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Inflammatory checkpoints in
amyotrophic lateral sclerosis:
From biomarkers to
therapeutic targets

Zongzhi Jiang, Ziyi Wang, Xiaojing Wei and Xue-Fan Yu*

Department of Neurology and Neuroscience Center, The First Hospital of Jilin University,
Changchun, China
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease

characterized by progressive motor neuron damage. Due to the complexity

of the ALS, so far the etiology and underlying pathogenesis of sporadic ALS are

not completely understood. Recently, many studies have emphasized the role

of inflammatory networks, which are comprised of various inflammatory

molecules and proteins in the pathogenesis of ALS. Inflammatory molecules

and proteins may be used as independent predictors of patient survival and

might be used in patient stratification and in evaluating the therapeutic

response in clinical trials. This review article describes the latest advances in

various inflammatory markers in ALS and its animal models. In particular, this

review discusses the role of inflammatory molecule markers in the

pathogenesis of the disease and their relationship with clinical parameters.

We also highlight the advantages and disadvantages of applying inflammatory

markers in clinical manifestations, animal studies, and drug clinical trials.

Further, we summarize the potential application of some inflammatory

biomarkers as new therapeutic targets and therapeutic strategies, which

would perhaps expand the therapeutic interventions for ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease

characterized by progressive degeneration of upper and lower motor neurons. The main

manifestations of upper motor neuron involvement are spasms, muscle stiffness,

hyperreflexia, and pathological reflexes, whereas muscle weakness and atrophy are the

main signs of lower motor neuron involvement (1). The development of ALS is rapid,

and patients often die from respiratory failure within 1–5 years after symptom onset, with
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a median survival time of 30 months (2). Although some familial

cases of ALS can be attributed to single-gene mutations, 90% of

the cases are sporadic. However, the etiology and pathogenesis of

this disease are complex (3). Immune disorders, inflammation,

redox imbalance, autophagy dysfunction, and impaired iron

homeostasis are important factors in the progression of ALS

(4). A mouse model of ALS revealed that the immune disorders

characterized by dynamic changes in inflammatory mediators,

such as cytokines and immune cells are elevated before initiation

of motor neuron degeneration. In addition, the activation of

immune cells and the release of various inflammatory mediators

aggravates the loss of neurons and axons, which evidenced the

role of inflammatory components in promoting motor neuron

death in ALS.

Persistent motor neuron injury in the central nervous system

(CNS) is often accompanied by the participation of non-nerve

cells, which is characterized by an inflammatory response, such

as the activation of microglia, proliferation of astrocytes,

infiltration of T lymphocytes and macrophages, and

overexpression of inflammatory cytokines (4, 5). A mouse

model of ALS with superoxide dismutase 1 (SOD1) revealed

that the activation of microglia and the complement system on

the motor endplate existed prior to symptom onset, suggesting

that inflammation may promote disease progression in ALS (4).

Conversely, the studies in patients with ALS and its rodent

models have shown that inflammatory cells essentially have dual

effects, i.e. anti-inflammatory and inflammatory effects on

neurons according to the disease stages (6). This partly

explains the ineffectiveness of traditional anti-inflammatory

treatments in ALS. Another factor limiting the evaluation of

the efficacy of anti-inflammatory therapy is the lack of objective

biomarkers of disease activity in human biological fluids (blood,

cerebrospinal fluid, urine), especially biomarkers that can track

the inflammatory change degree. Molecules from non-nerve

cells such as microglia, astrocytes, or macrophages have

received increasing attention as potential inflammatory markers.

The purpose of this review is to elucidate the latest progress

in applying inflammatory biomarkers in ALS for diagnosis and

treatment in the past 10 years, with an emphasis on chitinase,

cytokines, acute phase reactive protein, and several rare

inflammatory mediators. Furthermore, we summarized the

therapeutic strategies via inhibiting inflammation and

improving immune dysfunction which can help in

understanding the potential of these biomarkers and

identifying new therapeutic targets to improve the treatment

of patients with ALS, prolong their survival, and improve their

quality of life.
Chitinase

Chitinase is a hydrolytic enzyme that is widely presented in

nature. It mainly participates in the metabolism of chitin in
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organisms that contain chitin, such as arthropods, nematodes,

bacteria, and fungi (7). Although mammals lack endogenous

chitin or chitin synthase genes, they can still express chitinase,

which has enzymatic activity, and chitinase-like proteins (CLPs)

that are related to homologous structures (8). Based on the

similarity of amino acid sequences, human chitinase is classified

into the 18-glycosylhydrolase (GH18) family, chitinase (CHIT1),

acid mammalian chitinase (AMCcase), and chitinase-like

proteins (9). Here, the relationships between chitinase-3-

sample 1 (CHI3L1), chitinase-3-sample 2 (CHI3L2), and ALS

are discussed mainly.

The major physiological function of chitinase in the human

body is to play a role in defense and scavenging by combining

chitin and chitin-like polymers. Although chitin enzyme-like

proteins have no enzymatic activity, they still bind to chitin with

high affinity and participate in a large number of biological

processes (10). Given their physiological characteristics of

immunomodulation and binding to intracranial titin-like

polymers, chitinase and CLP are widely described as markers

of neuroinflammation and reactive glial cell activation in various

neurological diseases (9, 11). CHIT1, CHI3L1, and CHI3L2 have

been used as biomarkers to quantify the response degree of glial

cells in clinical trials of drugs that inhibit glial cells’ activity,

thereby assessing the relevance of these targets (12, 13). Herein,

we review the roles of CHIT1, CHI3L1, and CHI3L2 in ALS to

determine their potential value as biomarkers.
Chitotriosidase (CHIT1)

CHIT1 was the first chitinase found in humans, and its

presence has been confirmed in the macrophages of patients

with hypermetabolic disease (14). Analysis of cerebrospinal fluid

(CSF) samples from patients with various neurodegenerative

diseases revealed that the concentration of CHIT1 was higher

than that in healthy controls, and the concentration of CHIT1 in

patients with ALS was also higher than that in patients with

frontotemporal lobe degeneration (FTD), Alzheimer’s disease

(AD), and Parkinson’s disease (PD) (15). Therefore, CHIT1 can

be used as a potential marker to distinguish patients with ALS

from healthy controls and to differentiate ALS from other

neurodegenerative diseases. A study by Chen et al. in 2016

confirmed this conjecture, setting the critical value of CHIT1 in

CSF at 1593.779 ng/L to distinguish between ALS patients and

controls, with a sensitivity of 83.8% and a specificity of 81.1%

(16). A recent study of the source of differences in CHIT1

concentration in different neurodegenerative diseases showed

that the activation and proliferation of microglia and astrocytes

can regulate the concentration of CHIT1 in CSF and further

affect the release of proinflammatory cytokines and the loss of

motoneurons. It is suggested that the concentration of CHIT1

and the activation of glial cells are the key factors leading to

motor neuron degeneration. The observation supported the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1059994
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.1059994
specific role of CHIT1 in promoting the development of

neuroinflammation in ALS (17, 18). A series of studies on

CHIT1 corroborated previous findings that inflammatory

components are involved in the death of motor neurons, and

suggested that CHIT1 expression levels correlate with ALS

progression and prognosis, i.e., higher CHIT1 levels lead to

shorter survival time. In addition, an interesting study in 2021

found that CHIT1 was significantly negatively correlated with

the respiratory function index of forced vital capacity (FVC),

which is often used to measure potential respiratory damage in

patients with ALS and is a predictor of survival and disease

progression (19). Therefore, these studies emphasized the idea

that measuring CHIT1 has advantages with regard to

monitoring disease progression, predicting survival time, and

potentially evaluating treatment response in patients with ALS.

