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Transforming growth factor-b (TGF-b) signaling regulates multiple

physiological processes, such as cell proliferation, differentiation, immune

homeostasis, and wound healing. Besides, TGF-b plays a vital role in

diseases, including cancer. Accumulating evidence indicates that TGF-b
controls the composition and behavior of immune components in the tumor

microenvironment (TME). Advanced cancers leverage TGF-b to reshape the

TME and escape immune surveillance. TGF-b-mediated immune evasion is an

unfavorable factor for cancer immunotherapy, especially immune checkpoint

inhibitors (ICI). Numerous preclinical and clinical studies have demonstrated

that hyperactive TGF-b signaling is closely associated with ICI resistance. It has

been validated that TGF-b blockade synergizes with ICI and overcomes

treatment resistance. TGF-b-targeted therapies, including trap and bispecific

antibodies, have shown immense potential for cancer immunotherapy. In this

review, we summarized the predictive value of TGF-b signaling and the

prospects of TGF-b-targeted therapies for cancer immunotherapy.

KEYWORDS

cancer biotherapy, cancer immunotherapy, tumor microenvironment, TGF-b, PD-1,
PD-L1, bispecific antibody
Abbreviations: CAF, carcinoma-associated fibroblast; CRC, colorectal cancer; DC, dendritic cell; EMT,

epithelial-mesenchymal transition; GARP, Glycoprotein A repetitions predominant; HCC, hepatocellular

carcinoma; ICI, immune checkpoint inhibitor; LAP, latency-associated peptide; LTBP, latent TGF-b

binding protein; MDSC: myeloid-derived suppressor cell; MSS: microsatellite-stable; MMR, mismatch

repair; NK, natural killer; NSCLC, non-small cell lung cancer; PD-1, programmed cell death protein 1;

TGF-b, transforming growth factor-beta; TGFbRI, TGF-b type I receptor; TGFbRII, TGF-b type II

receptor; TMB, tumor mutational burden; TME, tumor microenvironment; TIL, tumor-infiltrating

lymphocyte; Treg, regulatory T cell.
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1 Background

Transforming growth factor-b (TGF-b) exists in the

extracellular matrix as latent precursors with prodomain, and

the transformation from latent pro-TGF-b molecule to active

TGF-b is a multiple-step process (1). Firstly, pro-TGF-b
contains a long signal sequence, a long N-terminal sequence

named latency-associated peptide (LAP), and a short C-

terminal, which is the mature cytokine (2). Then, dimerized

pro-TGF-b is cleaved by Furin (a protease) in Golgi complex. As

a result, the bioactive TGF-b moieties are linked with LAP

homodimer through disulfide bonds. The LAP encircles

bioactive TGF-b moiety and hampers the binding of TGF-b
with its receptor. After secretion, The LAP homodimer could

anchor to Glycoprotein A repetitions predominant (GARP) on

the cell surface or crosslink with the extracellular matrix by

latent TGF-b binding proteins (LTBPs). Then, active TGF-b is

released by integrin-transmitted forces when cell contraction

(Figure 1) (4).

TGF-b signaling is triggered by the interaction of TGF-b
ligands with TGF-b type II receptors (TGFbRII) (5). Following
the recruitment and phosphorylation of TGF-b type I receptors

(TGFbRI) by TGFbRII , SMAD2 and SMAD3 are

phosphorylated and further assembled into trimeric complexes

with SMAD4 (6). The SMAD complexes could translocate into

cell nucleus and regulate the expression of TGF-b-targeted
genes, including TWIST1, SNAI1, and SNAI2 (7). Besides

canonical SMAD signaling, TGF-b can initiate non-SMAD

signalings, such as PI3K-AKT, MAPK, and RHO-ROCK

pathways (8–10). TGF-b signaling plays a vital role in

embryonic development and homeostasis by controlling cell

proliferation, apoptosis, survival, differentiation, and stem-cell

self-renewal (11).

TGF-b is a bifunctional cytokine in cancer, acting as tumor

promoter and suppressor (12). For healthy cells and early-stage

cancer cells, TGF-b inhibits tumorigenesis by inducing cell-cycle

arrest (13). However, for late-stage cancers, cancer cells could

bypass TGF-b-mediated apoptosis by mutating core

components of TGF-b pathway (14). Contrarily, TGF-b
promotes tumorigenesis by inducing epithel ia l-to-

mesenchymal transition (EMT), eventually contributing to

enhanced metastasis and chemoresistance (15–17). Besides,

TGF-b also supports tumor progression by improving

angiogenesis and immune evasion (4, 18). This transformation

of TGF-b from tumor suppressor to tumor promoter is an

important biological characteristic for advanced cancers (19).

