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Retinitis pigmentosa (RP) is an important cause of irreversible blindness

worldwide and lacks effective treatment strategies. Although mutations are

the primary cause of RP, research over the past decades has shown that

neuroinflammation is an important cause of RP progression. Due to the

abnormal activation of immunity, continuous sterile inflammation results in

neuron loss and structural destruction. Therapies targeting inflammation have

shown their potential to attenuate photoreceptor degeneration in preclinical

models. Regardless of variations in genetic background, inflammatory

modulation is emerging as an important role in the treatment of RP. We

summarize the evidence for the role of inflammation in RP and mention

therapeutic strategies where available, focusing on the modulation of innate

immune signals, including TNFa signaling, TLR signaling, NLRP3 inflammasome

activation, chemokine signaling and JAK/STAT signaling. In addition, we

describe epigenetic regulation, the gut microbiome and herbal agents as

prospective treatment strategies for RP in recent advances.

KEYWORDS

retinal inflammation, innate immune, gut microbiome, trained immunity, epigenetic
modification, retinitis pigmentosa
1 Introduction

1.1 Retinal inflammation and RP

Retinitis pigmentosa (RP) is a category of inherited retinal dystrophies marked by

vision loss and, ultimately, blindness. More than 3000 mutations in over 80 distinct genes

or loci have been identified as causes of non-syndromic RP (1, 2). These mutations can be

transmitted in an autosomal-dominant, autosomal-recessive, or X-linked manner. There

are also syndromic forms of RP, such as Usher syndrome and Bardet-Biedl syndrome (3).

The prevalence of RP is reported to be 1/3,000 to 1/5,000 (https://www.orpha.net/consor/

cgi-bin/index.php?lng=EN). Early in the progression of RP, patients experience night

blindness and difficulty with dark adaptation. They gradually lose peripheral vision and
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develop tunnel vision as the disease advances, indicating the loss

of rod function. Cone involvement contributes to visual acuity

decline over time, and finally, typically in middle age, central

vision loss occurs (2). Due to its clinical and genetic

heterogeneity, RP has limited therapeutic options. It has long

been recognized that inflammation and immune responses are

associated with RP, and this theme has recently gained

increasing attention (4–6). Greater understanding of the

molecular processes driving RP inflammation is expected to

provide new therapeutic approaches independent of the

genetic background.

Inflammation activation is a prominent feature of RP. In RP,

inflammation is characterized by activation of the innate

immune system, including dysfunction of the immune barrier,

activation and infiltration of immune cells, and upregulation of

topical and peripheral inflammatory factors. Bone-spicule

pigmentation, attenuated retinal vessels and waxy pallor of the

optic disc are typical clinical manifestations of RP. In addition,

inflammatory cells are commonly observed in the vitreous due to

the collapse of the blood−retina barrier (BRB). Higher cell

density correlates with younger age and impaired visual

function (6). In addition, it has been reported that increased

aqueous flare in RP patients correlates closely with visual

function and the extent of global retinal degeneration (7–11).

Aqueous flare is generally seen in individuals with inflammatory

ocular disorders, indicating deficits of the blood–aqueous barrier

and inflammatory protein/cell leakage (12, 13). BRB disruption

begins early in the disease. Prior to the infiltration of

inflammatory cells and photoreceptor (PR) starvation, the

tight junctions of the retinal pigment epithelium (RPE) and

the retinal vasculature become leaky, thereby promoting the

formation of an inflammatory milieu and the degeneration of

PRs (14–17).

Microglia are essential components of the retinal innate

immune system and play a pivotal role in retinal inflammatory

responses. Gupta et al. reported that microglial activation is

engaged in human RP. With thinning of the PR layer, microglia

were observed to infiltrate degenerative foci; these microglia

were enlarged amoeboid cells containing rhodopsin-positive

cytoplasmic inclusions (18). Microglia promote retinal

inflammation via infiltration, phagocytosis, and secretion of

proinflammatory mediators, whereas genetic ablation or

inhibition of microglial phagocytosis ameliorates PR

degeneration in RP model mice (19).

Several studies (6, 20–22) have reported elevated levels of

inflammatory factors in serum, vitreous, and aqueous humor,

indicating a proactive inflammatory response in RP patients.

Immunologic disorders observed in patients with RP are

summarized in a previous work (23).

Animal models are essential for the study of RP (24, 25).

Activation of the immune system has been detected in various

rodent RP animal models (26–28). Due to this similarity, animal

models are indispensable for clarifying the pathogenesis of RP
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and developing treatments. Clinically, synthetic corticosteroids

with potent anti-inflammatory and immunosuppressive

properties are used in treatments for RP-related cystoid

macular edema (29). In RP models, it also works. In RCS and

rhodopsin mutant model S334ter-4 rats, fluocinolone acetonide

treatment markedly protects PR from degeneration and

suppresses microglial activity (30, 31). In combination with

polyamidoamine dendrimers, fluocinolone acetonide

selectively targets the microglia localized in the outer retina

where degeneration is ongoing (32). Dexamethasone

administration to rd10 mice reduces retinal inflammation,

restores cone structure and function, and preserves RPE

integrity by preserving ZO-1 density (15, 33).
1.2 Microglia and Müller glia in RP retinas

Microglial activation is a sign of neuroinflammation. Retinal

resident microglia arise from yolk sac erythromyeloid

progenitors, comprising 85% of total retina macrophages (34–

36). They colonize the developing retina during embryogenesis,

shape the retina by secreting neurotrophic factors, engulf and

eliminate unwanted neurons and synapses, and engage in

vascular development of the eye (37–39). In postnatal retinas,

microglia are maintained throughout life independent of

circulating monocytes and by self-renewal (34, 40, 41).

Microglia express a variety of receptors (e.g., CX3CR1, TLRs,

IL-1R, and TNFR) that allow them to detect environmental

changes and initiate the inflammatory signal cascade (42).

Microglia activation induces a robust inflammatory response,

including the release of proinflammatory factors, phagocytosis,

and inflammatory cell recruitment. Excessive microglial

phagocytosis contributes to local inflammation and

neurodegeneration (43, 44).

Classically, activated microglia were categorized into two

groups: M1 (classically activated) and M2 (alternatively

activated), with the belief that M1 microglia secrete

proinflammatory factors such as TNFa, IL-1b, IL-6, and

inducible nitric oxide synthase (iNOS) that fuel inflammation,

whereas M2 microglia produce anti-inflammatory cytokines

(e.g., IL-4, IL-10, IL-13, IL-18) that are beneficial for damage

repair (45). Recent research, however, suggests that the

microglial phenotype varies in response to environmental

changes (46).

In healthy retinas, microglia tile the inner and outer

plexiform layers without overlapping (37), where they are

ramified cells responsible for immune surveillance and

maintenance of synaptic structure and transmission (47–50).

In response to insults, microglia rapidly change into an

amoeboid appearance and migrate into lesion areas, removing

dead/dying neurons and neuronal debris while concurrently

releasing proinflammatory factors as well as protective

cytokines and trophic factors to repair damage and restore
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homeostasis (51), after which microglia recover to the “resting”

state; this process usually results in minimal retinal remodeling.

In RP retinas, initial mutation-driven PR degeneration

increases extracellular signal molecules (e.g., ATP, HSPs,

HMGB1, DNA, and many others) termed damage-associated

molecular patterns (DAMPs) (52–56). The “eat-me” signal,

phosphatidylserine, appears on stressed rods (19). Microglia

proliferate and infiltrate the PR layer and subretinal space,

where they function as reactive phagocytes, phagocytose dead

and stressed PRs, secrete proinflammatory cytokines (e.g., TNFa
and IL-1b) and chemokines (e.g., CCL2 and RANTES), and

recruit infiltrating immune cells (19, 24, 57, 58). Due to this

mutant genetic background, however, microglial activation

persists, and the continuous production of inflammatory and

cytotoxic factors exacerbates PR loss until the late stage, at which

point PRs mostly die and the retinal structure is severely

damaged (59).