However, a study in 2018 reported that, although CHIT1 was

significantly correlated with the rate of disease progression (PR),

these correlations were not continuous when patients were

stratified according to the PR (20). However, Chen et al.

demonstrated no significant difference in CHIT1 levels in

patients stratified according to PR. Therefore, it is necessary to

further explore its potential value in neuroinflammation to

identify the triggers of CHIT1 release and cellular expression

at different stages and to study its therapeutic efficacy as a key

target of neuroinflammatory intervention in the early stages of

ALS (16).
Chitinase 3-like 1(CHI3L1)

CHI3L1 (also known as YKL40) is a 40 kD glycoprotein that

was first found in the culture medium of chondrocytes and

synovial cells (21). CHI3L1 is associated with inflammation,

injury, tissue remodeling, and abnormal cell proliferation, and

plays a role in neurodegenerative diseases (22). CHI3L

expression is increased in the CSF of patients with ALS, AD,

and FTD, but not in those with PD and Lewy body dementia.

Therefore, CHI3L1 has received increasing attention as a new

biomarker in neurodegenerative diseases (23). Compared to

controls, the immune response of patients with ALS is limited

to glial fibrillary acidic protein (GFAP)-positive astrocytes in the

frontal cortex and spinal cord. However, patients with ALS also

exhibit increased expression of CHI3L1 in the anterior horn and

motor cortex of the spinal cord, which indicates that the CHI3L1

level in the CSF is related to the symptoms of superior motor

neurons. Reactive astrocytes are the main source of CHI3L1 in

the CNS. In addition, a comparison study between patients with

ALS and FTD in 2018 displayed that the ratio of soluble b
fragments of amyloid precursor protein (sAPPb) and CHI3L1

was directly related to the thickness of the frontotemporal

cortex. Furthermore, the Edinburgh cognitive and behavioral

ALS screen (ECAS) confirmed that the level of CHI3L1 was

associated with cognitive impairment (17). Based on the above
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results, the level of CHI3L1 in CSF appears to increase with time.

Moreover, it is positively correlated with disease progression rate

(DPR) and negatively correlated with survival rate, which

confirms the value of CHI3L1 in evaluating the prognosis of

ALS (24). However, there was no significant difference in

CHI3L1 levels reported between asymptomatic mutation

carriers and controls, and there was also no significant

difference in CHI3L1 levels between pre- and late-stage, and

early-stage symptoms (17, 25). Although the release of CHI3L1

confirms the involvement of astrocytes in ALS and the dose-

induced neurotoxic effects, the idea that CHI3L1 has an apparent

pathogenic function early in the disease remains controversial.

Therefore, additional studies are needed for further

clarification of the pathological triggers that induce CHI3L1

release, and for longitudinal evaluation of the correlation

between CHI3L1 levels and different clinical parameters at

various disease stages.
Chitinase 3-like 2(CHI3L2)

CHI3L2 (also known as YKL39) is closely related to CHI3L1;

however, unlike CHI3L1, CHI3L2 is not a glycoprotein. It was

originally isolated from the culture medium of primary human

articular chondrocytes (26). As a pseudochitinase lacking

chitinase activity, CHI3L2 retains its chitinase-like ligand-

binding properties (27). Similar to CHIT1 and CHI3L1, the

content of CHI3L2 in the blood is related to the rate of disease

progression. However, Kaplan–Meier estimator and Cox

proportional hazards modeling revealed that CHI3L2 can also

be used as an independent survival predictor as compared to

CHIT1 and CHI3L1 (12, 28). In addition, an interesting study

conducted in 2017 found that the level of CHI3L2 in patients

with ALS who smoke was positively correlated with the rate of

disease progression. Further, CHI3L2 was also significantly

upregulated with disease progression. Changes in the

expression level of chitinases such as CHI3L2 confirmed that

tobacco smoking was a risk factor for ALS, and it mediates

disease progression in ALS through neuroinflammation (29).

These studies highlight the importance of CHI3L2 in evaluating

the prognosis of ALS. However, it is important to note that,

although CHI3L2 can be detected in macrophages, tumor cells,

and even in nerve cells in the cerebral cortex, the expression of

CHI3L2 in patients with ALS has not been reported yet. Hence,

the source of CHI3L2 in the CSF of patients with ALS is not clear

(30). Besides, a longitudinal assessment conducted by Gray et al.

in 2020 showed that there was no significant difference in

CHI3L2 level between the early and late stages prior to

symptom onset as well as no significant fluctuation throughout

the entire course of the disease (17). Combined with the above

findings, CHI3L2 has some limitations in evaluating the role of

neuroinflammation in ALS. Although the interaction between

CHI3L2 and neurons and glial cells is not clear, CHI3L2 remains
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a promising biomarker for the prognosis of ALS. Based on the

reports discussed above, it is necessary to further clarify the cell

source of CHI3L2 in patients with ALS and the mechanism of

action of CHI3L2 in immune response and inflammation.

At present, a consensus reached based on several

experimental studies is that CHIT1, CHI3L1, and CHI3L2

produced in the process of neuronal degeneration, have

complex functional signal networks that jointly drive the

interact ion between biological s ignal molecules in

neuroinflammation and the disease microenvironment.

However, none of these three biomarkers can capture the

whole process of neuroinflammation. It can be assumed that

CHIT1 mainly activates microglia and releases pro-

inflammatory mediators. At the same level, activated microglia

can stimulate astrocytes, resulting in further enhanced microglia

and astrocyte responses. CHI3L1 acts on astrocytes and activated

astrocytes to release inflammatory mediators, leading to motor

neuron degeneration. We hypothesized that CHI3L2 can induce

motor neuron degeneration by stimulating macrophages that

infiltrate the blood-brain barrier (BBB) and then transform into

pro-inflammatory phenotypes (Figure 1). Although these three

biomarkers cannot replace neurofilament in the diagnosis and

evaluation of ALS prognosis, they still have high complementary

value for early diagnosis of ALS and differentiation of subtle

d i ff e r enc e s b e tween d i ff e r en t neurodegene ra t i v e

diseases (Table 1).
Cytokines

Cytokines are small soluble polypeptide proteins secreted by

immune cells and histiocytes that regulate cell growth,

differentiation, and immune responses by binding to their

receptors. There are more than 300 known cytokines,

including chemokines, interleukins, interferon (IFN), and
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tumor necrosis factor (TNF) (34, 35). When they participate

in immune and inflammatory responses, such as antigen

presentation, cell recruitment, expression of adhesion

molecules, and innate immunity, these cytokines play an

efficient and synergistic role. The immune network, which is

composed of different cytokines, can regulate immune and

inflammatory responses in different areas of the same organ.

Further, it has different immunomodulatory roles. For example,

in neurodegenerative diseases, cytokines released by some

resident cells of the CNS in the early course of the disease can

counteract inflammatory damage by limiting inflammation or

promoting tissue remodeling; however, as the disease progresses,

cytokines released by invasive immune cells and some glial cells

target the CNS and play a neurotoxic role (36–38). Additionally,
FIGURE 1

Hypothesis of mechanisms of Chitinase induced neurotoxicity in ALS.
CHIT1, CHI3L1 and CHI3L2 activate glial cells andmacrophages by
interacting with receptors (e. g. toll-like receptors, transforming
growth factor beta or scavenger receptors), resulting in the release of
pro-inflammatory mediators, inhibition of neurotrophic factor
synthesis and decreased tissue repair function.
TABLE 1 Association of cerebrospinal fluid chitinase and prognostic evaluation parameters in ALS patients ALSFRS-R, ALS functional rating scale-
revised; CHIT1, Chitotriosidase; CHI3L1, Chitinase 3-like 1; CHI3L2, Chitinase 3-like 2; DPR, disease progression rate.