The discovery of immune checkpoints and the development

of drugs represented by programmed cell death protein 1/

programmed cell death ligand 1 (PD-1/PD-L1) monoclonal

antibodies are landmark events in cancer immunotherapy (20–

24). Anti-PD-1/PD-L1 treatments have shown potent and

sustained antitumor effects in patients across multiple cancer
Frontiers in Immunology 02
types (25–32). However, the low response rate is a crucial

drawback of anti-PD-1/PD-L1 therapies, and ideal molecular

markers are unavailable to select patients (33–35). The classical

cancer-immunity cycle model describes antitumor immunity as

a cascade of multistep cascade responses (36). PD-1/PD-L1 axis

in the tumor is not the only immunosuppressive pathway (37). It

has been shown that hyperactive TGF-b signaling in the tumor

microenvironment (TME) can broadly modulate multiple

immune cell activities, reshape the TME, and collectively

participate in tumor cell immune escape (3). The TGF-b and

PD-1/PD-L1 pathways are independent of and complementary

to each other. Recent studies have shown that TGF-b is a

determinant for anti-PD-1/PD-L1 therapies, which could

effectively predict treatment efficacy (38–40). Therefore,

constructing TGF-b-involved predictive biomarkers and

exploring TGF-b-targeted therapies are valuable to

cancer immunotherapy.
2 TGF-b signaling-targeted
antitumor agents

Given that TGF-b contributes to cancer immune evasion

and immunotherapy resistance, blocking TGF-b could

overcome immunotherapy resistance by reprogramming the

TME. At present, TGF-b signaling has been a hot therapeutic

target for cancer investigators, and enormous efforts have been

expended on the development of TGF-b-targeted agents (41).

TGF-b blockade strategies, including monoclonal antibodies

(containing bispecific antibodies), ligand traps (containing bi-

functional proteins), receptor kinase inhibitors, vaccines, and

antisense oligonucleotides, are under clinical evaluation (Table 1

and Figure 2) (42).
2.1 Antibodies targeting TGF-b or
its receptor

Fresolimumab (also termed GC1008) is a pan-TGF-b
blockade antibody developed by Genzyme for fibrotic diseases

and cancers (43). Fresolimumab exhibited antitumor activity in

renal cell carcinoma and melanoma with acceptable safety (43).

Besides, in metastatic breast cancer, 10 mg/kg fresolimumab

combined with irradiation outperformed 1 mg/kg fresolimumab

plus irradiation in overall survival (Hazard ratio =2.73, P =

0.039) (44). The higher dose of fresolimumab was correlated

with increased peripheral blood mononuclear cell and expanded

CD8 memory T cell pool (44). Additionally, pan-TGF-b
blockade antibodies 1D11 (developed by Genzyme) and 2G7

(developed by Genentech) exhibited antitumor activity in

preclinical studies (45, 46). Notably, selective anti-TGF-b1
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FIGURE 1

The negative effects of TGF-b signaling on anti-tumor immunity. Pro-TGF-b contains a long signal sequence, a long N-terminal sequence
named latency-associated peptide (LAP), and a short C-terminal, which is the mature cytokine. Then, dimerized pro-TGF-b is cleaved by Furin (a
protease) in Golgi complex. As a result, the bioactive TGF-b moieties are linked with LAP homodimer through disulfide bonds. The LAP encircles
bioactive TGF-b moiety and hampers the binding of TGF-b with its receptor. After secretion, The LAP homodimer could anchor to Glycoprotein
A repetitions predominant (GARP) on Treg or crosslink with extracellular matrix by latent TGF-b binding proteins (LTBPs). Then, active TGF-b is
released by integrin-transmitted forces when cell contraction. TGF-b signaling is triggered by the interaction of TGF-b ligands with TGF-b type II
receptors (TGFbRII). Following the recruitment and phosphorylation of TGF-b type I receptors (TGFbRI) by TGFbRII, SMAD2 and SMAD3 are
phosphorylated and further assembled into trimeric complexes with SMAD4. The SMAD complexes could translocate into cell nucleus and
regulate the expression of TGF-b-targeted genes. TGF-b acts on various immune cells in the tumor microenvironment, inducing the generation
of a suppressive immune microenvironment. On the one hand, TGF-b inhibits the cytotoxic activity of CD8+ T cells, CD4+ T cells, and NK cells.
On the other hand, TGF-b increases the proportion of regulatory T cells (Treg) and M2-like macrophage. Moreover, recent studies have found
that TGF-b modulates the activity of tumor-associated fibroblast (CAF) and increases the content of collagen fibers in the tumor stroma
(contributed mainly by myCAF). The thickened collagen fibers surrounding the tumor tissue are detrimental to lymphocyte infiltration, resulting
in an immune-excluded tumor type. Adapted from Bai et al, 2019 (3).
Frontiers in Immunology frontiersin.org03