Müller glia are another group of retinal cells engaged in

degeneration. Müller glia are retinal macroglia that provide

homeostasis, metabolism, and functional support for neurons

(60). Depending on the severity, the Müller glial response to

injury refers to reactive gliosis accompanied by Müller

proliferation or not. Reactive gliosis can be beneficial because

it releases protective factors such as neurotrophic factors,

whereas prolonged gliosis is detrimental and generally results

in neurodegeneration (61). Müller glia are potential modulators

of retinal inflammation. Upon BRB disruption, Müller glia

compensate for RPE deficiency by sealing the leaky choroid

and inducing claudin-5 expression (14). Müller glia share

characteristics with immune cells. Müller glia express multiple

cytokine receptors and are a major source of cytokines and

inflammatory factors (62). Proteomic evidence supports the

capacity of Müller glia for antigen presentation and

inflammatory signaling transduction in response to immune

stimulation (63, 64). Müller glia contribute to the phagocytic

clearance of dead PRs (65). Moreover, the interaction between

Müller glia and microglia modulates retinal inflammation and

degeneration (66–68).

As the predominant glial population of the retina, Müller

glia are abundant and widely distributed. Müller glia traverse the

thickness of the neuroretina structurally, allowing them to keep

touch with all types of retinal cells. Due to its neurotrophic

function and regeneration potential, the Müller cell has been

studied in a variety of degenerative retinal disorders (69). In

actuality, Müller glia are also intimately linked to retinal

inflammation. For more information about how Müller glia

interact with the innate immune system and monitor retinal

inflammation, we refer the reader to this article (70).

Complicated mechanisms are involved in the regulation of

retinal inflammation in RP. Microglia and Müller glia are major

cellular populations that express and modulate these signaling

pathways (Figure 1). Here, we review treatment strategies from

the perspective of inflammation management (Table 1), focus on
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molecular mechanisms related to immunomodulation, and

discuss new findings regarding epigenetic modification and the

gut microbiome as novel therapies for RP.
2 Mechanisms related to
inflammation in RP

2.1 TNFa signaling

Tumor necros i s f ac tor a (TNFa ) i s a s t rong

proinflammatory cytokine that plays vital roles in immune

modulation, cell proliferation, differentiation, and apoptosis.

TNFa is produced predominantly by T and innate immune

cells and is initially synthesized as transmembrane protein

(tmTNFa), a precursor that requires proteolytic cleavage by

TNFa-converting enzyme (also ADAM17) to release a soluble

form (sTNFa) (124). Both tmTNFa and sTNFa are implicated

in the inflammatory response.

TNFa initiates a signal cascade by binding to its receptors,

TNFR1 and TNFR2. TNFR1 is activated by both tmTNFa and

sTNFa, whereas TNFR2 is proposed to be fully activated

primarily by tmTNFa (125). Ligand binding to TNFR1

recruits the adaptor molecule TNFR1-associated death domain

protein, which then leads to the assembly of several signaling

complexes known as complexes I, IIa, IIb, and IIc. Complex I

formation stimulates nuclear factor kappa B (NF-kB) and

mitogen-activated protein kinases (MAPKs). Complex IIa and

IIb assembly activates caspase-8 and facilitates apoptosis,

and complex IIc formation activates the mixed lineage kinase

domain-like protein and induces necroptosis and inflammation.

TNFR2 stimulation activates NF-kB, MAPKs, and protein

kinase B (125).

TNFa is postulated to participate in the pathogenesis of RP

(74). TNFa and TNFR expression levels are elevated in the

retina of RP models and in the aqueous humor of RP patients

(24, 74, 126–128); microglia (129) and Müller glia (130, 131) are

the primary cellular sources of TNFa. TNFa signaling has been

found to mediate PR death via RIP1/3-related necrosis and

caspase3/7-dependent apoptosis, in addition to triggering

proinflammatory signaling in the RP retina (73, 126).
2.1.1 NGF receptor and TNFa production
Increased TNFa expression in the retina is linked to nerve

growth factor (NGF) receptor activation. Müller glia in

rhodopsin mutant RP model RHOP347S mice upregulate the

expression of TrkC. T1, a truncated TrkC receptor isoform, and

its ligand NT-3. TrkC.T1 increases local TNFa production by

activating MAPK/Erk, ultimately leading to PR death. This

process can be reversed by genetic knockdown of TrkC.T1,

TrkC antagonism, or MAPK/Erk inhibition (71). Similarly,

TrkC.T1 knockout (KO) and TrkC inhibition increased retinal
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ganglion cell survival in a mouse model of glaucoma by reducing

TNFa production (132), implying that TrkC.T1 is upstream

of TNFa.
It has been reported that microglia-derived proNGF

facilitates PR death via p75NTR (133), proNGF binding to

p75NTR in Müller glia induces robust expression of TNFa
and TNFa-dependent neuron death in rodent retina (131,
Frontiers in Immunology 04
134), the expression levels of proNGF and p75NTR are

increased in the retina of rd10 at early degenerative stages,

pharmacological antagonism of p75NTR with THX-B ((1,3-

diisopropyl-1-[2-(1,3-dimethyl-2,6-dioxo-1,2,3,6tetrahydro-

purin-7-yl)-acetyl]-urea)) affords neuroprotection to PRs, and

the treatment also mediates reduction of TNFa production,

microglial activation, and reactive gliosis (72).
FIGURE 1

Inflammatory signals between photoreceptor, microglia, and Müller glia. Damaged or dying photoreceptors release signal molecules that
stimulate the activation of microglia and Müller glia. In Müller glia, activation of NFGR promotes TNFa production; Edn2 binds to Ednrb
promotes LIF transcription; LIF binding to gp130 activates the JAK2/STAT3 pathway, which promotes Müller glial neuroprotection; IL-1b binding
to IL-1R1 interferes with glutamate conversion into glutamine, resulting in elevated extracellular glutamate concentration. In microglia, activation
of JAK2/STAT3 signaling stimulates the release of inflammatory molecules. SOCS1/SOCS3 act as negative feedback factors of JAK/STAT
pathway; AG490 specifically inhibits JAK2. Ligands-binding to TNFR, IL-1R, and TLR stimulates NF-kB signaling cascades, promoting
transcription of inflammatory genes including NLRP3, pro-IL-1b, and pro-IL-18; ATP stimulates K+ efflux via P2X7R, promoting NLRP3
inflammasome activation and the release of active caspase-1, mature IL-1b, and IL-18. Biological agents like infliximab and adalimumab provide
neuroprotection by neutralizing TNFa. Anakinra blocks the biologic activity of IL-1b. AMWAP prevents NF-kB translocating into the nucleus by
inhibiting IkBa degradation. NAC suppresses the activation of NLRP3. BBG and PPADS reduce the activation of the NLRP3 inflammasome via
inhibiting P2X7R signaling. AMWAP, activated microglia/macrophage WAP domain protein; ASC, apoptosis-associated speck-like protein
containing a CARD; ATP, adenosine triphosphate; BBG, Brilliant Blue G; CCL2, C-C Motif Chemokine Ligand 2; DAMPs, damage-associated
molecular patterns; Edn2, endothelin 2; Ednrb, endothelin receptor B; HMGB1, High-mobility group box-1; HSP, heat shock protein; JAK, janus
kinase; LIF, leukemia inhibitory factor; MyD88, myeloid differentiation primary response 88; NAC, N-acetylcysteine; PPADS, pyridoxal-
phosphate-6-azophenyl-2’,4’-disulfonic acid; proNGF, pro-nerve growth factor; p75NTR, p75 neurotrophin receptor; STAT, signal transducer
and activator of transcription; TNFR, Tumor necrosis factor receptor; TRADD, TNFR1-associated death domain protein; TRAF, TNF receptor
associated factor; TLR, Toll-like receptors; TRIF, TIR-domain-containing adaptor-inducing interferon-b; xCT, core subunit of the cystine/
glutamate transporter system xc-; IRAK, Interleukin-1 receptor-associated kinase.
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TABLE 1 Treatments for retinitis pigmentosa and related mechanisms.

Mechanism Approach Gene/molecule/
agent

Effect Model Ref.

