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Manipulation of metabolic
pathways to promote stem-like
and memory T cell phenotypes
for immunotherapy

Michael D. Claiborne*

Department of Medicine, Scripps Green Hospital and Scripps Clinic, La Jolla, CA, United States
Utilizing the immune system’s capacity to recognize and kill tumor cells has

revolutionized cancer therapy in recent decades. Phenotypic study of

antitumor T cells supports the principle that superior tumor control is

achieved by cells with more long-lived memory or stem-like properties as

compared to terminally differentiated effector cells. In this Mini-Review, we

explore recent advances in profiling the different metabolic programs that both

generate and define subsets of memory T cells. We additionally discuss new

experimental approaches that aim to maximize the durability and sustained

antitumor response associated with memory T cells within the

unique immunosuppressive conditions of the tumor microenvironment, such

as engineered attempts to overcome hypoxia-induced changes in

mitochondrial function, the inhibitory effects of tumor metabolites, and

exploitation of more recently-defined metabolic pathways controlling T cell

memory fate such as glycogen metabolism.
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Introduction

Exploitation of the immune system’s ability to target and kill tumor cells has

demonstrated profound clinical benefit for a multitude of cancer types in the form of

checkpoint blockade, whereby blocking inhibitory signaling molecules on T cells allows

for the host or patient’s own immune system to mount an effective antitumor T cell

response (1). A related avenue of investigation involves adoptive cellular therapies (ACT)

for cancer, involving the transfer of tumoricidal immune cells that can be modified ex

vivo, such as chimeric antigen receptor T cell (CAR T cell) or T cell receptor therapy

(TCR-T) (2). Analysis of outcomes in checkpoint blockade therapy and ACT have

demonstrated superior responses in patients with more detectable stem-like or memory T
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cell populations (3–5). Phenotypes of responding immune cells

in these settings are detailed in additional reviews (6, 7). Immune

cell metabolism is increasingly recognized as more than a simple

consequence of cellular activity, but rather it defines cellular

activity, including memory T cell function (8). However, the

development and maintenance of this metabolic state faces

unique challenges within the tumor microenvironment (TME),

including nutrient deprivation, inhibitory signaling, and the

presence of immunosuppressive metabolites (9, 10). In this

Mini-Review, we focus on hallmarks of memory T cells that

facilitate the metabolism necessary for their identity and

function as long-lived cells capable of self-renewal and rapid

reactivation upon rechallenge. We review recent advances in

defining the many forms of metabolic inhibition imposed upon

T cells within the TME. We additionally profile new

experimental approaches that aim to manipulate the metabolic

properties of T cells to support stem-like or memory phenotypes,

with the goal of maintaining these phenotypes within the TME

to achieve tumor control.
Metabolic shifts in T cell activation
and differentiation

Naïve T cells primarily rely on oxidative phosphorylation to

maintain energy homeostasis prior to antigen encounter, but

undergo radical metabolic changes upon TCR activation, with

glycolysis and glutaminolysis fueling effector responses

characterized by cytokine production and clonal expansion

(11). Pro-growth signaling pathways downstream of TCR

signaling such as the PI3K/Akt/mTOR pathway further

support these metabolic changes by promoting expression of

transcription factors such as c-Myc, which controls cell cycle

entry in addition to amino acid and glucose uptake (12, 13).

Glycolysis is additionally sustained by the downstream effects of

CD28 costimulation, which further maintains PI3K/Akt/mTOR-

mediated GLUT1 mobilization for continued glucose uptake

(14). Although most clonally-expanded effector T cells die off

over the course of antigenic response, a small percentage persist

and become long-lived memory T cells through mechanisms still

under investigation (15). Effector memory (Tem) cells are

distinguished from central memory (Tcm) cells by greater

cytokine production but less long-term persistence. Memory T

cells display lower baseline activity of anabolic signaling

pathways such as PI3K-Akt-mTOR (16). Consistent with the

lack of signaling and machinery supporting constitutive

glycolysis, they instead upregulate surface transporters for fatty

acid uptake in an IL7R- (CD127)-dependent manner as well as

mitochondrial enzymes responsible for fatty acid oxidation (17).