Biomarker Prognostic evaluation parameters Positive↑/negative↓association Reference

CHIT1 ALSFRS-R ↓ (18, 20, 31, 32)

DPR ↑

Disease duration ↓

Survival ↓

CHI3L1 ALSFRS-R ↓ (11, 24, 31, 33)

DPR ↑

Disease duration ↓

Survival ↓

CHI3L2 ALSFRS-R ↓ (12, 29, 31)

DPR ↑

Disease duration

Survival ↓
f
rontiersin.org

https://doi.org/10.3389/fimmu.2022.1059994
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2022.1059994
with the increasing number of studies on neuroinflammation

and peripheral inflammation in ALS in recent years, multiple

studies have reported abnormal changes in a variety of cytokines

and chemokines in the peripheral blood and CSF of patients with

ALS. These observations enhance our understanding of their

role in the pathogenesis, early diagnosis, and improvement in

the treatment of ALS. Therefore, some researchers suggest that

cytokines should be used as biomarkers for the diagnosis and

evaluation of the prognosis of ALS. Considering that a large

number of cytokines are involved in the disease process, this

review cannot be all-inclusive. Instead, we focus on only the key

cytokines related to the neuroinflammation in ALS and aim to

integra te them into a conceptua l f ramework for

comprehensive analysis.
Interleukins

Interleukin (IL) is a type of cytokine that mediates the

interaction between leukocytes and other cells and is

synthesized by T cells, macrophages, and endothelial cells etc.

Interleukins promote the proliferation, differentiation, and

activation of immune and inflammatory cells (39). It has been

reported that in patients with ALS, the levels of a large number of

interleukins in the blood or CSF were increased compared with a

healthy control group or patients with other non-inflammatory

neurological disorders (OND), which include IL-1b, IL-2, IL-4,
IL-6, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, IL-18, IL-21 and IL-

23 (40–44). Among all cytokines, IL-6 has a high reference value

as a biomarker for assessing patient prognosis. Comparing ALS

with other neurodegenerative diseases showed that all cytokines,

except IL-8, were differentially elevated in AD, PD, or FTD.

Among them, only IL-8 was specifically elevated in ALS and not

in other neurodegenerative diseases. Moreover, IL-6 has been

identified as an astrocyte-dependent biomarker that can evaluate

the prognosis of patients with ALS (45). A recent study found

that a decrease in the compound muscle action potential

(CMAP) amplitude in the phrenic nerve was associated with

increased IL-6 levels in ALS (46). In corroboration with previous

studies, it also reported that changes in peripheral blood PaO2

affected fluctuations in IL-6 levels in the serum and CSF of ALS

(47). Therefore, the level of IL-6 reflects the severity of

respiratory function involvement in patients with ALS to some

extent (46, 47). Simultaneously, Sun et al. also reported that the

levels of IL-6 and IL-2 were positively correlated with the

severity of muscular dystrophy and negatively correlated with

the ALSFRS-R score (48). In patients with ALS with a duration

of illness of less than 12 months, IL-6 levels were negatively

correlated with disease progression, while in patients with an

illness duration of more than 12 months, the IL-6 levels were

positively correlated with disease development, which further

highlights the prognostic value of IL-6 in assessing ALS (46, 48).

Other interleukins that may potentially be implicated in ALS
Frontiers in Immunology 05
include IL-4, IL-8, IL-13, IL-15 and IL-18, elevated levels

correlate with DPR and ALSFRS-R score (42, 49–53). In ALS

patients and animal models, levels of IL-2, IL-5, IL-8 and IL-12

were higher than in controls and were associated with shorter

survival times and faster disease progression (52, 54–56).

In summary, the involvement of interleukins in the

inflammatory processes of ALS has a unique value in

evaluating the prognosis of ALS. However, interleukins are

often released irregularly in the inflammatory response in ALS,

and their relationships with various clinical parameters were

contradictory across different studies (48). Therefore, more

studies are needed to further clarify the pathological triggers

that affect the release of interleukins and the mechanism of

crosstalk between interleukins and glial cells.
Tumor necrosis factors

Tumor necrosis factor (TNF) is classified as TNF-a and

TNF-b according to its origin and structure. TNF-a is the

mainstay of research on ALS. It participates in cell

proliferation and differentiation, phagocytic activation, and

cytokine production, and is mainly released by astrocytes and

microglia in the CNS, and macrophages in the periphery (57).

Some studies have shown that the levels of TNF-a in the CSF

and peripheral blood of patients with ALS were higher than that

in controls and the levels were positively correlated with the

course of the disease (58). It has been reported that the protective

or toxic effect of TNF-a on motor neurons depends on activating

its two different receptors, whereby activation of TNF receptor

(R) 1 can promote the expression of neurotrophins and mediate

neuroprotective effects, while activation of TNFR2 can induce

neuronal degeneration and play a neurotoxic role (59). Higher

levels of TNFR superfamily members (TNFRSF) 1A (CD120),

TNFRSF8L (CD30L), TNFRSF18 (GITR), TNFRSF19 (TROY),

and TNFSF11 were seen in patients with ALS and the

SOD1G93A mouse model compared to controls. However,

TNFRSF18 (GITR) levels were lower in the early stage of the

disease compared to the control group, and the levels of both

TNFRSF18 and TNFRSF19 were negatively correlated with the

survival rate (55, 60). Based on these findings, we consider that

inhibiting the expression of TNFR2 or administering a modified

form of TNF-a may play a potential therapeutic role in patients

with ALS during the early stage.
Chemokines

Chemokines are small proteins that induce directed

migration, activation, and development of immune cells.

According to their structural characteristics, more than 50

chemokines can be divided into four subfamilies: CXC, CC, C,

and CX3C (61). There is growing evidence that some
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chemokines play key roles in certain stages of ALS as important

mediators in inflammatory networks (62, 63). Among all

chemokines, CCL2 is considered a sign of non-neuronal cells

participating in ALS. In the CNS, the main source of CCL2 may

be glial cells, while in the peripheral, T cells, NK cells, and

macrophages are sources of CCL2 (64, 65). Importantly, CCL2

activates microglia, which then produce large amounts of pro-

inflammatory cytokines and inducible nitric oxide, thereby

prompting the recruitment of T cells, NK cells, and

macrophages to the CNS (66, 67). Thus, the upregulation of

CCL2 can be used as a marker of neuroinflammation and

peripheral immune response (68). In addition, the level of

CCL2 is related to the destruction of the BBB and positively

correlated with the protein level in CSF, which supports the role

o f CCL2 as a d i s ea s e - agg rava t ing f a c to r in the

neuroinflammation of ALS (67). In addition to CCL2, higher

levels of other chemokines have been seen in the blood and CSF

of patients with ALS when compared to controls, such as C-C

motif chemokine ligand (CCL)3, CCL4, CCL11 (or Eotaxin-1),

CCL19, CCL21 (or 6Ckine), C-X-C motif chemokine ligand

(CXCL)8, and CXCL10 (43, 50, 60, 67, 69–72). Further analysis

of the prognostic value of various chemokines revealed that the

levels of CCL2, CCL3, CCL4, CCL11, CXCL8, and CXCL10 in

the blood correlated with ALSFRS-R score and DPR. CCL4 and

CXCL10 levels positively correlated with ALSFRS-R score and

negatively correlated with DPR, and CCL3 and CCL11 levels

were negatively correlated with survival time (11, 31, 47, 51, 67).

However, other studies have reported that CCL11 can play a

neuroprotective role in ALS and was positively correlated with

survival time (55). Recent studies report that in contrast to other

chemokines, CCL5 level is increased in the CSF of patients with

ALS but is lower in blood as compared to the controls (52, 73).

Therefore, further grouping studies on the functional

characteristics and degree of fluctuations in chemokines are

still needed, especially for different specimen types (serum or

CSF) and different disease stages, in order to further explore the

crosstalk between peripheral immunity and CNS inflammation

in ALS.
Interferons (IFN)

Interferons are classified into type I and type II according to

their source, structure, and biological properties, where type I

includes IFN-a (with 13 subtypes), IFN-b, IFN-k, IFN-ϵ, and
IFN-w, while type II interferons are IFN-g (74). To date, the only
interferon that has been found in the body fluids of patients with

ALS is IFN-g, which is produced by microglia, astrocytes, and

motoneurons in the CNS as well as by T cells and NK cells in the

peripheral NS. Its main function is to activate macrophages and

to promote the expression of MHC molecules, antigen

presentation, and regulation of cell differentiation. The

longitudinal evaluation of IFN-g in patients with ALS in
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Northern India by Babu et al. revealed that the levels of IFN-g
in the CSF and blood were higher than that in the control group,

and IFN-g increased gradually with the progression of the

disease, reaching a peak at 24 months after disease onset (75).

