripheral macrophages
changed from M1- to M2. M2 cell density is increased in lesions
in aged mice

M2 cell polarization is essential for effective
myelin regeneration and contributes to the
treatment of multiple cell sclerosis

(34)

Boudreau
et al.

NK NK cells achieve structural diversity through mutation, making
them specific and adaptive to different immune environments

Diversity in NK cell reactive capacities driven by
NK education protect some individuals against a
variety of infections and diseases

(35)

Bluestone
et al.

T cells Cytokines are important factors driving the differentiation of CD4
effector T cells

CD4 T cells are divided into functional subsets
with different immune functions

(36)

Engelhardt
et al.

T cells Leukocytes cross the CNS barrier in response to chemokines and
activators

During inflammation, T cells migrate across the
CNS barrier and transport signals

(37)

Constant
et al.

B cells In the experiments designed to determine the ability of splenic
dendritic cells (DCs) and B lymphocytes to take up peptide or
protein Ags in vivo, Ags were taken up preferentially by DCs,
whereas proteins were taken up by Ag-specific B cells in vivo

By presenting antigens to T cells, B cells cause T
cells to perform protein antigens

(38)

Finkelman
et al.

B cells By activating B cells and presenting B cell antigens, anti-IGD
antibodies induce T cell activation and tolerance

The antigen presentation of B cells is required to
produce T-cell dependent antibody responses in
vivo, and the antigen presentation of repetitive B
cells to T cells is a necessary condition for the
expansion of B cells.

(39)

Pistoia et al. B cells B cells can not only produce antibodies, but also present antigens
to T cells

B cell function and its relevance to disease (40)

Kipnis et al. T cells Autoimmune T cells can produce neurotrophic factors when
activated by relevant antigens, and T cells can also activate non-
immune cell colonization and participate in homeostasis
restoration regulation

T cells and the immune system in schizophrenia (41)
fr
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Lymphocytes are the main cells of the body’s immune

response, which are produced by lymphoid organs and can

respond to signals such as foreign pathogens or inflammatory

stimuli. T cells, B cells and natural killer cells play a significant

role in central nervous system immunity. The main reason for

the suppression of immune action in the CNS is the blockage of

the blood-brain barrier (50, 51). Only a small number of

lymphocytes can enter the CNS through the blood-brain

barrier, blood-meningeal barrier, and blood-cerebrospinal fluid

barrier during brain health and injury, and play an immune

function or promote neuroinflammation (52–54).

T cells and B cells together constitute acquired immunity.

They can all differentiate into different subtypes (55), release

different cytokines or perform different functions, which greatly

contributes to their immune specificity (36, 40, 56–58).

B cells travel from the skull to the meninges through blood

vessels (59, 60), and their main role is to produce antibodies (61).

After receiving antigen presentation, B cells can differentiate into

plasma cells and memory cells. The former will produce specific

antibodies that bind to the antigen and destroy it[98][99]. B cells

can also act as antigen-presenting cells (APCs), processing

antigens and presenting them to antigen-specific T cells (38,

39, 62), and promote the development of pro-inflammatory T

cells (63). In the treatment of CNS autoimmune diseases, by

depleting activated B cells, B cells as APC can be stimulated to

target T cells, so that they can differentiate and develop, thus

enhancing the immune effect (64, 65).

T lymphocytes, the sentinels of the adaptive immune system,

respond to antigen-specific signals by bursting, proliferating,

and differentiating into effector subsets to recognize and

eliminate threats to the host (66, 67). In addition to the

previously mentioned antigen presentation and immune role

with B cells, T cells also have the function of promoting cognitive

learning in the brain (41, 68, 69), as well as a certain role in

maintaining CNS homeostasis. A large number of T cells are

used for immune monitoring of the brain barrier (37).

Natural killer immune cell (NK) is a kind of large granular

hematopoietic cell derived from bone marrow (70), and its

function varies in different individuals due to different genes

(35). Like T and B cells, NK also has a variety of subtypes (71),

among which the CD56 bright NK cells are the main ones present

in CD56 bright NK cells (72). It has been suggested that NK may

play a regulatory role in central nervous system diseases (32). NK

can repair nerves after CNS damage, coordinate immune

responses, and inhibit the development of inflammation (73, 74).