More recently, a subset of T cells termed stem cell memory

(Tscm) have been defined by expression of markers such as

CD95 and CXCR3 in addition to CD127 that maintain the
Frontiers in Immunology 02
greatest proliferative potential among memory T cells and can in

fact reconstitute an entire host’s T cell compartment, including

Tcm and Tem cells (18, 19). Components of memory T cell

metabolism that permit for rapid reacquisition of effector

function upon reactivation are detailed in the next section.

The majority of research in T cel l metabolism

has been conducted using T cells activated and cultured in

vitro. As metabolism across cell types can vary widely by

tissue microenvironment, this raises the question of the

generalizability of these studies to T cell metabolism in vivo.

Indeed, recent studies comparing the metabolism of T cells

activated in vivo or in vitro in viral infectious models have

called into question the extreme shift towards glycolysis in

effector cells, as Ma et al. demonstrated that in vivo-activated

CD8+ T cells maintain high rates of mitochondrial respiration

with increased spare respiratory capacity (SRC) when compared

to in vitro-activated cells. In fact, in these studies, T cells at the

peak of effector responses exhibited a metabolic profile much

more similar to naïve cells in terms of energy metabolism (20).

However, the contribution of glycolysis to proliferative capacity

in these cells was critical not as it related to ATP generation, but

rather through glucose-dependent serine biosynthesis.

Additional studies using media with physiologic carbon

sources (PCS) found in animal serum but less abundant in

traditional cell culture media such as acetate and b-
hydroxybutyrate have demonstrated that metabolites such as

lactate, once thought to be largely immunosuppressive, function

as critical TCA cycle fuel for T cells activated under more

physiological metabolic conditions in infectious models (21).

These studies highlight the importance of methodology when

studying metabolic processes and the need for future studies to

further characterize the activation conditions of experimental T

cells, as this has profound implications for future cellular

metabolic function.

Once a population of memory T cells is established, multiple

factors maintain their identity and function. We next briefly

review the factors that maintain the metabolic state of memory T

cells. This does not serve as an exhaustive list, and the many

aspects of metabolism which control the identity of memory T

cells are further explored in other reviews (22). Rather, this list

serves to outline specific factors discussed in later sections with

therapeutic implications in the tumor microenvironment.
Regulation of memory T cell
metabolic state

Epigenetic control of metabolism as it pertains to memory

cells is a consequence of the integration of environmental signals

from the time of T cell activation onward, as metabolites

themselves can directly or indirectly function in both DNA

and histone modification programs that support effector or
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memory fates. For example, elevated acetate levels in T cells at

the peak of effector responses facilitate GAPDH acetylation

(leading to enzymatically increased glycolytic activity) while

simultaneously increasing H3K9 acetylation at loci critical for

future effector function (23, 24). Subsets of dividing cells

experience differential histone modification depending on

cellular fate, as demonstrated when comparing populations of

cells with differential IL7R expression, a classic marker of long-

lived T cells. IL7Rlow terminally differentiated effector T cells

begin to demonstrate increased transcriptional silencing at loci

critical to memory function in the form of H3K27 trimethylation

compared to IL7Rhi effector memory cells (25). As it pertains to

DNA modification, distinct patterns of demethylation of effector

loci have been observed in T cells as they progress to more

central memory or stem-like memory fates that facilitate rapid

reacquisition of effector function (26). The multitude of factors

that control epigenetic fate in developing T cells are explored in-

depth in other reviews (27, 28). As it pertains to this review,

modifications to DNA and histones that facilitate the

metabolism necessary to support both a rapid recall response

and enhanced survival within the tumor microenvironment are

of interest, as interventions there have direct implications in

cellular therapies for cancer.