TNFa signal Genetic KD
TrkC
antagonism

TrkC.T1
KB1368

Suppress p-ERK activation and TNFa production RHOP347S mouse (71)

p75NTR
antagonism

THX-B Inhibit reactive gliosis and TNFa secretion Rd10, RHOP347S mouse (72)

Genetic KD Tnfa Decrease proinflammatory factors (IL-1b, IL-6, IL-17, RANTES, CCL2)
as well anti-inflammatory factor (IL-10 and IL-13)

T17MRHO mouse (73)

TNFa
blockade

Infliximab Decrease caspase-3 activation and reactive gliosis Zaprinast-induced
degeneration of porcine
retina

(74)

Adalimumab Decrease PARP activation, microglia activation and NLRP3
inflammasome activation

Rd10 mouse (25,
75)

TLR signal Genetic KO Tlr2 Suppress microglial activation and infiltration Rd10, P23H mouse (76)

Genetic KO Tlr4 Reduce CCL2 expression, microglia activation and gliosis LD Abca4-/- Rdh8-/- mouse (77)

Microglia
inhibition

Minocycline Suppress microglial activation and migration P23H-1, RCS rat, Prph2 Rd2/

Rd2 mouse
(78,
79)

Minocycline Decrease microglia activation and proinflammatory gene transduction LD mouse retina (80,
81)

Minocycline Decrease microglia activation and proinflammatory molecule expression Rd10 mouse (82)

Genetic KO Myd88 Reduce chemokine (CCL2, CCL4, CCL7 and CXCL10) expression and
microglial activation

Rd1 mouse (83)

MyD88
inhibition

MyD88 inhibitor
peptide

Suppress microglia infiltration, increase neuroprotective microglia,
expression of MCP-1, IL-27 and crystalline

Rd10 mouse (84,
85)

AMWAP
supplement

AMWAP Blockade TLR-mediated NF-kB activation 661W cell-microglia co-
culture

(86)

NLRP3 signal NLRP3
inhibition

N-acetylcysteine Decrease NLRP3 expression and microglial infiltration Rd10 mouse, P23H rat (24,
87)

P2X7R
blockade

PPADS Promote photoreceptor survival Rd1 mouse (88)

BBG Decrease inflammasome components (NLRP3, cleaved caspase-1 and
mature IL-1b proteins)

P23H rat (87)

IL-1b
blockade

Anakinra Reduce photoreceptor apoptosis Rd10 mouse (19)

CX3CL1/
CX3CR1

CX3CL1
supplement

CX3CL1 Decrease microglial infiltration, phagocytosis and activation Rd10 mouse (89)

AAV8-sCX3CL1 Improve cone survival Rd1, rd10 and rhodopsin
null mouse

(90)

Norgestrel Upregulate CX3CL1/CX3CR1 signal Rd10 mouse (91,
92)

CCL2/CCR2 CCR2
inhibition

Lecithin-bound iodine
Minocycline

Suppress CCR2 positive macrophage invasion Mertk mouse (93,
94)

Genetic KO Ccr2 Reduce apoptosis Rd10 (95)

Ccl2/Ccl3 Reduce retinal inflammation Mertk mouse (96)

Genetic KD CCL2 siRNA Decrease monocyte/microglia infiltration LD rat retina (97)

JAK/STAT
pathway

JAK/STAT
inhibition

AG490 Improve PR survival LD mouse retina (98)

OECs transplantation Inhibit JAK2/STAT3 activity and increase SOCS3 RCS rat (99)

JAK/STAT
activation

pMSC-RPCs
transplantation

Activate JAK/STAT, improve retinal structure and function Rd12 (100)

CNTF
supplement

rAAV2/2-hCNTF Upregulate STAT3, SOCS3, SOCS5 and complement factor (C3, C4a,
Cfb) expression

Rhodopsin null mouse (101)

LV-hCNTF Stimulate expression of LIF, Edn2; activate gp130/JAK/STAT Rds/peripherin P216L
transgenic mice

(102)

(Continued)
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2.1.2 TNFa inhibition
TNFa knockdown in the T17M rhodopsin mutant mouse

model reduces PR death and PR-related functional loss, and this

neuroprotective effect is associated with reductions in

proinflammatory cytokines (IL-1b, IL-6, IL-17, RANTES) and
chemokines (CCL2) (73).

Infliximab and adalimumab are biological TNFa inhibitors

approved for treating inflammatory disorders such as Crohn’s

disease, ulcerative colitis, rheumatoid arthritis, plaque psoriasis,

and uveitis (125, 135). By lowering the expression of TNFR1 and

caspase-3 activity, infliximab alleviated retinal degeneration

induced by PDE6 inhibition in cultured porcine retina (74,

127). Adalimumab administered intraperitoneally or topically

improved PR survival while decreasing microglial activation and

reactive gliosis in the rd10 retina. Inhibition of PARP and RIPK
Frontiers in Immunology 06
signaling, as well as NLRP3 inflammasome assembly, are

mechanisms involved in this protective response (25, 75).

2.1.3 Protective effects of TNF signaling
Notably, TNFa KO retinas tend to express both pro- and

anti-inflammatory factors at reduced levels when compared with

controls (73), implying that removing TNFa would also damage

the immune system’s defenses. Recent work by Kuhn et al.

established that TNFa, in collaboration with TNFR1, TNFR2,

and p75NTR, induces signals that are indispensable for neural

development and that disturbances to TNFR family signaling

result in unhealthy axonal development (136).

ADAM17 regulates the expression of TNFa as well as the

receptor TNFR (124). Muliyil et al. reported that ADAM17 and

soluble TNF mediate a novel cytoprotective pathway in
TABLE 1 Continued

Mechanism Approach Gene/molecule/
agent

Effect Model Ref.

LIF Activate STAT3, improves PR survival LD mouse retina (103)

Epigenetic
modification

HDACi Trichostatin A Decrease activity of PARP, preserve cone survival Rd1, rd10 mouse (104,
105)

Tubastatin A Improve cone survival, alter expression about ubiquitin-proteasome,
phototransduction, metabolism and phagosome

Zebrafish, atp6v0e1(-/-)
zebrafish, rd10 mouse

(106,
107)

Romidepsin Inhibit transcription of inflammatory genes and inflammation Rd10 mouse (108)

Valproic acid Protection varies with genotype (109,
110)

BET
inhibition

JQ1 Suppress microglial proliferation, migration, and cytokine production Rd10 mouse (111)

LSD1
inhibition

Tranylcypromine;
GSK2879552

Inhibit transcription of inflammatory genes and inflammation Rd10 mouse (108)

H3K27me3
inhibition

DZNep Improve PR survival Rd1 mouse (112)

miRNA
inhibition

AAV-miRNA
modulator of miR-
6937

Improve ONL thickness and ERG response Rd10 mouse (113)

miRNA
supplement

AAV- miR-204 Suppress microglia activation RHO-P347S mouse (114)

Herbal agent Curcumin Inhibit microglia activation and expression of CCL2, TIMP-1, improves
retinal morphology

Rd1 mouse, P23H rat (115,
116)

Lyceum barbarum
polysaccharides

Inhibit NF-kB and HIF-1a expression Rd1, rd10 (117,
118)

Zeaxanthin
dipalmitate

Inhibit STAT3, CCL2, MAPK pathways Rd10 mouse (119)

Saffron P2X7R signaling blockade, decrease vascular disruption ATP-induced PR death,
P23H rat

(120,
121)

Resveratrol Downregulate microglial migratory, phagocytic, and proinflammatory
cytokine production

Microglia-mediated 661W
death

(122)

JC19 Improve PR survival, sirtuin1 activation may be the protective
mechanism

Rd10 mouse (123)
frontiers
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Drosophila. Loss of ADAM17 or TNF/TNFR signaling drives the

accumulation of lipid droplets and degeneration in the

Drosophila retina, whereas restoration of ADAM17 or TNF/

TNFR in glia is sufficient to rescue the degeneration phenotype.

TNF and TNFR are explicitly needed in glia; loss of either in glia,

but not neurons, leads to the accumulation of lipid droplets.