It is able to regulate the neurological diseases such as Parkinson

disease, and can play a neuroprotective role by killing T cells that

promote neurotoxicity (75). In some neuroinflammation, such as

autoimmune encephalomyelitis (EAE), the cytotoxicity is reduced

and the memory EAE is inhibited (76, 77). In addition, NK can also

work with other lymphocytes (78) to cooperate in immune action

in neurological diseases such as Alzheimer’s disease (79).
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Recent studies have shown that astrocytes play an important

role in CNS immunity by associating with other immune cells.

For example, the recognition of astrocytes depends on microglia,

and the subsequent release of caspases induced by astrocytes

promotes apoptosis and reduces cellular inflammation. IF-33

released by astrocytes can recruit twice as many T cells and

promote the repair of CNS diseases such as neurodegenerative

diseases and spinal cord injuries (80).
Immune system

The CNS immune system is divided into innate immunity

and specific immunity, which make different immune responses

in different situations. Some autoimmunity can lead to diseases,

but the immune effect after injury helps to recover from

injury (81).

After CNS injury, a series of subsequent immune responses

are triggered, first innate immunity and then specific immunity.

Both types of immunity can expand their number by releasing

cytokines and regulating genes from immune cells (82–84). The

innate immune system is the first line of defense to help the

central nervous system resist foreign pathogens, and the specific

immune response is slow, which will gather and play a role after

inflammation or injury occurs (85, 86). A correct understanding

of the immune system in different CNS diseases at different

stages of development can help us find appropriate

immunotherapy methods.

Due to the particularity of the CNS, the BBB still acts as a

barrier, making the CNS an immune privileged organ. Its carrier

and receptor proteins are the only way for outside proteins to

enter the CNS, ensuring precise regulation of what enters the

brain (87). This barrier creates an important difference between

CNS immunity and peripheral nervous system immunity. There

are only a small number of protoimmune cells in the CNS. These

immune cells and some immune progenitors release chemokines

and cytokines to recruit peripheral immune cells after brain

injury, thus amplifying the immune effect (88). For example,

fatty acids can activate peripheral macrophages through TLR4-

mediated mechanism. Such recruitment needs to be carefully

regulated, and the process will be discussed later (89).

However, the CNS has connections to all surrounding

organs (90). There is an external barrier to immune cells, but

the immune system of CNS is not isolated. Cerebrospinal fluid is

used as the medium to exchange immune cells with the outside

world through the meninges. Compartmentalized immune cells

are recruited to cross the blood-brain barrier when the brain

needs immune repair (91). These barriers used to be thought to

insulate the CNS from its immune system, but recent research

suggests that these barriers facilitate communication between

the CNS and the outside world. Some of them also act as

immune hubs, such as the dura mater, which associates with
frontiersin.org
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the brain through the lymphatic system, metabolizing waste and

maintaining brain homeostasis (92).
CNS disease and the association
with immune system

Central nervous system diseases include central

neurodegenerative diseases, nervous system infections, brain

tumors and other types of diseases, including brain injury, spinal

cord injury and peripheral nerve injury from the point of view of

injury and disease location. These diseases are related to the

immune system to some extent. Here we focus on central

neurodegenerative neurological diseases, CNS tumors, traumatic

brain injury, and spinal cord injury.
CNS neoplasms

Brain tumors are generally divided into two categories,

namely those from external sources, also known as metastases,

and those arising from the central nervous system, such as

gliomas (93). We focus on tumors arising spontaneously in the

central nervous system. When tumors occur, tumor associated

macrophages (TAMs) are the main immune cells in the tumor

microenvironment (TME) in the CNS. Studies have shown that

the incidence of some primary tumors is very low after

immunosuppression (94, 95), which indicates that TAM

targeted inhibition plays an important role in tumor therapy

(96). Take glioma as an example, it is a tumor developed by glial

cells, among which glioblastoma (GBM) is the most common

glial tumor and one of the highest mortality among all cancers

(97). The average overall survival time is not more than 15 years,

and only seven percent of patients can be cured (98, 99). Some

other subgroups of low-grade gliomas have molecular features

similar to glioblastoma, with an invasive process (100). Glial cells

will release CSF-1 and other cytokines and recruit TAM (101).