A study of patients with ALS by Liu et al. further demonstrated

that the level of IFN-g in CSF was consistent with disease

progression throughout the course of ALS, whereas the level of

IFN-g in the serum was only related to disease progression in the

early stage of the disease (76). It has been suggested that IFN-g in
the CSF is a more reliable biomarker for diagnosing and

monitoring disease progression than that IFN-g in serum.

Although many studies have revealed the diagnostic value of

IFN-g in ALS, the levels of IFN-g in the CSF and blood of part

patients with ALS are lower than those in controls. Hence, the

role of IFN-g as a potential biomarker in ALS remains

controversial (40, 77).
Colony-stimulating factors (CSFs)

Colony-stimulating factors (CSFs) are cytokines that

stimulate the proliferation and differentiation of pluripotent

hematopoietic stem cells and hematopoietic progenitor cells at

various stages of differentiation. Here we focus on the role of G-

CSF and GM-CSF in ALS. G-CSF and GM-CSF levels in the CSF

and blood of patients with ALS are higher than that in controls

(70, 78). In addition, the concentration of plasma GM-CSF

decreased, accompanied by a high level of GM-CSF in the CSF

when the disease progressed, confirming that the concentration

of plasma GM-CSF negatively correlates with the duration of the

disease (71). This may be due to a change in BBB permeability,

which would result in an increase in plasma GM-CSF

transported to the CSF. GM-CSF can also act on neurons by

upregulating the apoptotic molecules (B-cell lymphoma 2) Bcl2

and (B-cell lymphoma xL) BclXL; hence, an increase in GM-CSF

level in the CSF may be related to neuroprotection. In summary,

GM-CSF has potential as a prognostic marker for ALS (71, 79).
Other cytokines in ALS

Vascular endothelial growth factor (VEGF) is a neurotrophic

cytokine that is induced by hypoxia (80). VEGF was elevated in

the CSF and blood of patients with ALS, especially in patients

with symptom onset in the limbs and a longer course of disease

before the first hospitalization, which is considered to be related

to the slow progression of the disease (31). In patients with rapid

disease progression and a short survival period, VEGF levels

were significantly lower than those in the control group, and

VEGF levels were positively correlated with the ALSFRS-R score

and disease duration (70, 81). Hypoxia can induce the

overexpression of VEGF in the CSF and VEGF plays a

neuroprotective role in preventing neuronal apoptosis (31).
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Astudy conducted by Moreau et al. found that VEGF in the CSF

of ALS patients had a paradoxical response to hypoxia; ALS

patients with hypoxemia have lower upregulated levels of VEGF

than controls who also had hypoxemia. Moreover, the severity of

hypoxemia in ALS patients is negatively correlated with VEGF

levels, while the opposite was true in controls, suggesting that

impaired regulation of hypoxia in ALS patients is closely related

to VEGF (82). The above observations support the use of VEGF

as an alternative therapeutic agent and neuroprotective factor to

ameliorate the adverse effects of hypoxia in ALS patients, thereby

delaying motor neuron degeneration.

Similar to VEGF, as a common neurotrophic factor, the

levels of basic fibroblast growth factor (BFGF) and platelet-

derived factor (PDGF)-BB in CSF and blood of patients with

ALS were significantly higher than those of the control group,

and BFGF was positively correlated with survival time and

negatively correlated with disease progression rate (52, 70).

Another cytokine involved in the course of ALS is

transforming growth factor-b (TGF-b), that can play a role in

a variety of biological processes, including angiogenesis, fibrosis,

and wound healing (83). It has been found that in SOD1G93A

mice, the up-regulation of TGF-b expression preceded the

appearance of corresponding symptoms, and the content of

TGF- b increased with the progression of the disease (84).

When combined with other findings, the levels of TGF- b in

plasma and CSF in patients with ALS were higher than those in

the control group, and the expression in skeletal muscle was

related to the degree of muscle weakness and disease progression

(52, 85). However, when glial cells express excessive TGF- b, the
neuroprotective effect is shifting into neurotoxicity, thus

accelerating neuronal apoptosis (86). Therefore, blocking the

signal transduction pathway of TGF- b in a specific way may be a

promising target for the development of new therapy for ALS.

Other cytokines were found to be significantly upregulated

in a mouse model of ALS, and, unlike the above cytokines

already discussed, the upregulation of the expression of these

cytokines occurred at the asymptomatic stage, including that of

activin receptor-like kinase 1 (ALK-1), cluster of differentiation

30 ligand (CD30L), galectin-1, galectin-3, and VEGFD (87–90).

Increased expression of ALK-1 and galectin-1 in the

symptomatic stage was negatively correlated with survival time

but positively correlated with the rate of progression of the

disease (55). Galectin-1 is a member of the galactoside-binding

lectin (GBL) family. The content of galectin-1 in the CSF and

blood of a mouse model of ALS was higher than that in control

mice, especially in mice with rapid disease progression and short

survival time, which is negatively correlated with the survival

rate of these mice (91). However, based on the clear prognostic

value of Galectin-1, it has been reported that Galectin-1 can

prevent inflammation-induced neuronal degeneration by

inactivating microglia through activation and thus exerting

neuroprotective effects (40, 92). The reason for this

contradiction may be that the activation of some unknown
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factors triggers a potential signal transduction pathway and

hinders galectin-1’s neuroprotective effect. Therefore, actively

studying the expression of galectin-1 in plasma and target tissues

and clarifying its pathological triggering factors and the

underlying signal transduction pathway are useful methods to

further explore the potential value of galectin-1.

Taken together, the extant literature to date (Table 2)

supports the view that within the neuroinflammatory network

constructed by various glial cells and peripheral immune cells,

the neuroprotective and neurotoxic cytokines act as the key

nodes of the inflammatory network to regulate disease

progression through their interactions (Figure 2). In addition,

by evaluating the correlations between various cytokine levels

and the ALSFRS-R score, DPR, and survival time at various

stages of the disease, these studies emphasize the potential value

of cytokines as CSF or blood biomarkers in early diagnosis,

evaluation of prognosis, and treatment targets. However, the

results of all cytokine studies were not completely consistent and

were heterogenous. To solve this, it is necessary to determine a

combination of biomarkers to improve the understanding of the

effects of changes in cytokine activity on neurodegeneration

in ALS.
Acute phase protein(APP)

Acute phase protein (APP) is a specific blood protein

produced by changes in the metabolic pattern of the liver to

maintain the stability of the internal environment and cope with

local or systemic disorders caused by trauma or inflammation

(100). So far many studies have observed that ALS pathogenesis

is often accompanied by fluctuations in APP levels. Therefore,

there may be a common mechanism between CNS

inflammation, peripheral immune system changes, and APP

level fluctuations in patients with ALS. This review discusses

soluble CD14 (sCD14), lipopolysaccharide-binding protein

(LBP), and C-reactive protein (CRP), focusing on the

fluctuating levels of these APPs, and their value in diagnosis

and prognosis. Together with other inflammatory markers, they

constitute an inflammatory profile to improve the specificity and

sensitivity of ALS diagnosis and the value of assessing APP levels

in aiding disease diagnosis and prognosis. APP can be combined

with other inflammatory markers to form a map of

inflammation and improve the diagnostic specificity and

sensitivity of ALS.
Classic acute phase protein

C-reactive protein (CRP) is a pentamer composed of five

identical subunits that bind to phosphocholine (PCH) in a

calcium-dependent manner. As an APP, CRP is an important

component of the acute phase response. It can be produced in
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the liver and then transported to other organs through the

circulatory system. Furthermore, it has also been proven by

molecular genetics techniques that CRP can be produced by

neurons in the brain. In particular, upregulation of CRP in areas

of the brain damaged by neurodegenerative diseases was most

evident (101). CRP is not only a sensitive marker of systemic

inflammation but also an activator of microglia. Upregulation of

CRP expression can alter the permeability of the BBB and induce

microglial activation. With the gradual increase in the

inflammatory response during the progression of ALS,

activated microglia can further promote the degeneration of

motor neurons (102, 103). Therefore, in view of the potential

inflammatory processes involved in the pathogenesis of ALS,

researchers have proposed the use of CRP as a possible disease

biomarker for the early diagnosis and evaluation of prognosis of

ALS. A study in 2011 found a significant difference in the ratio of

phosphorylated neurofilament heavy chains to CRP in patients
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with ALS as compared wi th pat i ent s wi th o ther

neurodegenerative diseases and healthy controls, indicating

that CRP has high specificity as a diagnostic biomarker (104).

