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MicroRNAs(miRNAs) have emerged as key regulators that control and influence

gene expression as well as multiple biological processes depending on their

potential binding sites in human-protein coding genes and other

unconventional patterns, including coding for peptides, activating Toll-like

receptors as a ligand, and other manners. Accumulating evidence has

demonstrated that microRNA expression is tightly regulated during phases of

development, differentiation, and effector functions of immune cells,

immunological disorders of systemic lupus erythematosus (SLE). This review

outlines the biogenesis of miRNAs and their unconventional functions as well

as underlying cellular and molecular mechanisms. It then summarizes our

current knowledge about how the biogenesis of miRNAs is regulated.

Moreover, an overview was provided concerning the role of abnormal

expression of miRNAs in lupus immune cells. In particular, we will shed some

light on the recent advances in the role of miRNAs and exosome-derived

miRNAs in immunological and epigenetic pathways in the pathogenesis of SLE.
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miRNA biogenesis

MicroRNAs (miRNAs) are a novel class of endogenous, single-stranded RNAs of

approximately 19–25 nucleotides in length, which are synthesized from an endogenous

hairpin- shaped transcript by RNase-III-type enzyme (1). In 1993, Victor Ambros and

colleagues investigated defects in the temporal control of Caenorhabditis elegant and
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discovered the first miRNA called lin-4 (2). During the last

decades, miRNAs have been listed in large numbers in

eukaryotes of plants and vertebrates, and since then,

investigation of the biogenesis and processing of miRNAs has

brought numerous insights into physiopathology.

Studies have illustrated that miRNA is a multifunctional

small molecule and its biogenesis through a series of pathways

and sequential processes starting with the cleavage of the

primary miRNA transcr ipt in the nucleus by the

Microprocessor complex (3). Canonically, miRNA genes are

transcribed to generate long primary transcripts (pri-

miRNAs), which are then processed by RNase-III-type enzyme

Drosha to release the hairpin-shaped pre-miRNAs within the

nucleus. Drosha functions together with its essential co-factor

DGCR8/Pasha known as the Microprocessor complex (4). Next,

Pre-miRNA gets exported to the cytoplasm via exportin-5, a

member of the Ran-dependent karyopherin family (5). After

arriving in the cytoplasm, pre-miRNAs are subsequently

processed to mature miRNAs by RNase III Dicer and loaded

onto the Argonaute (Ago) protein to form the effector RNA-
Frontiers in Immunology 02
induced silencing complex (RISC), which can be programmed to

target virtually any nucleic acid sequence for silencing

(1) (Figure 1A).

Drosha and Dicer are classes I and Ill members, respectively,

of the RNase Ill protein family that play a key role in miRNA

biogenesis (6, 7).Functionally, both proteins act as a “ruler” and

“scissors” as they measure and cut at a fixed distance of each

substrate (8, 9). The overall structural and enzymatic reaction

similarity of both proteins, in the substrate and its binding

mechanisms, suggests that both proteins share dynamics

similarity related to their common functions. In the nucleus,

Drosha together with its cofactor DiGeorge Syndrome Critical

Region 8 (DGCR8) constitute a complex known as

Microprocessor. The complex excises a long primary transcript

(pri-miRNA) to release hairpin shaped precursor-miRNA (pre-

miRNA) of ~70 nucleotides in length with a 3’overhang. The

pre-miRNA is subsequently cleaved at the cytoplasm by Dicer,

yielding a miRNA duplex of ~22nt in length, when one strand of

this duplex remains as a mature miRNA, while the other strand

is degraded (10, 11).
A
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FIGURE 1

The biogenesis of miRNA. (A) miRNA genes are transcribed to pri-miRNA, which are then processed by a microprocessor complex to generate
pre-miRNA. After getting exported to the cytoplasm via exportin-5, pre-miRNAs are subsequently processed to mature miRNAs by RNase III
Dicer and then loaded onto the Ago to form the effector RISC, which represses translation. (B) Mirtrons are located in the introns of the mRNA
encoding host genes, which arise from the spliced-out introns. The short hairpin introns use splicing to bypass Drosha cleavage. Mirtron lariat
can enter the canonical miRNA pathway after debranching and RNA refolding. (C) After getting trimmed by Dicer, shRNA forms the miRNA
duplex and then gets transported onto Ago to form the silencing complex. (D) snoRNAs like ACA45 snoRNA is processed into canonical miRNA
pathway ultimately associated with Ago 1 and 2. (E) miR-451 is processed by microprocessor complex and does not require Dicer.
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In recent years, many studies shed some light on other novel

mechanisms to produce functional miRNAs apart from the

canonical one (12, 13). Some certain debranched small introns

can mimic the structural hallmarks of pre-miRNAs to enter the

miRNA-processing pathway, named “mirtrons”, thus bypassing

the need for assembling into a Microprocessor complex (14).