Furthermore, inactivation of ADAM17 in human iPSC-derived

microglia similarly induces aberrant lipid droplet accumulation

and mitochondrial reactive oxygen species generation (137),

indicating that comparable processes in which TNF works not

as an inflammatory trigger but as a trophic survival factor (137)

may also be involved in the mammalian retina.

Benoot et al. evaluated the numerous contradictory findings

of TNFa application in lung cancer (138), bringing to our

awareness the varied functions of various TNF family

members and the positive impacts of TNF signaling. Modern

genomic, transcriptomic, and proteomic techniques are useful

for identifying signaling events and molecules in signal

transduction (139, 140). Tanzer et al. (141) discussed in detail

how modern proteomic approaches offer a novel perspective on

TNF signaling.

Currently, the precise mechanisms of TNFa synthesis

remain obscure. Future investigation of TNFa signaling

requires the power of new technology, and the potential

protective function of TNFa merits greater consideration.

2.1.4 TNFa and microglia-Müller
glia interaction

Müller glia exposed to activated microglia modify the

expression of a variety of signaling molecules, including (1)

elevation of growth factors such as GDNF and leukemia

inhibitory factor (LIF), (2) enhanced proinflammatory factor

production, and (3) overexpression of chemokines and adhesion

proteins (142). TNFa is the most prevalent cytokine produced

by reactive microglia, and it stimulates LIF expression in Müller

glia in a p38MAPK-dependent manner. Inhibition of p38 MAPK

activity lowered LIF expression and accelerated PR mortality in

light-damaged retinas (143), similar to previous reports that

TNFa prevents cell death by activating the JAK/STAT3 pathway

through the IL-6 receptor (144). When TNFa stimuli engage

previously activated Müller glia, however, inducible cytokines

consisting of more proinflammatory cytokines (TNFa, iNOS,
IL-6) and less LIF are produced (145). In other words, depending

on the type and degree of stimuli, Müller glia activation

generates both neuroprotective and proinflammatory

responses, and Müller glia under continuous stimulation are

likely to exhibit a detrimental phenotype.
2.2 TLR signaling

Toll-like receptors (TLRs) are a class of pattern recognition

receptors (PRRs) responsible for identifying pathogen-
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associated molecular patterns (PAMPs) and DAMPs and

mediating immune responses; the generation of PAMPs or

DAMPs prompts pathogen invasion or tissue injury. TLR

expression is conserved among species, and to date, 10 TLRs

(TLR1–10) in humans and 12 TLRs (TLR1–9 and TLR11–13) in

mice have been described. TLRs are predominantly but not

exclusively expressed on immune cells (146–148).

TLRs serve as the first line of defense for the innate immune

system. Upon recognition of DAMPs or PAMPs, TLRs dimerize

and initiate recruitment of Toll/IL-1 receptor (TIR) domain-

containing adaptor molecules, including myeloid differentiation

primary response 88 (MyD88), TIR-domain-containing

adaptor-inducing interferon-b (TRIF), MyD88 adaptor-like

protein (Mal), and TRIF-related adaptor molecule (TRAM),

thereby initiating intracellular signaling cascades: the MyD88-

or TRIF-dependent pathways (146). TLR activation facilitates

the transduction of NF-kB and MAPK (149–151), as well as the

release of proinflammatory cytokines (TNFa, IL-6, IL-1b, and
IFNb), chemokines, and cluster of differentiation 80 (CD80),

CD86, CD40, and major histocompatibility complex class

II (146).

Activation of TLR signaling has been shown to worsen

inflammation and accelerate the course of RP (77, 152, 153).

Microglia highly express TLRs (154), and TLR activation in the

retina facilitates microglial activation and infiltration (77, 155).

Moreover, microglia in the rd1 retina undergo RIP1/RIP3-

dependent necroptosis mediated by TLR4 activation, which

amplifies retinal inflammation and destruction with large

amounts of proinflammatory cytokines (TNFa and

CCL2) (152).
2.2.1 DAMPs activate TLRs in RP
High-mobility group box-1 (HMGB1) is a proinflammatory

factor and DAMP released by dying cells or activated

macrophages that mediates the immune response via PRRs

(156–158). HMGB1 stimulates an inflammatory response in

diabetic retinopathy through TLR4/NF-kB signaling (159).

Increased levels of HMGB1 were detected in the vitreous of

patients with RP, along with the presence of necrotic enlarged

cone cells (53). In cultured cone-like 661W cells, recombinant

HMGB1 treatment induces apoptosis and upregulates the

expression of IL-6 and TNFa (160), and external HMGB1

induces retinal ganglion cell death via TLR2/4 signaling (161),

whereas HMGB1 inhibition or neutralization attenuates the

inflammatory response and promotes retinal neuron survival

(162, 163).
2.2.2 TLR blockade
Upregulation of Tlr2, Il1b, Myd88 and Tirap was found in

RP model rd10 and P23H mice, demonstrating TLR activation

involvement in RP-associated retinal degeneration. Genetic

deletion of TLR2 alleviated PR loss and vision impairment in
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both models (76). Similarly, in a light-induced retinal

degeneration model, genetic TLR4 deletion reduced retinal

inflammation and degeneration (77). Minocycline is an

effective microglial inhibitor. In inherited and induced RP

models, minocycline administration decreased microglial

infiltration and proinflammatory molecule expression and

promoted PR survival and functional retention (78–82).

Minocycline treatment suppresses MAPK and NF-kB signaling

in LPS-stimulated microglia (164), and it has been ascertained

that minocycline prevents microglial activation by inhibiting

TLR2 (165, 166) and TLR4 (167) signaling.

2.2.3 MyD88
Most TLRs (except for TLR3) use MyD88 as a downstream

adaptor protein; moreover, MyD88 is a component of the IL-1R

signaling cascade (168, 169). MyD88 features a death domain

and a TIR domain. Upon TLR/IL-1R ligation, MyD88 is

recruited to the receptor and interacts with IRAK2/4 through

their death domains, which activates NF-kB, activator protein-1,
and interferon regulatory factors (169).

MyD88 KO mice display attenuated immune responses and

are unable to produce normal levels of inflammatory cytokines

(170). This diminished immune response preserved PR survival

and retinal function during degeneration in rd1 mice lacking

MyD88 (83). Similarly, pharmacologic inhibition of MyD88 in

rd10 mice with MyD88 inhibitor peptide reduced PR apoptosis

and improved rod-related function; treatment also lowered the

number of microglia in the PR layer and increased microglia/

macrophage expression of the neuroprotective marker Arg1

(84). Further proteomic analysis demonstrated that treatment

with such MyD88 inhibitor peptides boosted crystalline

expression, suggesting that MyD88 inhibition may also

enhance intrinsic tissue-protective mechanisms (85).

2.2.4 AMWAP
Activated microglia/macrophage WAP domain protein

(AMWAP), secreted by reactive microglia, is a hallmark of

microglial activation. While AMWAP overexpression in

microglia lowers the production of proinflammatory factors

such as IL-6, iNOS, CCL2, CASP11, and TNFa, extracellular
AMWAP endocytosed by microglia inhibits TLR2- and TLR4-

induced NF-kB translocation by preventing IRAK-1 and IkBa
proteolysis (86). AMWAP administration lowers the apoptosis

of 661w cone-like cells treated with microglia-conditioned

medium (86), indicating that AMWAP is a potential self-

modulator of TLR signaling in microglia.

The TLR signaling pathway plays a fundamental role in

inflammatory and immune responses. Molecules released from

injured neurons induce an intracellular signaling cascade

through TLR/MyD88, contributing to further retinal damage.

Blockage of TLR/MyD88 alleviates RP by reducing

inflammatory responses and enhancing protective effects.
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2.3 NLRP3 inflammasome activation

Inflammasomes are cytosolic multiprotein complexes that

facilitate the release of mature IL-1b, IL-18, and cleaved caspase-
1. The intracellular PRRs, NOD-like receptors (NLRs), are

important components of the inflammasome complex. Some

NLRs oligomerize upon activation to form multiprotein

complexes that function as caspase-1-activating scaffolds (171).