https://doi.org/10.3389/fimmu.2022.1061394
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yi et al. 10.3389/fimmu.2022.1061394
antibody SRK181 was sufficient to relieve the resistance to

immune checkpoint inhibitors in murine models (47).

Y3022859 is an IgG1 antibody targeting TGFbRII (developed
by Eli Lilly). In the phase 1 study of advanced solid tumors, the

dose of more than 25 mg was unsafe in consideration of cytokine

storm (48). Besides, anti-avb6 integrin antibody 264RAD

(developed by AstraZeneca) could suppress TGF-b signaling by

inhibiting latent TGF-b activation. The antitumor effect of

264RAD has been validated in multiple murine tumor models

(49–51). Moreover, GARP, a protein mainly expressed on Treg

surface, acts as the docking receptor to concentrate latent TGF-b
(52). Selectively inhibiting GARP on Treg by antibody targeting

GARP-TGF-b1 complexes effectively retarded tumor growth and

relieved resistance to anti-PD-1/PD-L1 resistance (53). Notably,

YM101 is an anti-PD-L1/TGF-b bispecific antibody (developed by
Yi et al), which could simultaneously suppress PD-L1 and TGF-b
Frontiers in Immunology 04
signaling pathways (54). The preclinical data demonstrated

YM101 effectively reprogrammed the TME and reserved

immunotherapy resistance (54–56).
2.2 TGF-b receptor kinase inhibitor

TGF-b receptor kinase inhibitors block TGF-b signaling by

occupying the ATP-binding domain of receptor (57).

Vactosertib (developed by MedPacto) is a small-molecule

inhibitor of TGFbRI (58). Vactosertib retarded tumor growth

and prolonged survival in murine models by inhibiting EMT,

cancer stemness, and metastasis (59–61). Also, galunisertib is a

TGFbRI inhibitor developed by Eli Lilly (62, 63). Galunisertib

showed potent antitumor activity in murine breast cancer,

hepatocellular carcinoma, colon cancer, and lung cancer
TABLE 1 Agents targeting TGF-b signaling pathway.

Classification Agent Target Company/Authors

Antibody Fresolimumab TGF-b1/2 Genzyme

SRK181 TGF-b1 Scholar Rock

LY3022859 TGFbRII Eli Lilly

264RAD Integrin avb6 AstraZeneca

1D11 TGF-b1/2/3 Genzyme

2G7 TGF-b1/2/3 Genentech

YM101 TGF-b1/2/3 and PD-L1 YZY Biopharma

Receptor kinase inhibitor Vactosertib TGFbRI MedPacto

Galunisertib TGFbRI Eli Lilly

LY3200882 TGFbRI Eli Lilly

LY573636 TGFbRI Eli Lilly

LY2109761 TGFbRI/II Eli Lilly

SB-431542 TGFbRI GlaxoSmithKline

SB-505124 TGFbRI GlaxoSmithKline

IN-1130 TGFbRI In2Gen

Trap AVID200 TGF-b1/3 Forbius

Luspatercept TGF-b1/2/3 Acceleron

M7824 TGF-b1/2/3 and PD-L1 Merck KGaA

SHR-1701 TGF-b1/2/3 and PD-L1 Hengrui

Antisense oligonucleotides AP 12009 TGF-b2 Antisense Pharma

AP 11014 TGF-b1 Antisense Pharma

Cancer vaccine Vigil TGF-b1/2 Gradalis

Lucanix TGF-b2 NovaRx
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models (62). In clinical studies, galunisertib plus gemcitabine

improved the overall survival of pancreatic cancer, relative to

gemcitabine monotherapy (64). Besides, in the single-arm phase
Frontiers in Immunology 05
2 trial of advanced rectal cancer, galunisertib combined with