Mirtron hairpins are processed by the action of the cellular

splicing machinery and lariat-debranching enzyme before

merging into the canonical miRNA pathway during nuclear

export by Exportin-5, and are subsequently processed by Dicer-1

(15). (Figure 1B) Startlingly, some studies showed that

endogenous short hairpin RNAs were processed into miRNAs

(mir-320 and mir-484). Further examination of the sequence

and structure of these short hairpin RNA (shRNA)-derived

miRNAs showed the lack of microprocessor-binding sequence,

which further demonstrates its Dgcr8 independence (13)

(Figure 1C). The third one comes to an exploration of some of

the small nucleolar RNAs (snoRNAs), which were reported to

interfere with the gene expression process at the levels of mRNA

stabilization and translation by binding with Ago (16). Deep

sequencing data of selected snoRNAs associated with Ago 1 and

2 identified snoRNAs as another source of miRNA that may

follow the canonical pathway in some cases (17) (Figure 1D).

The examination of miR-451and its potential targets directs the

conclusion that this miRNA is processed by Drosha yet its

maturation does not require for Dicer. Instead, the pre-

miRNA was loaded into Ago and cleaved by the Ago catalytic

centre to generate an intermediate 3′ end, which is then further

trimmed to mature miRNA by the 3′–5′ exonuclease poly(A)-

specific ribonuclease PARN (18) (Figure 1E).
Unconventional function of miRNA

Most genetic and biochemical studies to date have shown

that miRNAs induce translational repression by binding to the 3′
untranslated region (3’ UTR) in their target mRNA (3).

However, there are accumulating evidences showing that

miRNAs can function outside this paradigm. The miRNAs,

usually, are first transcribed as primary transcripts with a cap

and a poly-A tail and processed to stem-loop precursor miRNAs

(19). Conventionally, the 5’ cap helps mRNA prevent

degradation by hydrolytic enzyme and function as part of

“attach here” sign for ribosomes in the cytoplasm. The poly-

A-tail inhibits the degradation of RNA and helps ribosomes

attach and facilitates the export of mRNA from the nucleus.

Recently, bioinformaticians used ORF finding tools to predict

the protein-coding potential of non-coding RNAs, and

discovered unexpectedly that many more pri-miRNAs contain

short open reading frames (ORFs). Further, Lauressergues et al.

initially discovered that pri-miR-171b of Medicago truncatula

and pri-miR-165a of Arabidopsis thaliana can produce short

peptides, named as miPEP-171b and miPEP-165a separately.
Frontiers in Immunology 03
Functional studies proved that these miPEPS increase

transcription of their own pri-miRNA, which ultimately raise

the accumulation of their corresponding mature miRNAs (20).

Soon after, Fang et al. demonstrated that, in human, several pri-

miRNAs, including pri-miR-200a and pri-miR-200b can

produce short peptides which regulate the migration of cancer

cells (21).

Toll-Like Receptors (TLRs) play a critical role in the early

innate immune response to invading pathogens by sensing

microorganism and are also involved in sensing endogenous

danger signals. Previously, mmu-miR-21 and hsa-miR-29a were

reported to activate TLR8 (in human, and TLR7 in mice) as

ligands in immune cells, triggering a TLR-mediated

prometastatic inflammatory response that may ultimately lead

to tumor growth and metastasis (22). Almost at the same time,

Lehmann et al. uncovered that extracellular let-7, a miRNA

derived from the central nervous system, activates the RNA-

sensing TLR 7 and led to neuronal apoptosis through neuronal

TLR7. Moreover, cachexia (microvascular miR-21) and sepsis

(Kaposi Sarcoma-associated Herpesvirus miRNAs) can block

these effects (23, 24). miRNAs commonly regulate mRNA

repression by associating with ago protein. It was reported

that, however, in blast crisis chronic myelogenous leukemia

(CML-BC), apart from targeting mRNA encoding the survival

factor PIM1, restoration of miR-328 can also interact with the

translational regulator poly (rC) -binding protein hnRNP E2 and

then leads to release of CEBPA mRNA from hnRNP E2-

mediated translational inhibition. It’s interesting that the miR-

328 interaction with the functional proteins hnRNP E2 is not

depending on the miRNA’s seed sequence (25).