Studies have shown that TAM can promote the growth rate and

morphological size of glioma cells (102, 103), and a small

number of TAMs and microglia will lead to a larger volume of

tumors (104). In fact, in GBM, the number of TAMs is positively

correlated with tumor severity, and there are very few in patients

who do not relapse after recovery (105). According to this

characteristic of TAM, the development of tumor therapy

targeting TAM has become a new direction for brain tumor

treatment (106, 107).

CNS tumor immune process after the basic follow - tumor

immune system cycle, this is Chen et al. Applied to inducing

tumor immune response rule (108), after the tumor cells results

in the release, antigen precursor release activating factor to

activate T cells, as effector cells infiltrating tumor, T cell

contact and identify the antibody, to destroy, then the immune
Frontiers in Immunology 06
cells apoptosis (109). T cells can track and eliminate cancer by

recognizing specific exogenous factors to track and damage host

cells (79). In fact, the development of tumor immunotherapy

based on this principle has been widely carried out and achieved

remarkable results (110, 111), and the application in brain

tumors is also an example to follow.
Degenerative neurological diseases

In 2019, there were about 50 million people living with

neurodegenerative diseases worldwide, and this number is

expected to rise to 152 million by 2060 (112). In his study,

Richard Armstrong listed a series of factors that lead to

degenerative neurological diseases and pointed out that age is

the most important risk factor (113). The two diseases with the

highest incidence of degenerative neurological diseases are

Alzheimer’s disease (AD) (114) and Parkinson’s disease (PD)

(115, 116), which are also a hot research topic in CNS diseases.

An important component of neurodegenerative diseases is

the triggering of innate immune mechanisms. Microglia and

other cell types in the brain can be activated by misfolded

proteins or abnormally localized nucleic acids. This detents

microglia from their physiological and beneficial functions and

leads to a sustained release of their proinflammatory mediators

(25). In the process of Parkinson’s disease, for example, after the

activation of microglia as the main cells of immune function,

may cause nerve nutrition through compound, such as brain

derived neurotrophic factor, nerve protective effect, but there are

also likely to produce neurotoxicity of proinflammatory

cytokines (such as tumor necrosis factor (TNF), interleukins)

(117, 118). For these two functions, which are almost opposite to

the development of the disease, the current view is that at the

beginning, the cytokines of activated microglia may have

neuroprotective effects, but then the activated microglia

undergo toxic degeneration, leading to the progression of

Parkinson’s disease to neurotoxicity (119). Sawada showed in

his experimental studies that activated microglia may be

neuroprotective in neonatal mice but neurotoxic in aged mice.

This conclusion is consistent with the fact that age is a major risk

factor in the pathogenesis of degenerative neurological diseases,

because the performance of two subsets of activated microglia

(with toxic and neuroprotective functions, respectively) is

strongly correlated with age.
Spinal cord injury

Spinal cord injury (SCI) refers to the injury of the spinal cord

and the pathological changes such as sensory and motor

disorders after the body encounters direct or indirect external

interference. Spinal cord injury may lead to loss of limb
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perception, incontinence and even complete paralysis, which

may not recover for a lifetime or even be life-threatening (120).