NLRP3 is the most well-studied NLR; NLRP3 inflammasome

assembly requires two signals: a priming signal that activates

NF-kB, followed by transcription of NLRP3, pro-IL-1b, and pro-
IL-18. A second activation signal facilitates the recruitment and

oligomerization of NLRP3, adaptor protein ASC (apoptosis-

associated speck-like protein containing a CARD), and pro-

caspase-1. Once the inflammasome is assembled, it stimulates

pro-caspase-1 self-cleavage and activation, and cleaved caspase-

1 catalyzes pro-IL-1b and pro-IL-18 maturation and induces the

release of their mature forms. The recognition of DAMPs or

PAMPs that act through PRRs such as TLRs or cytokines that act

through particular receptors (TNFR, IL-1R) exemplifies the

priming signal. The activation signal encompasses a wide

range of stimuli, including ion flux (K+, Cl-, Ca2+), lysosomal

instability, mitochondrial dysfunction, reactive oxygen species

generation, and trans-Golgi disassembly, with K+ efflux being

the upstream event in almost all NLRP3 activations (172, 173).

Inflammasome activation initiates the host’s defense

response to endogenous or external damaging stimuli and aids

in homeostasis maintenance. Nevertheless , chronic

inflammasome activation and the subsequent overproduction

of caspase-1, IL-1b, and IL-18 can be detrimental.

Canine models of RP upregulate NLRP3 inflammasome-

related genes (26). NLRP3 was detected in cone PRs and one-

third of reactive microglia in P23H rhodopsin mutant retinas,

which also upregulates the expression of mature IL-1b and IL-

18, as well as cleaved caspase-1, indicating inflammasome

activation during retinal degeneration. In rd10 mice,

administration of the antioxidant N-acetylcysteine prevented

PR loss and suppressed inflammatory factors and microglial

activation (24). Studies conducted on P23H mice demonstrated

that N-acetylcysteine lowered NLRP3 expression by 50% and

decreased microglial infiltration, hence improving cone survival

and retinal function (87).

2.3.1 P2X7R
The purinergic receptor P2X7R is an adenosine triphosphate

(ATP)-gated ion channel and a well-known inflammasome

activator that can enhance the expression of the NLRP3

inflammasome in microglia (174). By inducing K+ efflux,

ATP-mediated P2X7R act ivat ion promotes NLRP3

inflammasome activation (173).

ATP is abundant in PRs as an energy source and

neurotransmitter. During retinal degeneration, ATP leaches
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from dying PRs and activates P2X7R (175). Intravitreal injection

of PPADS (pyridoxal-phosphate-6-azophenyl-2’,4’-disulfonic

acid), a purinergic antagonist, lowers PR loss in rd1 mice (88).

In contrast, intravitreal administration of ATP to WT (wild-

type) retinas induces PR degeneration similar to that in the

P23H RP model (176), whereas treatment with the selective

P2X7R inhibitor BBG (Brilliant Blue G) protects against this

ATP-mediated PR apoptosis (177). BBG therapy also reduced

inflammasome components (NLRP3, cleaved caspase-1 and

mature IL-1b proteins) in P23H retinas (87).

In the absence of extracellular ATP, P2X7R functions as a

scavenger receptor that governs microglial clearance of

extracellular debris, whereas P2X7R overactivation triggers

NLRP3 inflammasome activation by provoking lysosomal

instability. Lowering extracellular ATP levels may have the

dual benefit of enhancing phagocytosis while decreasing

inflammation (178).

2.3.2 IL-1b
IL-1b is a key product of NLRP3 inflammasome activation

and a potent immunomodulation factor that orchestrates

inflammatory and host defense responses (172, 179). IL-1b
signals through IL-1R1. IL-1b binding to IL-1R1 stimulates

pathways such as NF-kB, p38, JNKs, ERKs, and MAPKs,

facilitating inflammatory cell recruitment and local/systemic

inflammatory responses (180). Appropriate IL-1b/IL-1R1
signaling is required for a host’s defensive response to

infections, whereas excessive IL-1b signaling is seen in a

variety of hereditary and nonhereditary autoinflammatory

disorders. IL-1b activity is endogenously regulated by IL-1R2

and IL-1Ra; IL-1R2 is a decoy receptor that sequesters the IL-1b
signal, while IL-1Ra blocks IL-1b by competitively binding to IL-

1R1 (180).

Intravitreal delivery of exogenous IL-1b triggered an

immediate inflammatory response in the retina, including

leukocyte recruitment and BRB destruction (181). However,

IL-1b does not trigger PR death directly, as IL-1R1 expression

is low in PRs. Through IL-1R1 expressed on Müller glia, IL-1b
drives glutamate excitotoxicity-induced rod PR loss. The IL-1b/
IL-1R1 signal disrupts the process of glutamate conversion into

glutamine in Müller glia, resulting in an increased intracellular

glutamate concentration, and upregulates xCT (the core subunit

of the cystine/glutamate transporter system xc-) expression,

which facilitates glutamate release into the extracellular space.

Furthermore, IL-1b upregulates the expression of the ionotropic

glutamate receptor in retinal neurons, which may increase

neuronal vulnerability to glutamate excitotoxicity (182).

Infiltrating microglia in the rd10 retina upregulate the

expression of IL-1b (19) and block IL-1b signaling using

anakinra, a commercially available recombinant IL-1Ra that is

fully active in blocking IL-1R1 (183), which reduces PR

apoptosis and preserves outer nuclear layer thickness in rd10
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animals (19). In contrast, Todd et al. (184) demonstrated that IL-

1b expressed by reactive microglia provides neuroprotection via

IL-1R1 expressed on astrocytes in another mouse model of

NMDA-induced retinal degeneration. Despite the use of

different models, we were able to determine that IL-1b acts on

the surface receptors of distinct glial cells and has varying effects

on PR survival.
2.4 Chemokine signaling

2.4.1 CX3CL1/CX3CR1
CX3CR1 expression in the central nervous system (CNS) is

considered to be restricted to microglia, and the expression of its

sole ligand, CX3CL1 (also known as fractalkine), is confined to

certain neurons (185). CX3CL1/CX3CR1 signaling facilitates the

interaction between neurons and glia and plays a vital role in

CNS neuroinflammation (186, 187).

CX3CL1/CX3CR1 signaling contributes to normal

microglial and PR function. CX3CR1 signaling governs the

dynamic activity of retinal microglia (188). Microglial ablation

and repopulation in the mouse retina have shown that microglial

recruitment is regulated by CX3CL1/CX3CR1 signaling (40),

and Müller glia augment microglial migration and infiltration by

increasing CX3CL1 secretion and microglial CX3CR1

expression (68). In addition, CX3CR1 signaling is required for

retinal neuron growth, as CX3CR1-deficient retinas have shorter

outer segments and diminished cone-related retinal

function (189).

CX3CL1/CX3CR1 signaling affects microglial homeostasis

by modulating the inflammatory response and phagocytosis.

Increasing CX3CL1/CX3CR1 signaling in RP retinas could be

beneficial. CX3CR1 deficiency impairs microglial phagocytic

clearance of neurotoxic species. Reportedly, CX3CL1 signaling

enhances microglial erythrophagocytosis through the CD163/

HO-1 axis (190), whereas CX3CR1 KO weakens microglial

phagocytosis to b-amyloid and mediates lysosomal

dysfunction, resulting in an escalation of neuroinflammation

due to b-amyloid accumulation (191).

CX3CR1 deficiency enhances the inflammatory response of

microglia. CX3CR1-deficient microglia exhibit greater

neurotoxicity (192), and CX3CR1-deficient microglia have an

elevated amount of surface P2X7R, which increases IL-1b
maturation and release (193). CX3CR1 deletion in microglia-

like cells generated from human iPSCs induced enhanced

inflammatory responses to LPS stimuli and phagocytic activity

to fluorescent beads (194). Loss of CX3CR1 signaling in young

animals resulted in a microglial transcriptome similar to that of

aged mice, with dysregulated expression of genes related to

immune function (195).