neoadjuvant chemoradiotherapy was tolerated, with an

improved response rate (32%) (65). However, in the phase 2
A

B C

FIGURE 2

TGF-b signaling-targeted antitumor agents. At present, TGF-b signaling has been a hot therapeutic target for cancer investigators, and
enormous efforts have been expended on the development of TGF-b-targeted agents. (A) TGF-b blockade strategies, including monoclonal
antibodies (containing bispecific antibodies), ligand traps (containing bi-functional proteins), receptor kinase inhibitors, vaccines, and antisense
oligonucleotides, are under clinical evaluation. (B) The structure of fusion protein M7824. (C) The structure of bispecific antibody YM101.
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study of recurrent glioblastoma, patients who received lomustine

did not benefit from additional galunisertib treatment (66).

Similarly, in a phase 1b study, galunisertib could not enhance

the efficacy of ramucirumab in advanced hepatocellular

carcinoma (67). LY573636 is a TGF-bRI inhibitor developed

by Eli Lilly as well (68). Although several clinical trials showed

that LY573636 had tolerable toxicity (69, 70), the results of the

phase 2 study indicated that the autitumor effect of LY573636

was modest in NSCLC patients (71). At present, more than ten

TGF-b receptor kinase inhibitors are in clinical or preclinical

evaluations, including but not limited to LY2109761 (developed

by Eli Lilly) (72), SB-431542 (developed by GlaxoSmithKline)

(73), SB-505124 (developed by GlaxoSmithKline) (74), and IN-

1130 (developed by In2Gen) (75, 76).
2.3 TGF-b trap

AVID200 (developed by Forbius/Bristol-Myers Squibb) is a

computationally-designed trap that could effectively neutralize

TGF-b1 and TGF-b3, with weak activity against TGF-b2 (77).

The data of animal and human showed AVID200 enhanced

antitumor immune response and reduced protumor and

cardiotoxic effects caused by TGF-b2 blockade (77).

Additionally, luspatercept (developed by Acceleron Pharma

and Celgene) is a fusion protein containing the extracellular

domain of human activin type 2B receptor and IgG, which has

been approved as an erythroid maturation agent for b-
thalassemia (78–80). Furthermore, soluble betaglycan

(reported Bandyopadhyay et al.) inhibited angiogenesis, tumor

growth, and metastasis in mice by antagonizing TGF-b (81).

M7824 (developed by Merck KGaA) is a bifunctional fusion

protein consisting of anti-PD-L1 antibody and extracellular

domain of the TGFbRII (82). M7824 showed potent antitumor

activity in preclinical and phase 1 clinical studies by restoring

antitumor immunity (82, 83). Similarly, anti-PD-L1/TGFbR
fusion protein SHR-1701 (developed by Hengrui) overcame

anti-PD-1/PD-L1 resistance in lung cancer (84).
2.4 Antisense oligonucleotides

Antisense oligonucleotides could directly silence genes

participating in cancer progression. AP 12009 (developed by

Antisense Pharma) is an antisense oligodeoxynucleotide

targeting TGF-b2 (85). The data from phase IIb study of high-

grade glioma demonstrated that 10 µM AP 12009 improved

patients’ overall survival (86). Besides, other antisense

oligonucleotides targeting TGF-b, such as AP 11014 and AP

15012, were still in preclinical tests (87, 88).
Frontiers in Immunology 06
2.5 Cancer vaccine