After SCI, to ensure the regeneration of damaged axons

(121), the CNS begins to recruit peripheral neutrophils into the

CNS (122) and begins to clear axons and myelin debris nerve

remnants (123), within the first hour after injury, playing a

major clearing role. Subsequently, the recruited neutrophils

begin to apoptosis and release attractant factors that attract

and recruit monocytes, and at the same time can also recruit

certain macrophages. After reaching the injury site, monocytes

differentiate into macrophages according to the chemokines at

the injury site (124–126), and the macrophages produced at this

time will phagocytize the apoptotic neutrophils and other tissue

debris (127). Similarly, microglia are also involved in injury

repair (128). So similar to the white blood cells, neutrophils and

other related immune cells in the spinal cord damage happens

after apoptosis, part of the nerve ending structure will be

destroyed in the process of damage (120). Experiments have

shown that there are many repair factors in the central nervous

system that promote regeneration of biological factors in nerve

and immune cells (Ramer, Ramer et al., 2005), but regeneration

does not represent full functional recovery. Therefore, after the

immune system deals with spinal cord injury, the body will have

reduced immunity and be prone to infection (129). Moreover,

although the immune system responds to traumatic stimuli, it

drastically changes as the injury worsens, which may exacerbate

the injury and inflammation (130, 131).
Traumatic brain injury

Traumatic brain injury (TBI) is an injury to the brain caused

by external forces or external shocks, which may lead to a

reduction or change in the state of consciousness and easily

cause biochemical cascade damage, so it may be accompanied by

long-term sequelae (132). After the occurrence of TBI,

symptoms such as intracranial hemorrhage, brain contusion,

concussion, and damage to nerve synapses are first caused (133),

and a cascade of damage occurs within minutes to months. TBI

has a high incidence among both military personnel and the

general public (134).

Neuroinflammation and peripheral neuropathy are easily

triggered after TBI (135). There are many factors that cause this

situation, such as purines, heat shock proteins, and receptors of

pathogen associated endogenous molecules (PAMPs) and

damage associated endogenous molecules (DAMPs), which

may promote inflammation (136–138). The latter can combine

with proteins to form inflammasomes, release and infiltrate

microglia, astrocytes and other cell populations, and produce

proinflammatory factors after activation (139). Proinflammatory

factors can further lead to neuroinflammation, and more severe

inflammation can even transform TBI into chronic neurological

diseases (140).
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Similar to other neurological diseases, in TBI, immune cells

can both promote recovery and aggravate injury (141). TBI can

instantly induce cell death, after which the damaged cells release

DAMPs, signal to immune cells, recruit microglia, astrocytes,

etc. After they are activated, they will further recruit peripheral

immune cells to pass through the damaged blood-brain barrier

(142). Microglia respond immediately after injury and

accumulate in large numbers in the injured area (33, 143),

removing cell debris through phagocytosis (44). It can also

release trophic factors to protect nerves (133) and is involved

in remodeling injured nerves (144). However, microglial

activation will produce excessive inflammatory mediators,

recruit peripheral immune cells, produce a large number of

pro-inflammatory factors and cytotoxic substances, hinder the

repair of the central nervous system, and even lead to cell death

and neuronal dysfunction (145, 146). Similarly, although

neutrophils can participate in the immune regulation of TBI,

they will also release some acute inflammatory cytokines to

aggravate brain injury. The protective and injury effects largely

depend on the location, type and stage of injury (147). Which

more complicated is that the immune function and immune

effect after TBI are related to gender (148) and age (149).

Therefore, studying the relationship between these influencing

factors and immune effect is an important entry point for the

treatment of TBI (Table 2).

Now the treatment of some kinds of new ideas are mainly

concentrated in cell therapy (151), because the immune cells

such as macrophages have different phenotypes, their functions

have significant difference, so can adjust the balance between

different phenotypes, as far as possible avoid inflammation cause

of neurodegenerative diseases, lower immune cell toxicity effect

(152). In a study of the effects of Anakinra, a recombinant

human IL-1 receptor antagonist, the treatment group had a

higher cure rate than the control group (153). In addition, some

small particles, such as zinc ions, have also been shown to be

involved in neuroprotection and nerve recovery after injury

(150). TBI ZnT3-KO mice were more severely injured when

compared with juvenile wild-type mice.