Further, to investigate diagnostic accuracy and sensitivity with

CRP, Ryberg et al. conducted a study to evaluate the accuracy of

measuring CRP for the diagnosis of ALS with 9 mg/ml as the

cut-off value and observed that the total accuracy of

distinguishing patients with ALS from healthy controls

according to the level of CRP in the CSF was 62% (105).

Meanwhile, Kharel et al. conducted a combined frequency

analysis of several studies and reported that approximately

53% of ALS patients had statistically significant increases in

CRP levels compared to healthy controls (106). In summary,

these studies confirmed the superiority of measuring CRP levels

in the diagnosis of ALS. However, with the increasing number of

studies on CRP and neuroinflammation, the link between CRP

and ALS has been questioned owing to studies with negative
TABLE 2 Association of cerebrospinal fluid Cytokines and prognostic evaluation parameters in ALS patients ALSFRS-R, ALS functional rating
scale- revised; CCL, C-C motif chemokine ligand; DPR, disease progression rate; G-CSF, Granulocyte colony stimulating factor, GM-CSF,
Granulocyte-macrophage colony stimulating factor; IL=Interleukin; IFN-g=Interferon gamma; TNF=Tumor necrosis factor; VEGF=Vascular
endothelial growth factor.

Biomarker Prognostic evaluation parameters Positive ↑/negative ↓association Reference

IL-6 ALSFRS-R ↓ (46–48)

DPR ↓ (Less than 12 months)
↑ (more than 12 months)

Disease duration ↓

Survival ↓

TNF-a ALSFRS-R ↓ (59, 93, 94)

DPR ↑

Disease duration ↓

Survival ↓

GM-CSF ALSFRS-R (71, 95)

DPR

Disease duration ↓

Survival

IFN-g ALSFRS-R ↓ (75, 76, 96, 97)

DPR ↑

Disease duration ↓

Survival ↓

CCL2 ALSFRS-R ↓ (11, 31, 47, 51, 67)

DPR ↑

Disease duration ↓

Survival ↓

VEGF ALSFRS-R ↑ (70, 80, 81)

DPR ↓

Disease duration ↑

Survival ↑

G-CSF ALSFRS-R ↑ (98, 99)

DPR ↓

Disease duration ↑

Survival ↑
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results; therefore, extensive cohort studies are still needed to

evaluate its value in the early diagnosis of ALS.

Considering the value of CRP in evaluating disease

prognosis, a multicenter cohort study of patients with ALS in

Italy found that CRP levels in patients were lower before

symptom onset, but gradually increased with the progression

of the disease, especially in the months before death, indicating

that CRP levels were positively correlated with disease

progression (107). Subsequently, 50 patients were randomly

selected and followed up for 1 year. CSF CRP level was

positively correlated with the severity of neurological

functional impairment and negatively correlated with the

ALSFRS-R score. Accordingly, Sun et al. evaluated the

correlation between CRP levels and survival time, and

observed that patients with CRP levels higher than the median

had a higher mortality rate; that is, higher CRP levels in the CSF

were associated with a shorter survival time (108). In addition,

CRP levels can be used as a valuable index to evaluate the

fluctuation of the disease and to predict possible respiratory tract

infections during the course of the disease (109). These studies

confirmed the value of CRP as a prognostic biomarker in

patients with ALS. As a relatively easy-to-obtain biomarker of

prognosis, CRP has certain advantages, especially for patients

with ALS with rapid disease progression, given the lack of

effective evaluation methods. CRP can also be used as a

biomarker to evaluate the therapeutic effects of drugs in

clinical trials. In 2017, Lunetta et al. used serum CRP levels as

a stratified biomarker to further analyze the results in the phase

II trial of NP001 (107). Patients with elevated CRP levels
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significantly slowed the progression of neurological functional

impairment after receiving high-dose NP001 treatment (110). In

addition, by measuring the changes in the ALSFRS-R score, it

was found that compared with the placebo group, the functional

deterioration in patients with elevated CRP levels decreased, and

these changes showed significant NP001 dose-dependent

characteristics. The use of CRP as a sensitive inflammatory

marker to stratify patients with ALS will be helpful to fully

exploit the potential value of anti-inflammatory therapies.
Other acute phase proteins

In addition to the classical APP-CRP, the serum levels of

other APPs, such as soluble CD14 (SCD14) and LBP, in patients

with ALS were also significantly higher than that in controls

(111). However, unlike CRP, which classifies ALS patients into

fast- and slow-progressive types, SCD14 and LBP are only

elevated in the serum of patients with fast- or rapid-

progressive disease, suggesting that SCD14 and LBP levels are

associated with a faster rate of disease progression and a shorter

survival time (112). A positive correlation between LBP and

SCD14 has been reported; that is, LBP is increased with an

increase in SCD14 level (112).

As the biomarker of ALS, APPs have a potential value for

diagnosis and prognosis, and can also be used to stratify patients

(Table 3). Most studies on APPs used blood samples, which were

obtained easily. APP, as a non-specific marker of systemic

inflammation, has 62% diagnostic accuracy and shows good

sensitivity in patients with ALS, but most samples were taken

from CSF (114). Because serum APP levels are susceptible to

interference by the patient’s underlying disease, cardiovascular

risk factors, recent infections, trauma, other inflammatory

diseases of the peripheral nervous system, and the application

of inflammation-sensitive drugs, we remain uncertain about the

diagnostic value of APP when CSF is observed along with serum

samples. In addition, given the diversity of changes in APP levels

in body fluids, analysis of larger cohorts of ALS patients,

expansion of sample types, and longitudinal evaluation of

samples within them are needed to clarify how APP responds

to disease status and how APP changes across disease stages.
Other inflammatory biomarkers

Other inflammatory factors differ between patients with ALS

and controls and at various stages of the disease, indicating that

these inflammatory factors may be related to the pathogenesis of

ALS. The plasma level of clubcellprotein16 (CC-16) was

significantly higher in patients with ALS than that in healthy

controls and its content was positively correlated with DPR in

patients with ALS (110). Furthermore, CC-16, a lung-derived

protein, is often used as a biomarker to describe pulmonary
FIGURE 2

The ambivalent role of Inflammatory network on motor neuron
survival. Left: M1 microglia, Activated astrocytes and Th1and Th
17 and their respective secreted pro-inflammatory cytokines
constitute an immune network (IL-6, IL-1b, IL-17, IFN-g, TNF-a,
CCL-2) that leads to neurotoxic effects and death of motor
neurons. Right: M2 microglia, astrocytes and Th2 and Treg and
their respective release of anti-inflammatory and neurotrophic
factors (IL-4, IL-10, IL-13, TNF-b, CCL-11) constitute an immune
network that supports the function and activity of neurons.
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dysfunction. For patients with ALS with elevated CC-16 levels,

the probability of requiring non-invasive mechanical ventilation

within 6 months was greatly increased, along with an increased

risk of death (47). It has been suggested that the level of CC-16

has a unique value in evaluating the prognosis of patients with

ALS. In contrast to biomarkers of respiratory failure in patients

with ALS, CC-16 has no effect on respiratory muscle strength,

reflecting the process of pulmonary interstitial inflammation

caused by aspiration or poor ventilation in parts of the lung

(115). Therefore, CC-16 can be used as an early warning index

for respiratory failure in patients with ALS.