Some cancer vaccines contain components suppressing TGF-

b signaling pathway. Vigil (also termed gemogenovatucel-T,

developed by Gradalis) is an autologous cancer vaccine that

expresses granulocyte-macrophage colony-stimulating factor

and decreases the expression of furin and its downstream TGF-

b1 and TGF-b2 (89). In the phase 2b trial of advanced ovarian

cancer, although vigil was well tolerated in patients, the primary

endpoint was not met (90). Further investigations in other types of

cancers are still undergoing (89). Moreover, Lucanix (also known

as belagenpumatucel-L, developed by NovaRx) consists of

allogeneic NSCLC cells transfected with the plasmid encoding

TGF-b2 antisense gene (91, 92). In the phase III study

NCT00676507, Lucanix improved the overall survival of NSCLC

patients, especially these received prior chemotherapy or

radiation (93).
3 Immune checkpoint inhibitor and
its predictive biomarkers

PD-1/PD-L1 is an important signaling pathway to suppress

immune responses and maintain autoimmune homeostasis (94,

95). However, in the TME, the hyperactive PD-1/PD-L1

pathway inhibits immune surveillance. It is traditionally

believed that PD-L1, which is highly expressed on tumor cells,

binds to PD-1 on the surface of T cells and suppresses the

activity of T cells (96). PD-1/PD-L1 monoclonal antibody

rescues T cells and restores antitumor immunity by blocking

this negative immunomodulatory signal (97, 98). Recent studies

have found that anti-PD-L1 antibodies also activate dendritic

cells (DC) (99) and natural killer (NK) cells (100). Although PD-

1/PD-L1 monoclonal antibodies are approved for the treatment

of various cancers and have shown promising results in some

patients, the problem of low objective response rates has not

been effectively addressed (82, 101, 102). Therefore, screening

for molecular biomarkers adapted to PD-1/PD-L1 therapy is an

urgent issue at the present stage.

In terms of clinical efficacy, PD-L1 expression could not predict

patient outcomes well, and even some patients whose tumors do not

express PD-L1 can benefit from anti-PD-1/PD-L1 treatment (103–

105). Apart from PD-L1 level, other predictive biomarkers have

been identified, including tumor mutational burden (TMB) (106),

mismatch repair (MMR) deficiency (107), the status of tumor-

infiltrating lymphocyte (TIL) (108), immunosuppressive cell

populations (109), oncogenic driver mutations (110–112),

neoantigen repertoire (113), gut microbiota (114–116),

inflammation-related genes (117, 118), extracellular vesicles (119),

and patient’s clinical characteristics (120).
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4 The role of TGF-b in cancer
immunology and immunotherapy

High TGF-b in tumor tissues is mainly produced by tumor cells

and mesenchymal cells. TGF-b promotes EMT of tumor cells and

acts on various immune cells in the TME, inducing the generation

of a suppressive immune microenvironment (121). On the one

hand, TGF-b inhibits the cytotoxic activity of CD8+ T cells, CD4+ T

cells, and NK cells. On the other hand, TGF-b increases the

proportion of regulatory T cells (Treg) and myeloid-derived

suppressor cells (MDSC) (122–125). Moreover, recent studies

have found that TGF-b modulates the activity of tumor-

associated fibroblast (CAF) and increases the content of collagen

fibers in the tumor stroma (126). The thickened collagen fibers

surrounding the tumor tissue are detrimental to lymphocyte

infiltration, resulting in an immune-excluded tumor type (126). It

is generally believed that this type of tumor does not respond to

anti-PD-1/PD-L1 therapy, while antagonizing the TGF-b signaling

pathway significantly improves anti-PD-1/PD-L1 therapeutic

resistance and enhances the effect of antitumor immunotherapy

(53, 127). Actually, although CAF was broadly classified into

myofibroblastic (myCAF) and inflammatory and growth factor-

enriched subgroups, some specific phenotypes are validated to

participate in tumor progression as well (128). Besides, Grauel

et al. found that TGF-b blockade induced the differentiation of IFN-
licensed CAF, enhanced T cell recruitment and infiltration, and

improved the effect of anti-PD-1 (129). Moreover, Krishnamurty

identified a TGF-b-dependent CAF cluster with highly expressed

LRRC15, which could support tumor progression by limiting T cell

activity. Abrogating LRRC15+ CAF also significantly enhanced the

efficacy of anti-PD-1 in mouse models (130).

Microsatellite-stable (MSS) colorectal cancer (CRC) is

genera l ly regarded as the co ld tumor wi th poor

immunogenicity and scare immune cell infiltration, which is

unlikely to benefit from anti-PD-1/PD-L1 (131). However, this

type of CRC could be conquered by the combination of anti-

TGF-b and anti-PD-1/PD-L1 (132). Tauriello et al. established a

metastatic CRC model by genetically engineering Apc, Kras,

Tgfbr2, and Trp53 quadruple mutant mice (132). Metastatic

cancer tissues display characteristics of human MSS CRC: low

mutation burden, T cell depletion, and TGF-b activation (132).