Mitochondrial parameters such as overall mass, SRC,

and transmembrane potential serve in shaping T cell fate

through the mitochondria’s functional connection to energy

metabolism. Memory T cells demonstrate significantly increased

mitochondrial mass compared to effector cells, concomitant with

increased reliance on oxidative phosphorylation for energy

production (16, 29). Excessive reactive oxygen species (ROS)

production as a result of the biochemistry of oxidative

phosphorylation can become detrimental to T cells,

demonstrated by the predictive ability of mitochondrial

transmembrane potential (DYm) in determining future in vivo

antitumor activity. T cells separated by higher baseline

transmembrane potential demonstrated lower SRC, greater

intracellular ROS production, and an increase in expression of

effector-related genes with decreased expression of memory-

related genes compared to cells with lower transmembrane

potential (30). Ongoing research continues to clarify these and

other properties, such as mitochondrial fusion, in T cell memory

function (31). For the purpose of this review, we will focus on

dysregulation of oxidative phosphorylation and inability to

moderate ROS production in the TME as parameters of

mitochondrial metabolism amenable to therapeutic intervention.

The role of various cytokines both in T cell priming and in

the TME can have profound implications in memory function.

IL-2, IL-7, and IL-15 are members of the common gamma chain

family of cytokines with differential effects on T cell function. IL-

2 functions to stimulate the PI3K-Akt-mTOR pathway, stabilize

HIF1a, and facilitate glucose uptake, while IL-7 is critical for

memory T cell survival via regulation of glycerol uptake and

movement of fatty acids into the mitochondria via CPT1a (17,
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32, 33). IL-15 signaling plays roles in homeostatic proliferation

of memory T cells and primes them for cytokine re-expression

upon rechallenge (34, 35). As will be discussed later, treatment of

antitumor T cells with IL-7 and IL-15 have shown promise in

increasing parameters associated with memory or stem-like

phenotypes. Conversely, cytokines such as TGF-b encountered

in the TME have broad immunosuppressive or immune-

exclusionary functions and can directly impair T cell responses

through Smad-mediated downregulation of critical genes such

as granzyme and perforin (36, 37). We next review additional

metabolic contributors within the TME, as their study

is essential to understanding and improving antitumor

immune responses.
T cell metabolism in the TME

The nutrient-deprived, acidic, hypoxic conditions

encountered in solid tumors pose unique challenges to tumor

infiltrating lymphocytes (TILs). Nutrient competition, whereby

tumor cells ultimately prevail over immune cells for critical

molecules such as glucose and methionine, represents a major

mechanism of immunosuppression (38, 39). Expanding this

concept of competition in the TME to entire organelles, Saha

et al. recently described a nanotubule-mediated process by which

tumor cells steal mitochondria from infiltrating immune cells,

rendering them less energetically fit (40). Tumor-derived lactate

not only suppresses cytotoxic activity via mechanisms including

inhibition of glycolysis and concomitant serine biosynthesis via

disruption of NAD+/NADH redox balance, but has been

recently demonstrated to serve as fuel for metabolically-flexible

regulatory T cells (Tregs) within the tumor microenvironment,

further suppressing antitumor immune responses (41–44).

Additional immunosuppressive metabolites such as adenosine

and kynurenine further decrease T cell responsiveness by

suppressing TCR signaling, inhibiting cytokine production and

stabilizing the defining Treg transcription factor Foxp3 in the

case of adenosine and by stimulating Treg differentiation and

increasing T cell expression of inhibitory checkpoint molecules

such as PD-1 in the case of kynurenine (45–47). Tumor-derived

retinoic acid stimulates differentiation of monocytes into a more

immunosuppressive and less pro-inflammatory phenotype,

suppressing T cell responses (48). Extracellular potassium,

increased in the TME as a consequence of cellular necrosis,

serves to induce T cell metabolic programs that restrain

acquisition of effector function via decreases in acetyl-CoA-

mediated epigenetic remodeling, yet also sustains expression of

stemness markers such as Tcf7 (49, 50).