Another unpredictable protein during the course in ALS

patients and mouse models is immunoglobulin G. Through a

series of studies, IgG has shown diagnostic and prognostic value

related to ALS (52). The level of IgG glycosylation structure in

CSF of patients with ALS was significantly increased, and the

predicted value after ROC analysis was similar to that of

phosphorylated neurofilament heavy chain (116). Of note,

under the background of ALS, there i s a unique

polysaccharide structure in the Fc region of IgG, whose

expression frequency and content in the Fc domain were

closely related to clinical progress (116).

Other molecules that change in ALS are CD-5L and Ficolin-

3. The level of CD-5L in patients with ALS was higher than that

in controls, and the level was positively correlated with survival

time, but there is a lack of large-scale cohort studies and

longitudinal evaluations to verify this phenomenon (47, 117).

However, Mohanty et al. demonstrated no significant correlation

between Ficolin-3 levels and various clinical features (muscle

stiffness, hyperreflexia, muscle weakness, and atrophy).

Therefore, both CD-5L and Ficolin-3 require further study as

potential biomarkers of ALS (118).

Interestingly, changes in immune cell expression also have

potential value in evaluating the prognosis of ALS. Jin et al.

reported that the levels of Th1, Th17, NK cells, and monocytes in
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patients with ALS increased with the progression of the disease,

and the levels of Th1 and Th17 were negatively correlated with

the survival time of patients (53). In addition, the studies by

Keizman et al. suggest that the neutrophil/lymphocyte ratio

(NLR) continued to increase in patients with ALS and is

related to the rate of disease progression and the ALSFRS-R

score (113).

Longitudinal assessment of changes in microglia and

monocytes of spinal cord origin in a mouse model of ALS

revealed that the levels of microRNA-124 (miR-124), miR-155,

miR-125b, miR-146a, and miR-21 were upregulated in

symptomatic mice compared to pre-symptomatic mice, with

miR-155 being the most significantly upregulated miRNA.

miR-155 was upregulated at an earlier stage of symptom

onset compared to other miRNAs (47, 119, 120). MiR-155 is

prominent in research on ALS biomarkers. In microglia from

SOD1G93A mice, miR-155 together with miR-125b could

promote the transformation of microglia to the M1

phenotype, directing the inflammatory response to a pro-

inflammatory direction, and thus aggravating neurotoxicity

(121). Therefore, inhibiting the activation of miR-155 in

mouse models of ALS can significantly prolong the survival

of mice. Further, the study found also that miR-155 had the

highest expression level in spinal cord tissues of patients with

Sporadic Amyotrophic lateral sclerosis (SALS) and Familial

Amyotrophic lateral sclerosis (FALS). Therefore, an increasing

number of studies have focused on miR-155 as a therapeutic

target (122).

The intermediate products of the kynurenine pathway (KP)

are involved in the neuroinflammatory process of ALS, which

provides a unique value for the early diagnosis and prognosis of

ALS as well as a new and potentially effective target for the

treatment of ALS (123, 124). One study focused on quinolinic

acid (QUIN), tryptophan (TRP), picolinic acid (PIC), and

kynurenine (KYN), all of which had higher levels in the CSF
TABLE 3 Association of Acute phase protein and prognostic evaluation parameters in ALS patients.

Biomarker Prognostic evaluation parameters Positive ↑/negative ↓association reference

CRP
(CSF)

ALSFRS-R ↓ (107, 108, 110, 113)

DPR ↑

Disease duration ↓

Survival ↓

LBP
(Serum)

ALSFRS-R ↓ (112)

DPR ↑

Disease duration ↓

Survival ↓

SCD14
(Serum)

ALSFRS-R ↓ (112)

DPR ↑

Disease duration ↓

Survival ↓
ALSFRS-R, ALS functional rating scale- revised; CRP, C reactive protein; DPR, disease progression rate; LBP, Lipopolysaccharide binding protein; SCD-14, soluble CD14.
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of patients with ALS as compared to controls (125).

Interestingly, another study showed that QUIN and TRP,

which are neurotoxic, were positively correlated with the

severity of ALS symptoms, while PIC, which is a

neuroprotective agent, was positively correlated with the

survival time in a mouse model of ALS (126). IIzecka et al.

demonstrated that the level of Kynurenic acid (KYNA) was

lower in the early stage of the disease and then gradually

increased with disease progression, with significantly higher

levels in the CSF of ALS patients with medullary onset

compared to ALS patients with limb onset (127).
Inflammatory biomarkers in ALS:
Challenges and future

The irreplaceable value of inflammatory molecules or cell

selection as biomarkers in the pathogenesis and prognosis of

ALS is relatively clear (Tables 1–4). The evidence provided by

inflammatory biomarkers in human and experimental models

largely replicates the prediction of disease development by

human neuroimaging, neuro-electrophysiology, and

pathological biopsies, which suggests that neuroinflammation

caused by non-nerve cells can aggravate neuronal dysfunction,

and different inflammatory molecules can form an immune

network to affect disease progression by regulating the balance

between anti-inflammatory and pro-inflammatory. However, it

is impossible to solely rely on single inflammation-related

molecules or proteins to diagnose, predict disease progression,

and evaluate the effectiveness of clinical trials.

In order to solve this problem, some researchers proposed

that it is more appropriate to choose a combination of several

biomarkers than focusing on a single one. For instance, the

combination of gene expression from the same cell with different

inflammatory factors to jointly evaluate ALS, which is conducive

to targeting some inflammatory pathways, even tracking disease

processes further upstream. Besides, this combined assessment

with certain clinical parameters (ALS type, anatomical location
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of motor neuron damage, sex, age, etc.) can identify

inflammatory features and subgroups that are more sensitive

to selected treatment, for example, upper motor neuron damage.

But the inflammatory pattern of sporadic ALS may be

significantly different from that of patients with familial ALS.

As the genetics of inflammation expands and the large

international database on ALS deepens, a specific direction of

development is to apply a combination of biomarkers from

different pathways to enhance the insights gained from a limited

number of ALS patients, leading to multivariate analysis and

longitudinal assessment of clinical trajectories for several

candidate biomarkers of clear value. Meanwhile, the

correlation between the combination of candidate biomarkers

and some clinical parameters needs to be determined. Finally,

improving the clinical conversion efficiency of biomarkers,

promoting future multi-drug trials, and developing

personalized and accurate drug therapy are the next three

steps for clinical utility.
Targeting inflammatory biomarkers
as therapeutic approaches

Targeting cytokines

As the main cytokine of the inflammatory response, IL-6

plays an important role in the regulation of metabolic disorders

and neuroinflammation; therefore, it is considered a therapeutic

target for ALS (45). A recent preclinical study showed that

knockout of the IL-6 gene or blocking the IL-6 pathway has

obvious anti-inflammatory effects, increasing the number of

regulatory T cells in the blood and a decrease in the

concentration of the pro-inflammatory chemokine CXCL-1.

Unfortunately, it could not significantly improve the loss of

motor function in mice, but rather accelerated the weight loss of

the mice (131). The reason may be that blocking the IL-6

pathway has an impact on many parameters, especially leading

to metabolic disorders that change body weight and disease
TABLE 4 Association of other inflammatory factors and prognostic evaluation parameters in ALS patients ALSFRS-R, ALS functional rating scale-
revised; CD-5L, cluster differentiation 5 ligand; CC-16, club cell protein 16; DPR, disease progression rate; QUIN, quinolinic acid, TRP, tryptophan,
PIC, picolinic acid.

Prognostic evaluation parameters Association Biomarker Reference

ALSFRS-R Positive ↑ CD-5L (117)

Negative ↓ CC-16; miR-155 (110, 120, 121)

DPR Positive ↑ CC-16; IgG; miR-155; QUIN; TRP (110, 121, 125, 128)

Negative ↓ PIC (129)

Disease duration Positive ↑ CD-5L (117)

Negative ↓ miR-155 (121, 130)

Survival Positive ↑ CD-5L; PIC (117, 129)

Negative ↓ CC-16; Th1; Th17; miR-155 (53, 110, 113, 130)
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progression. In addition to IL-6 and IL-33 can also exert anti-

inflammatory effects by regulating peripheral T cells, inhibiting

disease progression (132). However, in a mouse experiment with

IL-33, intraperitoneal injection of IL-33 into female mice could

significantly delay disease progression, while male mice did not

respond to treatment (133). This suggests that there may be

other potential mechanisms that cause the anti-inflammatory

effects of IL-33 to be sex-dependent.