Argonaute2 protein (AGO2) plays a key role in a variety of

pathophysiological processes by participating in the formation

of RISC with ribonucleic acid endonuclease activity and by

promoting the maturation of microRNAs and regulating their

biosynthesis and function, thereby inhibiting the expression of

target genes (26, 27).

Moreover, in stressed hepatic cells, HuR was found to

reversibly bind miR‐122 to substitute them from Ago2 and

subsequently gets freed to ultimately influence the stress

response in starved human hepatic cells (28). Most

investigation into metazoan miRNA function has been for

sites in 3′ UTRs, experiments using artificial sites, however,

showing that targeting can also occur in 5′ UTRs and open

reading frames (ORFs). Furthermore, it’s interesting to find that

miR-10a can enhance mRNAs translation by interacting with

the 5’ UTRs of their encoding ribosomal protein (29, 30). Lastly,

researchers systematically surveyed the secondary structure of 5′
UTRs in both plant and vertebrates and found a universal trend

of increased mRNA stability that are regulated by miRNA

targeting the 5′ cap in mRNAs (31)

In addition, Hwang et al. (2007) demonstrated that miR-29b

has a function of directing nuclear enrichment of small ncRNAs

to which it is attached by a distinctive hexanucleotide terminal
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motif that acts as a transferable nuclear localization element

(35). miR-589 was found to bind the promoter RNA and then

activated COX-2 transcription (33) Interestingly, several studies

have reported that nuclear miRNAs can enter and target the

mitochondrial genome, for instance, miR-181c translocates into

the mitochondria, remodeling electron transport chain complex

IV and causing mitochondrial dysfunction (36). Other than

these, Tang et al. provides evidence that one miRNA can

directly target their primary transcripts to control the

biogenesis of other miRNAs in the nucleus (37).

MiRNA plays a key role in the pathogenesis of SLE by

regulating the expression of post-transcriptional genes through a

variety of unconventional pathways. Table 1 lists miRNAs that

are preliminarily reported as unconventional miRNA functions.

Specific miRNA dysregulation is closely related to the

occurrence and development of SLE. Therefore, detecting or

regulating the abnormal expression of miRNA in SLE and other

immune-related diseases is very important for the clinical

diagnosis, prediction and treatment of SLE.
Frontiers in Immunology 04
Modulation of microRNAs
processing and expression

miRNA biogenesis has to be tightly regulated to guarantee a

suitable number of functional miRNAs since they are crucial for

cellular development and homeostasis. The mechanisms of

regulating miRNA biogenesis are similar to other RNAs, such

as transcriptional activation or inhibition, processing and

regulating maturation, miRISC and target regulation, RNA

editing, and so on.

Transcription is a major point of regulation in miRNA

biogenesis and the transcription of miRNAs is under the

control of numerous transcription factors. For instance, Pol II-

associated transcription factors, like myogenin and myoblast

determination 1(MYOD1), bind upstream of miR-1 and miR-

133 loci and trigger the transcription of these miRNAs during

myogenesis (38). Some miRNAs are under the control of tumor-

suppressive or oncogenic transcription factors. The miRNA

family of miR-34 can be activated by the tumor suppressor
TABLE 1 Unconventional miRNA functions.

Pri-miRNAs Coding for Peptides

miRNA Peptide Implicated function ref

mtr-pri-
miR171b
ath-pri-
miR-165a

miPEP171b
miPEP165a

increasing transcription of their own pri-miRNA, which subsequently enhances the accumulation of their corresponding mature
miRNAs

(32)

Hsa-pri-
miR-200a
Hsa-pri-
miR-200b

miPEP-200a
miPEP-200b

regulate migration of cancer cells (21)

miRNAs activating Toll-like receptors

miRNA Target Implicated function ref

mmu-miR-
21
hsa-miR-
29a

TLR8
(murine)
TLR7

triggering a TLR-mediated pro-metastatic inflammatory response that ultimately may lead to tumor growth and metastasis (22)

Hsas-let-7b-
5p

TLR7 activates the RNA-sensing Toll-like receptor (TLR) 7 and induces neurodegeneration through neuronal TLR7 (24)

miRNAs Interacting with Non-AGO Proteins

miRNA Interacting
partner

Implicated function ref

Hsa- miR-
328

hnRNP E2 when miR-328 is re-introduced it can rescue differentiation and impair survival of leukemic blasts in chronic myelogenous leukemia (25)

Hsa-mir-
122

HuR HuR could reversibly bind miR-122 to replace them from Ago2, which controls stress response in starved human hepatic cells (28)

miR-589 Promoter
RNA

Binds the promoter RNA and activates COX-2 transcription. (33)

miRNAs targeting outside the 3′UTRs
miRNA Target site Implicated function ref

miR-10a 5′ UTRs interacts with the 5’ untranslated region of mRNAs encoding ribosomal proteins to enhance their translation (29)

miR-29b miRNA or
siRNA

The distinctive hexanucleotide terminal motif of miR-29b acts as a transferable nuclear localization element that directs nuclear
enrichment of miRNAs or small interfering RNAs to which it is attached.