Normal intestinal mucosa and adenoma had T cell infiltration in

the mesenchyme, but not in adjacent cancer tissue (132). Anti-

PD-1/PD-L1 treatment had limited effects on these tumors,

while TGF-b inhibitors increased the sensitivity of anti-PD-1/

PD-L1 treatment (132). Further investigations showed that

combination therapy upregulated T-bet and IFN-g levels in

CD4+ Th1 cells and increased GZMB generation in CTLs,

eventually eradicating metastases and prolonging survival

(132). The results support that the TME with hyperactive

TGF-b signaling caused T cell depletion and a decrease in Th1

effector cells, leading to cancer immune escape (132).
Frontiers in Immunology 07
Besides, Mariathasan et al. analyzed cancer tissues from patients

with metastatic urothelial carcinoma receiving anti-PD-L1

treatment (126). The responders were characterized by high PD-

L1 expression, high tumor mutation burden/neoantigen, and CD8+

effector T cells (126). The non-responders had tumor tissue

containing dense mesenchymal stroma, CAF with high TGF-b
activity, and T cell deficiency (126). The mouse breast cancer EMT-

6 model mimicked the phenotype of epithelial carcinoma, where

blocking either PD-L1 or TGF-b alone was ineffective (126).

Combined inhibition of TGF-b and PD-1 signaling reduces TGF-

b activity in stromal cells, promotes T cell infiltration into the

tumor, stimulates a robust immune response, and leads to tumor

regression (126). In conclusion, several studies have shown that

TGF-b pathway activity is hyperactivated in anti-PD-1/PD-L1-

resistant tumor tissues (3). The high expression of TGF-b in the

TME suppresses the antitumor immune response (3). The

immunosuppressive mechanisms of TGF-b and PD-1/PD-L1

pathways on tumors are independent and complementary,

promoting the escape from immune surveillance (36).
5 The predictive value of
TGF-b signaling for
anti-PD-1/PD-L1 treatment

In parallel with the immunosuppressive role of TGF-b in cancer
immunology, the predictive value of TGF-b signaling in anti-PD-1/

PD-L1 therapies has been well documented in multiple clinical

studies. In the single-arm phase 2 study NCT02662309, 95 muscle-

invasive urothelial cancer patients were recruited and received anti-

PD-L1 treatment before cystectomy (38). In this study, the presence

of preexisting activated CD8+ T cells (dual CD8 and GZMB positive

staining) in the tumor was closely correlated with patient outcomes.

Moreover, FAP, the surrogate biomarker of CAF, was upregulated

in relapsing tumor tissues but was downregulated in responders

(38). Notably, the signatures of cytotoxic T cell and TGF-b signaling
could also effectively predict treatment response to atezolizumab

(38). In addition, in the single-institutional phase 2 trial

NCT02658019 for advanced hepatocellular carcinoma (HCC),

patients with low plasma TGF-b (< 200 pg/ml) at baseline had

improved OS and PFS after anti-PD-1 treatment (39). Also, in non-

small cell lung cancer (NSCLC), TGF-b concentration in the plasma

collected seven days after anti-PD-1 treatment effectively predicted

patient outcomes (133).

Transcriptomic data of microsatellite instability-high/mismatch

repair-deficient gastrointestinal tumors showed TGF-b, EMT,Wnt/

b-catenin, angiogenesis, hypoxia, KRAS, mTORC1, and

metabolism-associated pathways were enriched in non-responders

after PD-1 treatment (40). Similarly, the transcriptomic profile of

metastatic bone and soft tissue sarcomas demonstrated that TGF-b
signaling enrichment was negatively correlated with the efficacy of

anti-PD-1 (134). Furthermore, the TGF-b signature (based on
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mRNA levels of BMPR2, FKBP1A, SLC20A1, SKIL, TGFBR1, and

XIAP) predicted anti-PD-1/PD-L1 resistance in gynecologic cancer

(135). The high TGF-b score was associated with shorter

progression-free survival after immunotherapy (8.1 vs. 2.8

months, P < 0.05) (135). Additionally, for triple-negative breast

cancer receiving Durvalumab with Nab-Paclitaxel, RNA-seq data

showed that EMT, TGF-b, and extracellular matrix pathways were

enriched in patients with residual disease (136).
6 TGF-b blockade enhancing the
efficacy of anti-PD-1/PD-L1 therapy

Given the negative role of TGF-b signaling in cancer

immunology and immunotherapy, it is rational to enhance ICI

efficacy by blocking TGF-b. In preclinical explorations and

clinical practice, combination therapies of TGF-b inhibitor

and anti-PD-1/PD-L1, as well as anti-PD-L1/TGF-b bispecific

antibodies/fusion proteins, have made rapid progress (137).
6.1 TGF-b inhibitor combined with
anti-PD-1/PD-L1