Unlike IL-33, which mediates its anti-inflammatory effects

by regulating the peripheral immune system, G-CSF can not

only modulate anti-inflammatory polarization by regulating

inflammatory cells and other cytokines, but also mobilize

hematopoietic stem cells to interact with local cells to produce

neurotrophic factors, thus playing a neuroprotective role (98).

The routine administration of G-CSF involves repeated daily

injections of filgrastim. A clinical trial of G-CSF in 36 ALS

patients conducted in 2018 found that long-term subcutaneous

injections of G-CSF were safe for ALS patients and helped

improve motor neuron survival, but the correspondence

between dose and effect is unclear because of the small sample

size (98, 134). Additionally, although G-CSF is safe, long-term

use carries the risk of splenomegaly and splenic rupture (135). In

contrast to the anti-inflammatory effect of G-CSF, IFN-g is a

strong pro-inflammatory cytokine that can induce

neuroinflammation and lead to the death of motoneurons.

Therefore, inhibition of IFN-g activity can ease the

inflammatory process and slow disease progression. In a study

of ALS mice, micro-pumping of anti-IFN-g antibodies into the

CSF could effectively save motoneurons from IFN-g-induced
death and significantly delay the progression of motor

dysfunction in mice (96). Finally, a mathematical model of the

cell-cytokine communication network in ALS also predicted that

neutralizing IFN-g activity is an effective therapeutic

target (136).

Unlike the neurotoxicity caused by other pro-inflammatory

cytokines, the neurotoxicity or neuroprotective role of TNF-a is

receptor-dependent (59). Thalidomide and lenalidomide have

been used to inactivate TNF-a in SOD1G93A mice, which

prolonged the survival time of mice and enhanced exercise

ability (137). However, when the results obtained in the mouse

model were transformed into patients with ALS, it was found

that the patients treated with thalidomide did not receive any

beneficial effect, and with an increase in application time and

dose, the negative effect gradually appeared (59).

Compared with other cytokines that have a relatively clear

mechanism of action, the therapeutic mechanism of ALS

targeting galectin-1 is still relatively vague, and the therapeutic

effect is more contradictory. Kato et al. found that the number of

residual motor neurons in the spinal cord of ALS mice treated

with galectin-1 was better than that in untreated mice and that

galectin-1 treatment improved the motor ability of model mice,

delayed the appearance of symptoms, and prolonged survival
Frontiers in Immunology 12
time (92). However, with the expansion of the study sample, it

was found that there was a positive correlation between the level

of galectin-1 and disease progression (91). Therefore, it is

necessary to further study the mechanism of galectin-1 to

clarify its potential value as a therapeutic target.

Unlike therapies targeting most cytokines, which salvage

motor neurons by regulating the balance between pro- and anti-

inflammation, therapies targeting VEGF salvage motor neurons

by nourishing the nerves and thus delaying the degeneration of

motor neurons (80). Research on the therapeutic value of VEGF

in ALS has primarily focused on VEGF-A. A mouse model

treated with VEGF-A gene therapy and VEGF-A protein therapy

showed positive therapeutic effects, which were mainly

characterized by prolonged survival time and improved motor

function in model mice (138). There is evidence of the potential

to develop VEGF-A-based therapies in the future (131).
Anti-inflammatory therapy by NP001

Unlike cytokines that regulate inflammation in vivo,

NP001 is a PH-dependent IV formulation of purified

sodium chlorite that exerts inflammatory modulating effects

in vivo and in vitro simultaneously (139). NP001 shifts

monocytes and macrophages from a pro-inflammatory state

to a devouring state by down-regulating the expression of

nuclear factor k B and inhibiting the production of pro-

inflammatory cytokine IL-1b. Despite there will be dizziness

and pain in infusion sites during ALS treatment, it is secure

and well tolerated (110, 140). A six-month preliminary

evaluation of the efficacy of NP001 indicated there is no

statistically significant benefit to the progression of ALS

(107). However, in patients with significant systemic

inflammatory response, there is a slow drop in the

progression rate of ALSFRS-R in the NP001-treated group,

which showed an obvious NP001 dose-dependent profile,

compared to the placebo group (110). Future continuing

clinical studies for ALS patients with obvious systemic

inflammatory responses will fully characterize the potential

disease modification effect of NP001.
Targeting the innate immune system

In addition to treatments targeting cytokines for anti-

inflammatory treatment in ALS, the study of miR-155

provides a new direction for treatments targeting the innate

immune system (122). Conventional treatment with miR-155

mainly includes intraventricular or peripheral anti-miR-155

therapy and gene ablation miR-155 therapy, in which gene

ablation miR-155 can reverse the pro-inflammatory signaling

from abnormally activated microglia and monocytes, and inhibit
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72% of abnormal protein expression in the spinal cord of

SOD1G93A mice, thus delaying disease progression and

prolonging the survival time of mice (122, 141). Additionally,

the KP pathway is being widely considered as a potential

pathogenic factor, wherein the treatment of neuroactive

intermediates (QUIN, TRP, PIC, KYN) produced in this

process has shown very promising results in clinical trials of

ALS (125, 142).
Targeting non-neuronal cells

The treatment of Treg in ALS patients and mouse models

slows disease progression (143). With the extension of the

survival time of the model mice, the amplification of Treg

levels infiltrated into the CNS which leads to the inhibition of

inflammatory activity of astrocytes and microglia. The

infiltration turned into a neuroprotective immune response.

The gene expression of neurotrophin in the spinal cord and

peripheral nerve increased significantly, increasing the

number of motor neurons retained in the spinal cord (90).

Further, safety and tolerance of Tregs infusion are two other

advantages for all patients, hence, this method is becoming an

effective strategy in anti-inflammatory therapy for ALS. By

releasing TGF and up-regulating Treg and T helper (Th) 2

cells, experimental therapy reported that mesenchymal stem

cells (MSCs) promoted the inflammatory balance of ALS
Frontiers in Immunology 13
pat i en ts f rom pro- inflammatory tox ic i ty to ant i -

inflammatory and neuroprotective state (144).
Conclusions and future directions

ALS is not only a pure neuronal degeneration disorder but is

also involved in glial cells that maintain neuronal stability and

peripheral immune cells that infiltrate the central nervous

system. In ALS, attention must be paid to inflammation in

both the CNS and peripheral NS. More specifically, attention

should be paid to the immune network composed of glial cells

and their derived molecules in the CNS, and inflammatory cells

and their derived molecules in the peripheral immune system.

This paper summarized the neuroinflammatory characteristics

of ALS, the expression of related inflammatory genes, the levels

of inflammatory molecules such as cytokines or APPs, and the

pathophysiological changes of different elements in various

stages of the disease. This may guide future research and the

therapeutic targeting of inflammatory markers in a new

direction (Table 5).

Identifying inflammatory pathways and targets related to the

progression of ALS, especially in patients selected according to

Chit1 or CRP levels, and potential anti-inflammatory therapy

may be of immense value. As ALS is a multi-factorial disease, it is

still particularly important to actively promote multi-drug and

multi-pathway combined therapy, while individualized and
TABLE 5 Anti-inflammatory therapeutic strategies of ALS G-CSF, Granulocyte colony stimulating factor; IL, Interleukin; IFN-g, Interferon gamma;
TNF, Tumor necrosis factor; Tregs, Regulatory T cells; VEGF, Vascular endothelial growth factor; QUIN=quinolinic acid, TRP, tryptophan, PIC,
picolinic acid; KYN= kynurenine; MSCs, mesenchymal stem cells.

Therapeutic approaches Description References

Targeting cytokines IL-6 Regulating the number of Tregs in the blood and reduces the level of pro-inflammatory cytokine
CXCL-1.