(34)
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p53 (39), while the amount of miRNA related to apoptosis and

cell cycle can be trans-activated or repressed by oncogenic

protein MYC (40).

Post-transcriptional regulation is another major point of

regulation in miRNA biogenesis, which affects Drosha and Dicer

processing, as well as miRNA modification and turnover.

Drosha and Dicer and RISC loading is the key step for

miRNA precursors processing, and this processing can be

facilitated, supported, or inhibited by tons of factors (41).

ADAR1 and ADAR2 can edit specific adenosine residues of

some certain miRNA precursors. For example, editing of the

precursor of miRNA-142, induce the suppression of its

processing by Drosha. When the pri-miR-142 is edited, it can

be degraded by Tudor-SN, a component of RISC and also a

ribonuclease specific to inosine-containing dsRNAs (42).

Increasing evidence suggests that general RBPs, including

splicing factors and other diverse RNA processing factors, act

as post-transcriptional regulators of miRNA processing.

Recent studies have reported that not only the coordination

of individual miRNA processing steps, but the connection of

miRNA biogenesis with other cellular processes is involved with

regulatory factors (43). For instance, protein phosphorylation

links miRNA biogenesis to various signaling pathways, and has

countless positive connections to diseases. The results

mentioned above heighten that even presumably well-

understood processes might be far more complex and that

further work is needed to explore miRNA biogenesis (41).

Innovatively, Hong Chang et al. expanded their observation to

the 3′ region of pri-miRNA, and found that miRNA biogenesis

process can be unbiasedly impeded by targeting both 3′ and 5′
regions (44).

Epigenetic control also contributes to miRNA gene

regulation; miR-203 undergoes DNA methylation in the T-cell

lymphoma, while avoiding modification in normal T

lymphocytes (45). DNA methylation is the major modification

method in eukaryotic genomes, which can downregulate gene

expression. In different developmental stages or under different

pathological conditions, the overall methylation degree of CpGs

can fluctuate in mammals (46). Some researchers have reported

that aberrant methylation of CpG islands adjacent to their

promoters can silence some tumor suppressor miRNAs, such

as miR-203 (47, 48). A recently new discovered modification of

CpG dinucleotides is DNA hydroxymethylation, which

associates with the addition of a hydroxyl group on 5-

methylcytosines (5mCs) to produce 5-hydroxymethylcytosine

(5hmCs) (49, 50).

Bifunctional RNAs could interact with miRNAs (51). After

the statistical analysis of miRNA fold change of expression in

response to Drosha knockdown and miRNA secondary

structure, Henrik Sperber et al. make a conclusion that the

absence of mismatches in the central region of the hairpin, 5 and

9-12 nt from the Drosha cutting site conferred decreased

sensitivity to Drosha knockdown. Changes in Drosha
Frontiers in Immunology 05
expression can be a biologically relevant mechanism, through

which process, eukaryotic cells could control miRNA

profiles (52).

The expression process of miRNA is regulated by many

factors, and the change of any link will lead to the abnormal

expression of miRNA, and then result in the corresponding

diseases. Therefore, a detailed understanding of the regulation of

miRNA expression process is of great significance for

understanding the occurrence mechanism of SLE and other

related diseases and finding corresponding solutions.
miRNAs in the pathogenesis of SLE

SLE is the prototypic as well as chronic autoimmune disease,

which is characterized by multiple autoantibodies associated

with a multisystem illness. A broad spectrum of clinical

manifestations including skin rash, photosensitivity, oral

ulcers, arthritis, serositis, glomerulonephritis, neurological

symptoms (e.g. seizures), leukopenia, and thrombocytopenia.

During the last decade, a multidisciplinary approach applied in

SLE-relevant research has built a more concise view of this

disease. Additionally, collective evidence supports the view that

various SLE-relevant processes can be affected by miRNAs.
Pathogenesis of systemic
lupus erythematosus

In SLE, patients exist some characteristics like a lack of

tolerance against nuclear autoantigens, polyclonal autoantibody

production, immune complex deposition, and tissue

inflammation. The pathogenesis of SLE is extremely complex;

genetic, epigenetic, environmental, and immune-regulatory

factors can jointly contribute to disease development.