T cell exhaustion is broadly defined as a state

of hyporesponsiveness seen in the context of persistent

stimulation such as chronic viral infection or cancer and is the

subject of existing reviews (51). As it pertains to metabolism,

impairment in mitochondrial oxidative phosphorylation with
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excessive mitochondrial ROS production observed in exhausted

T cells appears to be a major driver of T cell dysfunction (52).

This impairment appears most pronounced in the setting of

hypoxia, as Scharping et al. demonstrated that while chronic

stimulation or hypoxia alone generated functional CD8+ effector

cells during differentiation, the combination of both factors

readily generated extensive mitochondrial ROS and produced

exhausted cells (53). Hypoxia, as is often encountered in

the TME, has profound effects on previously mentioned

suppressive pathways as well, ranging from the stabilization of

factors involved in generating extracellular adenosine to

downregulation of nutrient uptake transporters critical to

metabolic pathways downstream of CD8+ activation (54, 55).

Combating T cell exhaustion is central to metabolic

interventions in cancer immunotherapy; as discussed in the

next section, many innovative approaches to prime or enhance

CD8+ T cell memory directly aim to counteract the changes seen

in the TME that have been previously summarized.
Enhancing therapy through
metabolic manipulation

Culturing antitumor T cells or CAR-T cells in IL-7 or IL-15

rather than IL-2 alone has been demonstrated to produce cells

with greater in vivo tumor control and greater preservation of

Tscm phenotype (56–58). Benefits of IL-7 or IL-15 exposure

extend beyond the T cell priming phase, as engineered

modifications to these cytokines improving their in vivo

persistence have recently produced viable adjuvants that

improve antitumor responses when administered to animals in

the case of IL-7 and in clinical trials for IL-15 (59, 60). Li et al.

recently demonstrated an enhancement of metabolic flexibility

with transgenic IL-7 production in CAR T cells, with CD4+ IL-7

CAR T cells demonstrating less overall metabolic activity at rest

compared to standard CARs but were capable of rapidly

downregulating CPT1a upon re-engaging tumor cells,

facilitating shifts away from mitochondrial metabolism

towards glycolysis and rapid effector reacquisition, leading to

superior tumor control (61). Both exposure to and cell-

autonomous production of these cytokines are active avenues

of investigation in improving antitumor responses by facilitating

pro-memory signals.

Regarding suppressive signals, Silk et al. have demonstrated

a resistance to TGF-b-mediated inhibition of effector function

when CAR T cell constructs are expressed alongside a truncated

dominant-negative TGF-b receptor (dnTGFbRII), which can

bind TGF-b but does not signal through Smad (62; Figure 1).

Oxygenation supplementation to living organisms through

means such as hyperbaric oxygen therapy (HBOT) attempting

to decrease TME hypoxia would seem at first glance to comprise

a reasonable anticancer therapy. However, most large studies in

humans have been inconclusive and both preclinical and clinical
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studies suggest lack of benefit in some settings but benefit in