(52, 145)

IL-33 Regulation of peripheral T-cell delivery of anti-inflammatory effects, but sex-dependent anti-
inflammatory effects.

(86, 87)

G-CSF Regulation of inflammatory mediators and mobilization of hematopoietic stem cells to produce
neurotrophic factors

(55, 88, 146)

IFN-g Inhibit the process of neuroinflammation and delay the process of motor dysfunction in mice (89, 91)

TNF-a The survival time of mice was prolonged and the motor ability was enhanced, but there was no
beneficial effect on ALS patients.

(40, 51, 147)

Galectin-1 The treatment mechanism is vague and the treatment effect is contradictory. (11, 67)

VEGF Delay the degeneration of neurons, prolong the survival time of mice and improve motor function. (52, 69, 101)

Anti-inflammatory
therapy
For NP001

NP001 It has anti-inflammatory properties and the efficacy is dose-dependent, but it is not statistically
beneficial to the progress of ALS.

(78, 148)

Targeting the innate
immune system

miR-155 Inhibit the pro-inflammatory signal and abnormal protein expression of inflammatory cells, and then
prolong the survival time of mice.

(55, 104)

KP (QUIN、TRP、
PIC、KYN)

Improve the neuroinflammatory process of ALS and open a new door for anti-inflammatory therapy
of ALS.

(83, 105)

Targeting non-neuronal
cells

Tregs Inhibit the pro-inflammatory activity of cells and increase the expression of neurotrophic factors, so
as to slow down the progression of the disease.

(106, 108)

MSCs Activate anti-inflammatory activity and neuroprotective state to inject vitality into anti-inflammatory
therapy of ALS.

(102)
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accurate drug therapy for key immune factors should be

conducted in the future.
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et al. Soybean polar lipids differently impact adipose tissue inflammation and the
endotoxin transporters LBP and sCD14 in flaxseed vs. palm oil-rich diets. J Nutr
Biochem (2017) 43:116–24. doi: 10.1016/j.jnutbio.2017.02.004

112. Beers DR, Zhao W, Neal DW, Thonhoff JR, Thome AD, Faridar A, et al.
Elevated acute phase proteins reflect peripheral inflammation and disease severity
in patients with amyotrophic lateral sclerosis. Sci Rep (2020) 10(1):15295. doi:
10.1038/s41598-020-72247-5

113. Keizman D, Rogowski O, Berliner S, Ish-ShalomM, Maimon N, Nefussy B,
et al. Low-grade systemic inflammation in patients with amyotrophic lateral
sclerosis. Acta Neurolog Scand (2009) 119(6):383–9. doi: 10.1111/j.1600-
0404.2008.01112.x

114. Beers DR, Thonhoff JR, Faridar A, Thome AD, ZhaoW,Wen S, et al. Tregs
attenuate peripheral oxidative stress and acute phase proteins in ALS. Ann Neurol
(2022) 92(2):195–200. doi: 10.1002/ana.26375

115. Pronto-Laborinho AC, Gromicho M, Pereira M, Pinto S, Barros MDA,
Swash M, et al. Plasma level of club-cell (CC-16) predicts outcome in
amyotrophic lateral sclerosis. Acta Neurolog Scand (2018) 137(2):233–7. doi:
10.1111/ane.12851

116. Costa J, Streich L, Pinto S, Pronto-Laborinho A, Nimtz M, Conradt HS,
et al. Exploring cerebrospinal fluid IgG n-glycosylation as potential biomarker for
amyotrophic lateral sclerosis. Mol Neurobiol (2019) 56(8):5729–39. doi: 10.1007/
s12035-019-1482-9

117. Xu Z, Lee A, Nouwens A, Henderson RD, McCombe PA. Mass
spectrometry analysis of plasma from amyotrophic lateral sclerosis and control
subjects. Amyotrophic lateral sclerosis frontotemporal degeneration (2018) 19(5-
6):362–76. doi: 10.1080/21678421.2018.1433689

118. Mohanty L, Henderson RD, McCombe PA, Lee A. Levels of clusterin,
CD5L, ficolin-3, and gelsolin in ALS patients and controls. Amyotrophic lateral
sclerosis frontotemporal degeneration (2020) 21(7-8):631–4. doi: 10.1080/
21678421.2020.1779303

119. Cunha C, Santos C, Gomes C, Fernandes A, Correia AM, Sebastião AM,
et al. Downregulated glia interplay and increased miRNA-155 as promising
markers to track ALS at an early stage. Mol Neurobiol (2018) 55(5):4207–24.
doi: 10.1007/s12035-017-0631-2

120. Pinto S, Cunha C, Barbosa M, Vaz AR, Brites D. Exosomes from NSC-34
cells transfected with hSOD1-G93A are enriched in miR-124 and drive alterations
in microglia phenotype. Front Neurosci (2017) 11:273. doi: 10.3389/
fnins.2017.00273

121. Cunha C, Gomes C, Vaz AR, Brites D. Exploring new inflammatory
biomarkers and pathways during LPS-induced M1 polarization. Mediators
Inflamm (2016) 2016:6986175. doi: 10.1155/2016/6986175

122. Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G,
Fanek Z, et al. Targeting miR-155 restores abnormal microglia and attenuates
disease in SOD1 mice. Ann Neurol (2015) 77(1):75–99. doi: 10.1002/ana.24304

123. Braidy N, Grant R. Kynurenine pathway metabol ism and
neuroinflammatory disease. Neural Regener Res (2017) 12(1):39–42. doi:
10.4103/1673-5374.198971

124. Chen Y, Brew BJ, Guillemin GJ. Characterization of the kynurenine
pathway in NSC-34 cell line: implications for amyotrophic lateral sclerosis. J
Neurochem (2011) 118(5):816–25. doi: 10.1111/j.1471-4159.2010.07159.x

125. Chen Y, Stankovic R, Cullen KM, Meininger V, Garner B, Coggan S, et al.
The kynurenine pathway and inflammation in amyotrophic lateral sclerosis.
Neurotoxicity Res (2010) 18(2):132–42. doi: 10.1007/s12640-009-9129-7

126. Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, et al.
Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a
review. Cell Death Dis (2018) 9(3):348. doi: 10.1038/s41419-018-0379-2

127. Iłzecka J, Kocki T, Stelmasiak Z, Turski WA. Endogenous protectant
kynurenic acid in amyotrophic lateral sclerosis. Acta neurologica Scandinavica
(2003) 107(6):412–8. doi: 10.1034/j.1600-0404.2003.00076.x
Frontiers in Immunology 17
128. Edri-Brami M, Sharoni H, Hayoun D, Skutelsky L, Nemirovsky A,
Porgador A, et al. Development of stage-dependent glycans on the fc domains of
IgG antibodies of ALS animals. Exp Neurol (2015) 267:95–106. doi: 10.1016/
j.expneurol.2015.02.023

129. Nagano S, Satoh M, Sumi H, Fujimura H, Tohyama C, Yanagihara T, et al.
Reduction of metallothioneins promotes the disease expression of familial
amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur J Neurosci
(2001) 13(7):1363–70. doi: 10.1046/j.0953-816x.2001.01512.x

130. Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, et al. Method
for widespread microRNA-155 inhibition prolongs survival in ALS-model mice.
Hum Mol Genet (2013) 22(20):4127–35. doi: 10.1093/hmg/ddt261

131. Patin F, Baranek T, Vourc’h P, Nadal-Desbarats L, Goossens JF, Marouillat S,
et al. Combinedmetabolomics and transcriptomics approaches to assess the IL-6 blockade
as a therapeutic of ALS: Deleterious alteration of lipid metabolism. Neurother: J Am Soc
Exp NeuroTher (2016) 13(4):905–17. doi: 10.1007/s13311-016-0461-3

132. Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic
opportunities of interleukin-33 in the central nervous system. Front Immunol
(2021) 12:654626. doi: 10.3389/fimmu.2021.654626

133. Korhonen P, Pollari E, Kanninen KM, Savchenko E, Lehtonen Š,
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