CX3CL1 expression is downregulated in rd10 retina before

the onset of primary rod degeneration (196), and CX3CR1 KO
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in rd10 mice increases microglial infiltration and phagocytosis,

as well as the generation of pro-inflammatory cytokines, which

accelerates PR loss (82, 89), whereas exogenous CX3CL1

supplementation preserves morphology and function (89).

CX3CL1 has been shown to deactivate microglia by blocking

the NF-kB pathway and activating the Nrf2 pathway (197). A

norgestrel-supplemented diet protected rd10 retinas from PR

degeneration, and this protection was achieved by the

upregulation of CX3CL1/CX3CR1 signaling and the reduction

of proinflammatory cytokine production (91, 92).

Recent work by Wang et al . demonstrated that

overexpression of soluble CX3CL1 via AAV8 prolongs cone

survival and improves cone-related visual function in RP model

rd1 and rd10 mice. This therapeutic effect is restricted to cone

PRs, has no effect on microglial activity or inflammatory factor

levels and is not even dependent on the presence of a normal

number of microglia (90). In light of this, further research is

needed to determine whether CX3CL1 action in the retina is

limited to microglia or whether other pathways exist.
2.4.2 CCL2/CCR2
Part of the evidence suggests that CCL2/CCR2 signaling is

detrimental, as inhibition of CCL2/CCR2 signaling attenuates

microglial activity and degeneration in RP (95–97). CCL2 is

highly expressed by stressed PRs, activated microglia, and Müller

glia in degenerating retina (95, 198, 199). By binding to its receptor,

CCR2, which is expressed on peripheral mononuclear phagocytes,

mediates the influx of circulating monocytes into inflamed retinas

(200). Using fluorescent protein-labeled Mertk (-/-) Cx3cr1 (GFP/+)

Ccr2 (RFP/+) mice, Kohno H and colleagues demonstrated that

both minocycline and lecithin-bound iodine (LBI) ameliorate

PR death by inhibiting CCL2/CCR2 signaling (93, 94).

Meanwhile, constitutive expression of CX3CR1 in the retina

represses CCL2 expression and the recruitment of neurotoxic

inflammatory CCR2+ monocytes (201).

However, there is evidence that CCL2 signaling may have a

protective role in the degradation of RP. In a light-induced

mouse model of degeneration, blocking CCL2/CCR2 signaling

decreased infiltrating monocytes but had no effect on the rate of

retinal thinning (198). Alde-Low EPCs (low aldehyde

dehydrogenase activity endothelial progenitor cells)

transplantation therapy rescued vasculature and PRs in rd1

mice, and CCL2 secreted by Alde-Low EPCs recruited a

subpopulation of monocyte-derived macrophages that highly

expressed CCR2 and the neuroprotective factors TGF-b, IGF-1
and IL-10 (202). In brief, induction of CCL2 expression by Alde-

Low EPCs in rd1 retinas resulted in the recruitment of

neuroprotective macrophages.

It is apparent that CCL2/CCR2 signaling mediates the

recruitment of monocyte-derived macrophages in the

degenerating retina, but it remains to be determined whether

these recruited cells are beneficial or detrimental.
Frontiers in Immunology 10
2.5 JAK/STAT signaling

The JAK/STAT signaling pathway is a ubiquitously

expressed intracellular signal transduction system implicated

in a wide range of biological functions. Various ligands,

including cytokines, growth hormones, growth factors, and

their receptors, can activate the JAK/STAT pathway (203).

Briefly, ligand binding to specific receptors induces receptor

multimerization and JAK activation, activated JAKs

phosphorylate the receptors, activate and phosphorylate their

primary substrate STAT, and phosphorylated STAT dimerizes

and translocates into the nucleus, where it binds to particular

regions to either activate or inhibit the transcription of target

genes. Suppressor of cytokine signaling (SOCS) is a negative

modulator of JAK/STAT signaling, and its expression is

promoted by stimulation of JAK/STAT signaling (203, 204).

Numerous studies on the JAK/STAT pathway have revealed its

significance in neoplastic and inflammatory disorders (203, 205).

2.5.1 JAK/STAT and microglia-
associated inflammation

Expression and activation of STAT proteins are implicated

in the plasticity of the retina during embryonic and postnatal

stages (206), and mice deficient in SOCS1/STAT1 develop severe

ocular illnesses with massive inflammatory cell infiltration (207).

STAT signaling plays a central role in the degeneration of the

rd10 retina, as evidenced by proteomic profiling (208).

Furthermore, activation of JAK/STAT signaling was also

observed in the retinas of light-induced and inherited (rd1 and

VPP mouse) RP animal models (98, 209).

AG490 is a JAK2-specific inhibitor that suppresses

microglial activation and the production of inflammatory

factors such as TNFa and IL-6 by reducing STAT3

phosphorylation (210). AG490 induces M2-type microglial

polarization by blocking JAK2/STAT3 signaling in acute

paraquat exposure-induced microglial activation (211). In

light-damaged retinas, AG490 treatment decreased JAK and

STAT phosphorylation as well as PR apoptosis (98).

Olfactory ensheathing cell (OEC) transplantation improved

retinal function in RCS rats. OEC treatment dramatically

reduced active resident microglia/infiltrated macrophages and

the release of proinflammatory cytokines while increasing anti-

inflammatory cytokines in the transplantation area. This

neuroprotection appears to be mediated in part by increased

SOCS3 expression and decreased JAK2/STAT3 activity.

Coculture of OECs with the BV2 microglial cell line revealed a

shift in microglial cytokine release toward an anti-inflammatory

pattern (99). According to the literature, SOCS3-deficient

microglia display increased phagocytic activity (212), whereas

elevated SOCS3 expression in microglia decreases GM-CSF/

IFN-g-driven inflammatory responses by blocking the activities

of JAK1 and JAK2 through its KIR domain (213). In addition,
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increasing SOCS1 signaling with SOCS1-KIR, a SOCS1 mimetic

peptide, suppressed the recruitment of inflammatory cells into

the retina and stimulated IL-10 production (214).

Multiple jakinibs (JAK inhibitors) are approved for the

c l i n i c a l managemen t o f ma l i gnancy , rheumat i c ,

lymphoproliferative, and inflammatory diseases, and most

recently, coronavirus disease 2019 (205), but their efficacy in

the treatment of RP has not been evaluated.
2.5.2 JAK/STAT and Müller
glial neuroprotection

Activation of JAK/STAT signaling has a protective effect on

the RP retina. pMSC-derived retinal progenitor cell

transplantation increased PR preservation in rd12 mice, and

this protection was partially mediated by activation of the JAK/

STAT pathway (100).

Application of ciliary neurotrophic factor (CNTF) in RP

preclinical research has gained significant neuroprotection and

has been employed in clinical trials (101, 215, 216).. CNTF

therapy enhances the protective properties of Müller glia

through LIF/gp130/STAT3 signaling, thereby preventing

retinal degeneration. CNTF treatment elevates the expression

of LIF and endothelin 2 (Edn2) (102), and LIF is essential for

CNTF-elicited STAT3 activation (217). LIF belongs to the IL-6

cytokine family and signals through the gp130 receptor. In a

mouse model of light-induced retinal degeneration, intravitreal

delivery of LIF improved PR survival and retinal function by

activating STAT3 in Müller glia and PR (103). Stressed PRs

secrete signal molecules such as Edn2 and H2O2 that facilitate

LIF induction in Müller glia; Edn2 triggers LIF transduction by

binding to endothelin receptor B (Ednrb) localized to Müller

glia; and H2O2 increases LIF transcript levels by stabilizing LIF

mRNA via ILF3 (interleukin enhancer binding factor 3) (98,

218–220). LIF deficiency or Ednrb antagonism diminishes JAK/

STAT activation and the amount of reactive Müller glia,

resulting in accelerated degeneration; in contrast, LIF

supplementation or Ednrb agonism improves PR survival in

degenerating retina (218, 221).

Deletion of gp130 in either Müller glia or rod PRs severely

dampened the activation of CNTF-triggered signaling as well as

PR rescue (102), and when Müller glia were ablated, LIF no

longer provided protection (222). However, other research

suggests that gp130 deficiency in Müller glia decreases STAT3

phosphorylation but does not weaken the neuroprotection of

exogenous LIF (223) because gp130 activation in PR presumably

mediates a cell-autonomous protective mechanism with a

general protective role independent of pathological stimulus

(223, 224).