others (67). For example, Liu et al. recently demonstrated

extracellular matrix remodeling of stroma-rich tumors in mice

exposed to HBOT, which permitted for greater accessibility of

both T cells and immune checkpoint antibodies to the

intratumoral space which thereby improved tumor control

(68). Restriction of efficacy of this therapeutic modality to only

a subset of tumors, such as those with extensive extracellular

matrix formation, could explain the lack of consistent human

data demonstrating benefit. However, efforts to overcome

hypoxia-induced inhibition in a T cell-intrinsic manner have

met success with overexpression of a HIF2a mutant resistant to

the oxygen-dependent negative HIF regulator Factor Inhibiting

HIF (FIH), increasing cytolytic function in CD8+ T cells

and improving tumor control in CAR T cell animal models

(66). The inhibitory effect of extracellular potassium can

pharmacologically abrogated, as treatment of T cells with the

KCa3.1potassium channel activator SKA-346 prevents

potassium-mediated suppression of cytotoxic function in vitro

(50, Figure 1). In targeting pH balance, genetic deletion of the

chloride/bicarbonate anion transporter Ae2 (also known as

SLC4A2) which extrudes bicarbonate down physiologic

gradients in CD8+ T cells improves T cell cytokine production

and increase proportion of memory phenotype cells after

activation in vitro and improves tumor control in ACT

experiments in vivo by preventing bicarbonate loss to acidic

environments (69, 70). Further characterization of inhibitory

signals in the TME will lead to advances in engineering T cell

resistance to these forms of suppression.

Manipulation of mitochondrial biogenesis or function

has shown promise in improving antitumor responses.

Overexpression of PGC1a , the master regulator of

mitochondrial biogenesis, increased mitochondrial content,

skewed T cells towards a KLRG1loCD127hi Tcm phenotype,

and decreased tumor burden in mouse melanoma models (63;

Figure 1). Addressing CD8+ T cell mitochondrial function, Yu

et al. recently described a mitophagy-dependent nicotinamide

ribose (NR) supplementation strategy that improves antitumor

immunity by preventing accumulation of dysfunctional

mitochondria (65). Temporal alterations in mitochondrial

metabolism have attracted recent attention, as short-term

blockade of mitochondrial pyruvate ingress via inhibiting the

mitochondrial pyruvate carrier MPC1 in nutrient-rich culture

prior to adoptive T cell transfer has been shown to increase

uptake of glutamine and fatty acids with subsequent acetyl-CoA

generation, permitting for increased H3K27Ac-mediated

accessibility of critical memory loci such as Sell, Ccr7, and Tcf7

(71). Wholesale blockade of MPC1 within the nutrient-poor

TME, however, led to decreased antitumor T cell responses by

inhibiting the ability of T cells to utilize lactate to fuel the TCA

cycle, implicating epigenetic modification as a consequence of

alterations in mitochondrial metabolism as the major driver of

this improved antitumor phenotype.
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Upregulated glycogenolysis leading to glucose-6-phosphate-

derived antioxidant NADPH generation via phosphoenolpyruvate

carboxykinase (Pck1) is a recently defined characteristic of

memory T cells that protects them from ROS generated during

fatty acid oxidation (72). Recently, an epigenetic regulatory

mechanism linking Pck1 activity to other aspects of memory T

cell metabolism has been proposed by Ma et al., whereby

mitochondrial acetyl-CoA in memory cells is diverted to

ketogenesis, with subsequent b-hydroxybutyrate production

epigenetically modifying H3K9 at loci encoding Foxo1 and the

master mitochondrial biogenesis co-activator PGC1a via b-
hydroxybutyrylation (73). This epigenetic activation not only

promotes Pck1 expression, but supports mitochondrial

biogenesis as a whole. The contribution of glycogen to memory

metabolism is further supported in a study by Criboli et al., where

overexpression of the glucose transporter GLUT3 created T cells

with increased glucose uptake with subsequent glycogen storage,

leading to increased mitochondrial fitness, reduced ROS, and

greater tumor control (64; Figure 1). Mice in these experiments

were protected from tumor rechallenge, suggesting the generation

of a potent antitumor immune response. Further modulation of

genes in the ketogenesis pathway could thereby potentially alter
Frontiers in Immunology 05
flux, metabolite availability, and epigenetic control of this key

determinant of memory cell metabolism.