In each of these diseases, the brain is damaged to a degree

that releases specific substances that activate the innate immune

system, which in turn activates and recruits the peripheral

immune system. The immune system plays an important role

in the anti-inflammatory response to disease injury and

subsequent damage repair, but some immune responses also

lead to the deterioration of the disease, so it is believed that CNS

diseases and CNS immune system have an important

relationship (Figure 2).
Conclusion and future prospects

Although some immune cells in the CNS have been

discovered and their functions have been relatively obvious, a
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FIGURE 2

The processes by which immune cells exert their effects after CNS tumors and TBI, including their bidirectional effects on the disease.
TABLE 2 Studies on the role of different immune cells in TBI.

Authors Immunocyte Role The research
methods

References

Roth et al. Microglia,
astrocytes

The skull is permeable to small molecular weight compounds and uses this delivery route to
modulate inflammation and therapeutically ameliorate brain injury through transcranial
administration of the ROS scavor glutathione

Traumatic Head
Injury Neuroimaging
Classification
(THINC)

(133)

Davalos
et al.

Microglia ATP is an important signaling molecule that mediates interactions between various cell types in
the brain, and glial and endothelial cells may contribute to microglial responses by releasing large
amounts of ATP upon injury

Microglia were
imaged in vivo using
a two-photon
microscope

(137)

Liu et al. Microglia,
astrocytes

The innate immune system engages in a series of PRRS to detect “danger” signals, such as
PAMPs or DAMPs, to defend against infection or injury. NLR recognizes many PAMPs as well
as various DAMPs to activate the assembly of inflammasomes that trigger the maturation of
proinflammatory cytokines, such as IL-1b and IL-18

Western blot analysis (139)

Liu et al. Neutrophils Neutrophils are an important component of the innate immune system, and their inappropriate
or excessive activation may lead to tissue damage.

Drug blockade, etc. (147)

Damani
et al.

Microglia Most microglia are long-lived cells that have a long residence time in the CNS and are therefore
susceptible to the in situ aging effects that occur during the normal lifespan of the animal

In vitro imaging of
the explant retina

(149)

Doering
et al.

Zinc-rich (ZEN)
neurons

Zn ions are protective against TBI effects Diseased mice were
treated with DEDTC
or selenite

(150)

Loane
et al.

Microglia In injured brains, microglia produce neuroprotective factors that remove cellular debris and
coordinate the process of nerve repair

Drug therapy, gene
blocking, etc

(142)

Griffin
et al.

Microglia-
directed neurons

Traumatic brain injury, mild and severe, open and closed, leads to immune suppression and
infection

Autologous reinfusion
of WBCs (adoptive
immune therapy)

(132)

Jassam
et al.

Microglia,
astrocytes

TBI induces an immune response composed of locally and peripherally derived participants that
begins within minutes of the onset of TBI if the injury does not resolve or causes chronic
diseases such as chronic traumatic encephalopathy

Inhibitors block
immune cell
activation

(44)

Edwards
et al.

Steroids Refutes any substantial reduction in corticosteroid mortality or severe disability within 6 months
after traumatic brain injury

MRC CRASH: A
randomized
controlled trial of the
effects of
corticosteroids

(141)
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large part of the CNS is still unknown. Previous studies have

shown that the molecular pattern and molecular reason for these

apparent phenomena are still unclear after addressing the

expression role of the immune system. For example, do NK

cells maintain or regulate repair functions in the central nervous

system and how do they do it? What is the mechanism of

macrophage phagocytosis and foam cell formation after SCI?

How do macrophages recognize and internalize specific

molecules in apoptotic neutrophils? All these problems now

seem difficult to solve (154, 155).

In addition, some immune cells were surprisingly found to

be present in specific disease contexts, which could not be

explained by current understanding. Some CNS diseases

currently have no suitable treatment (156, 157), and some

therapies that appear to be effective have substantial

limitations. For example, although checkpoint inhibitors have

been relatively successful in many solid tumor types, they have

been difficult to succeed in CNS tumors. Even some serious CNS

diseases have not received enough attention (158).

In the future studies, more neurological diseases will be

taken into account, and the immune connection between the

CNS and the peripheral nervous system may become an

important consideration of immune effects.
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