Modulation of JAK/STAT signaling results in contrary

immunomodulatory effects in different retinal components. On

the one hand, inhibition of JAK2/STAT3 in microglia

contributes to inflammation mitigation. On the other hand,
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LIF-induced STAT3 signaling in Müller glia favors

neuroprotection, which seems to be an endogenous protective

mechanism. We speculate that this paradoxical outcome

involves crosstalk between retinal microglia and Müller glia,

which is not yet fully understood. Phosphorylated JAK also

activates PI3K, so there may be synergy between JAK/STAT

signaling and other pathways.
3 Epigenetic modulation in
inflammation suppression

Epigenetic modifications, which include DNA methylation,

histone modification, and noncoding RNAs, refer to changes in

gene expression patterns without altering the genomic DNA

sequence (225). Epigenetic modifications are implicated in

aspects of individual growth and disease development,

inc luding gene express ion , ce l l pro l i f era t ion and

differentiation, misfolded protein response, and cytoskeletal

dynamics (226). Although the concept of curing diseases

through epigenetic regulation is relatively new, it has

demonstrated considerable therapeutic potential in research on

cancer, autoimmune diseases, endocrine diseases, congenital

disease and many others (227, 228). Epigenetic changes

contribute to the development of RP, and remarkable progress

has been made in the treatment of RP with epigenetic

modification therapies.
3.1 Histone acetylation and methylation

Histone acetylation and methylation are the two most well-

studied types of histone modification, with acetylation typically

resulting in increased gene expression and methylation being

related to either increased or decreased gene transcription.

Histone acetylation is regulated by histone acetyltransferases

and histone deacetylases (HDACs), while histone methylation is

regulated by lysine methyltransferases and arginine

methyltransferases and histone demethylation by histone

demethylases. Enzymes that add or remove epigenetic marks

on histones are known as “writers” and “erasers.” In addition,

there are “readers” containing bromodomains, chromodomains,

or Tudor domains that are able to decipher histone codes (229).

RP retinas exhibit excessive HDAC activity (104, 105, 230),

and HDAC inhibition delays retinal degeneration in RP animal

models (rd1 and rd10 mice and zebrafish) (104–107). In rd10

mice, the HDAC inhibitor romidepsin prevented rod

degeneration and enhanced retinal function. Two molecular

mechanisms contribute to this neuroprotective effect. First, by

acting on histone targets in PRs, increasing chromatin

accessibility and upregulating neuroprotective genes, and

second, by acting on nonhistone targets in microglia and
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resident and invading immune cells, it suppresses inflammatory

gene transcription and inflammation (108).

Microglial activity is related to histone methylation levels.

LPS-activated microglia increase HDAC expression, which is

accompanied by an increase in inflammatory gene expression

(231). HDAC inhibition or knockdown promotes a protective

microglial phenotype and reduces neuroinflammation

(232–234).

Valproic acid is an HDAC inhibitor that reduces PR

degeneration in rd1 and P23H RP models (109, 110). Valproic

acid increases the expression of STAT1 by inhibiting HDAC3

expression; subsequently, acetylated STAT1 forms a complex

with nuclear NF-kB p65, preventing NF-kB p65 DNA-binding

activity (235).

Moreover, suppression of the “read” (bind) behavior to

histone acetylation marks of bromodomain and extraterminal

domain proteins by JQ1 ameliorated PR degeneration and

maintained electroretinographic function in rd10 mice. This

protection seems to be partially mediated by the inhibition of

retinal microglial proliferation, migration, and cytokine

production (111).

Several studies, including our previous report, have reported

altered histone methylation in RP retinas (112, 236, 237). Lysine

demethylase 1 inhibition attenuated PR degeneration in rd10

mice, in part by inhibiting microglial-related inflammation

(108). DZNep (3-deazaneplanocin A) specifically inhibits Ezh2

(H3K27 trimethyltransferase) and mediates neuroprotective

effects in rd1 mice by inhibiting H3K27me3 deposition (112).

Ezh2 reportedly mediates TLR-induced inflammatory gene

expression (238) and activation of multiple types of

inflammasomes in microglia (239), hence promoting

microglial-related pathologies.
3.2 MicroRNA

MicroRNAs (miRNAs) are small noncoding RNAs that

modify gene expression post-transcriptionally by targeting

messenger RNAs, long noncoding RNAs, and pseudogenes

and circular RNAs. MiRNAs can be packed into exosomes or

microvesic les to perform long-distance cel l-to-cel l

communication. MiRNAs play a critical role in gene

expression modulation and are therefore interesting candidates

for the development of biomarkers and therapeutic targets (240).

Throughout development, miRNAs are required for retinal

neuron differentiation (241, 242). Dysregulated miRNAs were

found in the retinas of mouse and canine models of RP (243,

244), indicating the involvement of miRNAs in the etiology

of RP.

MiRNAs regulate microglial phenotypes, as evidenced by

various studies on retinal and neurodegenerative disorders (245,
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246). Inhibition of miR-6937-5p preserved the outer nuclear

layer thickness and promoted the ERG wave response in rd10

mice (113), and AAV-miR-204 attenuated retinal degeneration

in two different mouse models. By downregulating microglial

activation and PR mortality, miR-204 alters the expression

profiles of transgenic retinas toward those of healthy retinas

(114). In addition, miR-223 is required for the regulation of

microglial inflammation and the maintenance of normal retinal

function (247).
3.3 DNA methylation and trained
immunity: Epigenetic reprogramming of
immunity phenotype

DNAmethylation refers to the addition of a methyl group to

the 5′-carbon of a cytosine (C) ring, resulting in the formation of

5-methylcytosine (5mC), which mainly occurs in the promoter

regions. Typically, methylation modifications result in gene

repression, and global genomic hypermethylation relates to

heterochromatin formation and inhibits transcription (248).

Aberrant regulation of DNA methylation results in PR

degeneration and neuronal loss in the retina. In the absence of

DNA methyltransferase 1, the initiation of PR differentiation is

severely hindered (249). In RP retinas, binding sites of several

important transcription factors for retinal physiology were

hypermethylated (250). The role of DNA methylation in the

development of retinitis pigmentosa has been reviewed in detail

elsewhere (251) and will not be repeated here.

We argue that trained immunity regulates the microglial

phenotype in RP by plasticizing microglial reactivity via

epigenetic modification.

Trained immunity, also known as innate immune memory,

refers to the phenomenon in which innate immunity modifies its

function after an initial insult and reacts more vigorously to

subsequent stimuli. Epigenic reprogramming determines the

immune phenotype of immune cells and leads to long-lasting

functional alterations (252, 253) (Figure 2). Using macrophages

as an illustration, in the resting state, the promoter regions of

inflammatory genes are enriched with repressive epigenetic

marks, called epigenetic barriers, to prevent activation in the

absence of stimuli. Upon stimulus, repressive epigenetic marks

are removed, and activating epigenetic marks are introduced to

the promoters and enhancers of specific genes in an attempt to

encourage inflammatory molecule synthesis and phagocytosis

to eliminate the insult. After stimulus elimination, activating

epigenetic marks are partly retained (254). The innate immune

system may become overly trained in chronic inflammatory

diseases as a result of such mechanisms, resulting in pathological

tissue damage.
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In the context of neurodegenerative disorders of the CNS,

the relationship between trained immunity and microglial

phenotype has been discussed (255, 256). Low-dose LPS

intraperitoneally administered to mice induced long-lasting

innate immune memory in brain microglia and exacerbated

Alzheimer’s disease pathology. Activated microglia are enriched

with the epigenetic marks H3K4me1 and H3K27ac, which define

active enhancers (256). In RP model P23H rats, intraperitoneal

injection of low-dose LPS increased microglial activation and the

number of infiltrating microglia, as well as elevated the

expression levels of several inflammation-related genes (257).