Recent work has additionally implicated metabolism of

vitamin A metabolites in the epigenetic control of T cell

differentiation. Fujiki et al. described T cell-intrinsic

metabolism of vitamin A to retinal by the enzyme RDH10,

which subsequently downregulated CD62L expression via

retinoic acid receptor (RAR) signaling leading to H3K27

trimethylation-mediated epigenetic repression of memory-

associated loci such as Tcf7 and Bcl2, supporting terminal

effector differentiation of activated T cells (74). RDH10-

deficient T cells were protected from this forced differentiation

in the TME and were more memory-like, controlling tumors to a

greater degree than wild-type counterparts. As noted previously,

the TME is frequently enriched in tumor-derived retinoic acid

(48). While RAR signaling has been demonstrated to play a role

in effector T cell responses (75), the optimal duration and

strength of this signal to permit antigen responses with

subsequent memory generation while preventing terminal

differentiation programs remains to be determined. As it

pertains to other vitamin families, while less literature exists

on their role in preserving a memory phenotype, vitamin E has
FIGURE 1

Advances in overcoming immunosuppression and impingement on metabolism in the TME. Excess extracellular potassium (yellow) limits
nutrient uptake concomitant with and critical for T cell effector function (49). The KCa3.1 channel activator SKA-346 facilitates extrusion of this
potassium to restore production of cytotoxic molecules (50). Expression of a TGF-b receptor mutant that can bind TGF-b but cannot activate
SMAD decreases transduction of the broad immunosuppressive signals (brown) downstream of this pathway (36, 37). Overexpression of PGC1a
leads to an increase in mitochondrial mass (purple), while overexpression of GLUT3 (gray) supports glucose uptake that fuels glycogen storage,
protecting T cells from ROS (orange) encountered both as part of the TME and as a consequence of mitochondrial metabolism (63, 64).
Supplementation with nicotinamide ribose (NR) enforces mitophagy of ROS-damaged mitochondria and improves overall mitochondrial fitness
(65). Expression of a HIF2a mutant resistant to Factor Inhibiting HIF (FIH)-mediated suppression enhanced T cell responsiveness in the hypoxic
TME (blue) (66).
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recently been demonstrated to improve anticancer immune

responses by enhancing dendritic cell cross-presentation of

tumor antigens in animal models, while analysis of patients

undergoing checkpoint blockade therapy revealed increased

survival among those taking vitamin E (76). As vitamins

are critical cofactors in all cells, additional investigation of

their differential effects on tumor and immune cells could

uncover pathways that could be manipulated to improve

immunotherapeutic responses.
Conclusion

Parameters associated with memory T cells, such as master

regulators of energy metabolism and epigenetic regulation of loci

critical to longevity or recall response, have been manipulated in

pre-clinical settings with improvements in antitumor response.

Future advances in the field will not only include the definition of

novel T cell metabolic pathways that definememory responses but

also determining outcomes of manipulating multiple nodes of

these pathways in therapeutic settings. For instance, how would

the balance of mitochondrial ROS production be affected by

overexpression of regulators of mitochondrial biogenesis

alongside glycogen synthesis upregulation in the context of the

epigenetic reprogramming seen under MPC1 inhibition at T cell

priming? As an excess of mitochondrial ROS has demonstrated

deleterious effects on T cell function (53), balancing these

interventions while maximizing the longevity and magnitude of

T cell memory responses represents an exciting new avenue in

cancer immunotherapy research. Moreover, would multiple

altered pathways, such as enhanced glycogen metabolism in the

context of resistance to TGF-b signaling, act in an additive or in a

synergistic manner as it pertains to enhancement of T cell
Frontiers in Immunology 06
function with resultant tumor control? Answers to such

questions will help to guide the next stages in research and

development of cellular therapeutics for cancer. To that end, the

activation context of T cells, whether in vitro or in vivo, serves to

dictate their future metabolic function in vivo in intriguing and

sometimes unexpected ways (20, 21). Incorporating these

principles into future metabolic research will be crucial for

translating pre-clinical findings into manipulations of T cell

function that ultimately would benefit patients.
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