The synergistic effect between TGF-b inhibitor (e.g. anti-TGF-

b, receptor kinase inhibitor, cancer vaccine) and anti-PD-1/PD-L1

has been validated in multiple murine tumor models, including but

not limited to CT26 (mouse colon cancer), MC38 (mouse colon

cancer), 3LL (mouse Lewis lung cancer), and EMT-6 (mouse breast

cancer) (47, 54, 138, 139). Mechanistically, the combination therapy

reverses TGF-b-mediated immune exclusion, enhances immune

infiltration, improves the activities of effectors, and alters the

polarization of macrophages (140).

In the advanced NSCLC patients, the interim results of

NCT03732274 showed that galunisertib (TGFbRI kinase

inhibitor) combined with durvalumab (anti-PD-L1) had

potent antitumor activity with a manageable safety profile

(response rate: 30.8% for PD-L1≥1% tumors; response rate:

40.0% for PDL1≥25%) (141). However, in the single-arm,

multicenter, phase Ib study NCT02734160, galunisertib plus

durvalumab was tolerable in metastatic pancreatic cancer, in

spite of the limited antitumor activity (142).
6.2 Anti-PD-L1/TGF-b bispecific antibody
or bi-functional protein

Actually, most PD-1/PD-L1 and TGF-b dual blockade

strategies in clinical practice are fulfilled by anti-PD-L1/TGF-b
bispecific antibody or bi-functional protein, which has strategic
Frontiers in Immunology 08
advantages over the conventional two-agent combination. More

importantly, due to the unique structure, bispecific antibodies or bi-

functional proteins might have better tumor specificity and

therapeutic effects (54, 82, 143). M7824 (fusion protein

containing anti-PD-L1 and TGF-b trap) outperformed anti-PD-

L1 and TGF-b trap in preclinical studies by mobilizing antitumor

immunity (82, 144). Notably, in the phase 1 study NCT02517398,

the response rate in NSCLC patients with high PD-L1 expression

was high as 85.7% (83). Besides, the results of other early-stage

clinical trials were encouraging as well (145). At present, the efficacy

of M7824 is under evaluation in more than ten types of cancers,

including NSCLC, triple-negative breast cancer, urothelial

carcinoma, biliary tract cancer, gastric cancer, HPV-associated

malignancies, and thymic carcinoma. Similarly, SHR-1701 (fusion

protein of anti-PD-L1 antibody and TGF-b trap) exhibited

encouraging antitumor activity in advanced tumors in the phase

1 study NCT03710265 (response rate: 17.8%) (146). Moreover,

multiple phase 1/2 studies demonstrated the powerful antitumor

activity of SHR-1701 in cervical cancer, EGFR-mutated NSCLC,

biliary tract cancer, and pancreatic cancer (147–150)

YM101 is the first publicly reported anti-PD-L1/TGF-b
bispecific antibody in the world (54). In the preclinical studies,

YM101 overcame anti-PD-L1 resistance in 3LL, CT26, and

EMT-6 tumor models (54). Investigations in the TME showed

that YM101 expanded the numbers of TIL, M1-like macrophage,

and DC, but decreased M2-like macrophage (54). The surrogate

of YM101, Y101D is under evaluation in advanced solid

tumors (NCT05028556).
7 Conclusions

TGF-b is a paradoxical regulator in cancer progression,

which acts as a suppressor in early-stage cancer but as a

promoter in advanced cancer. The negative effects of TGF-b
on cancer immune surveillance have been well studied, including

impairing immune infiltration, inducing the differentiation

toward MDSC/M2-like macrophage/Treg, limiting the

cytotoxicity of T cell and NK cell, and undermining the

antigen presentation capability of DC. Accumulating evidence

shows that TGF-b not only promotes cancer immune evasion

but also predicts the efficacy of immune checkpoint inhibitors.

Increased TGF-b level at baseline is commonly associated with a

poor response to anti-PD-1/PD-L1 therapy. Blocking TGF-b
could improve response to anti-PD-1/PD-L1 and patient

outcomes. At present, dual PD-1/PD-L1 and TGF-b blockade

have made a breakthrough, especially by anti-PD-L1/TGF-b
bispecific antibody or bi-functional protein. This updated

immune checkpoint inhibitor might alter the therapeutic

paradigm for cancer in the future.
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