In addition to the activation of retinal microglia, elevated levels

of serum cytokines show the activation of peripheral immune

cells in RP (22, 23). Recent work by Su et al. revealed that

monocytes from patients with autosomal recessive RP exhibit a

trained-like phenotype. Upon stimulation, these monocytes

produce more TNF-a, IL-6, and IL-1b and upregulate

inflammatory pathways such as NF-kB (258). Current

evidence supports a role for trained immunity in RP

pathogenesis by epigenetic reprogramming of microglia and

peripheral macrophages to modulate the immune phenotype

and trigger an active immune response, although many details

remain to be confirmed.
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4 Gut microbiome and
microglial activity

The gut microbiome, which resides in the intestinal tract and

performs nutrition metabolism, has recently been found to

influence the maturation of the immune system. Components

and metabolites of microbial cells engage in the modulation of

immune recognition and immune tolerance through innate

immune receptors on intestinal epithelial cells and influence

the function of innate myeloid cells and lymphoid cells through

diverse mechanisms (Figure 3). In addition, the microbiota’s

make-up and function are subject to the innate immune system.

Therefore, gut dysbiosis may induce immune system

dysregulation and trigger disease emergence (259).

The gut microbiome has been linked to retinal degenerative

disorders such as age-related macular degeneration (260) and

diabetic retinopathy (261). Using the rd10 RP mouse model,

Kutsyr O. et al. (262) related alterations in the composition

profiles of the gut microbiome to RP. Compared to healthy mice,

the gut microbiome of rd10 mice had reduced ASV richness and

a diversity. Rd10 mice, in particular, feature a high proportion of

B. caecimuris, a species that is uncommon in healthy gut mice,

but lack four species (Rikenella spp., Muribaculaceace spp.,
FIGURE 2

Epigenetic reprogramming determines the immune phenotype of trained cells. Resting cells contain inhibitory epigenetic marks in immune
response-related gene regulation areas. Cell activation and epigenetic reprogramming are initiated by an initial insult. Repressive marks fade and
epigenetic activating markers (H3K27ac, H3K4me1) are present. Activating markers are partially preserved after stimulus elimination, and trained
cells exhibit enhanced immune responses to subsequent stimuli.
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Prevotellaceae UCG-001 spp., and Bacilli spp.) that are common

in the healthy gut microbiome (262). The gut microbiome is

susceptible to dietary influences. Further research by the same

group demonstrated that a short-term high-fat diet significantly

modifies the gut flora, enhances retinal oxidative stress and

inflammation, and ultimately accelerates the degeneration of the

rd10 retina (263). Thus, dysbiosis in the gut contributes to

retinal inflammation and constitutes the pathogenesis of RP.

By exchanging the intestinal microbiota (Fecal microbiota

transplant, FMT) of young and aged mice, emerging evidence by

Parker et al. (264) suggests that the gut microbiome is a modifier

of retinal inflammation. Compared to young mice, aged mice

exhibit increased systemic and tissue inflammation, as evidenced

by elevated serum proinflammatory cytokines (TNFa, IL-6),
microglial overactivation in the brain, and C3 accumulation at

the RPE/Britch’s membrane interface. Transferring aged donor

microbiota to young mice disrupts the intestinal epithelial

barrier and triggers inflammation in the retina and brain,

whereas transfer of aged mice with young donor microbiota

could reverse age-related inflammation (264).

The evidence above supports the “diet-gut microbiome-

retina axis” hypothesis in the pathogenesis of RP. Despite the

fact that this work is still in its early stages, the gut microbiota is

a promising therapeutic target for RP.
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5 Herbal agents in inflammation
suppression

Herbal compounds, or phytochemicals derived from plants,

possess a wide range of biological activities and have been

explored for the treatment of RP, demonstrating anti-

inflammatory properties in RP investigations.

Curcumin is a polyphenolic compound produced from the

spice turmeric. Curcumin provided morphological and

functional protection in rd1 mice, P23H rats, and an MNU-

induced RP model (115, 116, 265, 266). A single vitreous

injection of curcumin reduced PR loss in rd1 mice by

inhibiting microglial activation and modulating the expression

of CCL2, TIMP-1 and VCAM-1 (115).

Lyceum barbarum polysaccharides and zeaxanthin

dipalmitate are two main bioactive agents extracted from

wolfberry. Lyceum barbarum polysaccharides protects against

retinal degeneration by modifying inflammation and apoptosis

through the inhibition of NF-kB and HIF-1a expression (117,

118). zeaxanthin dipalmitate acts through several pathways,

including STAT3, CCL2 and MAPK, in parallel to inhibiting

inflammation in the rd10 retina (119).

Saffron, widely used in traditional Chinese medicine for its

anti-inflammatory and antioxidant properties, protects PRs
FIGURE 3

The gut-retina axis. When dysbiosis is present, the microbiota and its derivatives enter the circulation via the leaky intestinal mucosa and
mediate systemic- and local- (ocular) inflammatory responses. Dysbiosis promotes a pro-inflammatory phenotype of microglia and exacerbates
tissue damage. Fecal microbiota transplant is a viable therapeutic strategy. FMT, fecal microbiota transplant; BV, blood vessel; BRB, blood−retina
barrier; RPE, retinal pigment epithelium.
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exposed to environmental ATP by blocking P2X7R signaling

(120). In P23H rats, saffron administration increased PR survival

and functional retention while decreasing vascular

disruption (121).

Resveratrol (3,40,5-trihydroxystilbene) is found in chocolate,

fruits, and vegetables. Resveratrol treatment inhibited microglia-

mediated death of 661W cells via downregulation of microglial

migratory, phagocytic, and proinflammatory cytokine

production (122). Subretinal injection of JC19 (3,4’-diglucosyl

resveratrol), a resveratrol prodrug, reduced PR loss and

improved functional performance in ERG tests of the rd10

retina. The author speculates that sirtuin1 activation is the

underlying mechanism (123).
6 Conclusion and future
perspectives

A large body of research conducted on the inflammatory

processes during RP tries to discover common mechanisms that

target multiple RP genotypes and develop appropriate

therapeutic options. However, after reviewing the existing

literature, we discovered that no single treatment is

appropriate for all types of RP, and the application of valproic

acid is a prime example, with treatment effects significantly

varying between models with different genetic backgrounds and

even exhibiting detrimental effects. This raises the prospect that

a link between genetics and RP inflammation needs more

investigation. To date, genetic mutations remain the only

identified risk factor for RP. Different permutations of

inheritance pattern, genotype, and the number of mutations

lead to variations in the phenotype and pathological progression

of RP. Similarly, we anticipate that the multiple phenotypes of

inflammatory activation in RP are closely related to the genetic

background. Nevertheless, the relationship between genetic

background and inflammation is currently unclear due to the

lack of corresponding evidence.

Both RP patients and animal models have a more susceptible

immune system and are prone to developing inflammation. This

abnormal immune system may depend heavily on the genetic

background. The gut microbiota play a critical role in the

maturation of the innate immune system after birth, and

trained immunity is implicated in this process; however, the

influence of genetic background on the maturation of the

immune system has not been investigated. Therefore, long-

term clinical observation and family tracing of the RP

population are necessary. What needs to be documented

should include, but is not limited to, macroscopic clinical

manifestations, structural and functional measurements, and
Frontiers in Immunology 15
monitoring of local and peripheral inflammation levels. And

appropriate follow-up criteria need to be established to ensure

consistency of measurements and to obtain usable information.

Inflammation is an important feature of RP, and the present

review highlights the role of immunomodulation in RP

treatment. There has been significant interest in modulating

the inflammatory response as a strategy to treat RP, and an

increasing number of studies have proven the effectiveness of

immunomodulation in ameliorating and perhaps reversing

retinal degeneration. Therapeutic strategies based on

immunomodulation are a potential treatment for RP, and

deepening the understanding of immune modulation is helpful

in establishing suitable therapies. As with immunotherapies

already carried out, artificial regulation of immunity will bring

inevitable side effects. It is challenging to regulate immunity

accurately and to enhance the beneficial effects and minimize the

harmful ones concurrently. Many of these specific mechanisms

need to be further studied, especially the interactions between

these pathways.
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