Although SLE has been investigated extensively and deeply for

decades, however, the exact etiology of SLE remains unclear. In

past decades, using genetic variant identification, expression

pattern analysis, and mouse models, as well as epigenetic

analysis, researchers have made further understanding of SLE.

Taken together, most of these findings direct to versatile

functions of endogenous miRNAs in innate immune

responses, immune and resident cell dysfunction, and the

association between abnormal epigenetic regulation and SLE,

which have attracted considerable interest worldwide separately

and together.
microRNAs in the modulation of
immunity of SLE

The immune system is made up of an elaborate network of

cells, tissues, and organs that work together to protect the body
frontiersin.org
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from invaders (bacteria, viruses, fungal infections, and

parasites). Due to their highly evolutionary conserved nature

and their wide range of regulating effects, miRNAs are emerging

as a critical part of the development and function of the immune

system, both innate and adaptive compartments. Various

evidence had proved that derailments of both the innate and

adaptive immune systems contribute to the pathogenesis of SLE,

and it is not surprising that almost all SLE-relevant processes

can be affected by miRNAs (53). During the immune

pathogenesis of SLE, immune cells build a complex signal

network as a core component, and miRNA influences disease

progression by regulating immune cell function. In the next part,

we focus on miRNA-mediated immune cell dysfunction

associated with SLE.

Macrophage polarization was found to affect the initiation

and perpetuation of SLE. During activated lymphocyte-derived

DNA (ALD-DNA) induced macrophage M2b polarization,

dynamic miRNA expression patterns and network analysis are

described. Around 11% miRNAs were differentially expressed in

macrophage M2b polarization. Differentially regulated miRNAs

at 6 h are significantly associated with inflammatory response

and disease, while miRNAs at 36 h had an effect on cell

proliferation (54–56). Differentially expression of miRNA

directs to the macrophage polarization which then contributes

to the pathogenesis and progression of SLE and may provide

potential targets for therapies.

The interferon signature is present in the blood of patients

with SLE, especially younger patients and those of Asian

ancestry (57). Type I IFN(IFN-I) overexpression is considered

as a significant feature of SLE. As a central regulator of immune

responses, DCs is also confirmed to play a pivotal role in the

pathogenesis of SLE, mainly through IFN-I production. miR-

146a and miR-155 and their star form partner miR-155*

cooperatively regulate the IFN-I production in human pDCs

(58). miR-146a is a negative regulator of IFN-I pathway by

targeting interferon regulatory factor 5 (IRF5), interleukin-1

receptor-associated kinase (IRAK) 1and tumor necrosis factors

receptor associated factor (TRAF) 6 in SLE (59).

Lately, it was found that miR-142-3p is involved in

regulating the proinflammatory function of monocyte-derived

DCs in the process of SLE. miR-142-3p was verified among the

highly expressed miRNAs in the SLE group and overexpressing

miR-142-3p in moDCs of the NC group caused an increase of

SLE-related cytokines, such as CCL2, CCL5, CXCL8, IL-6, and

TNF-a. But the underlying mechanism of how this function is

associate with CCL2, CCL5, CXCL8, IL-6, and TNF-a still

remains unclear (60).

Study shown that miR-124 is downregulated in patients with

active lupus nephritis(LN), resulting in increased expression of

its mRNA target, TRAF6 (61). miR-130b-3p affects classically

activated macrophage (M1) macrophage polarization by

suppressing IRF1 (62). Hsa-miR-127-3p, a microRNA whose

expression is downregulated in renal tissues of LN patients, is
Frontiers in Immunology 06
associated with upregulation of Janus kinase 1 (Jak1) and IFN

stimulated genes (ISGS) in renal tissues of LN patients, leading

to hyperactivation of the IFN-I signaling pathway in the kidneys

of LN patients (63).

Over the last few years, with the dominant role of T cells in

autoimmunity being established, the concept that abnormal

differentiation and impaired function of T cells contribute to

various SLE-relevant processes was gradually accepted by

people. It is clear that cytokines and chemokines present in

the inflamed microenvironment regulate the differentiation and

function of various subsets of CD4+ T cells [Th1, Th2, Th17, and

regulatory CD4+ T cells (Tregs)]. Several miRNAs(miR-132,

miR-200, miR-212a) regulates the differentiation and function of

Th1 and Th2 and controls the pathology (64) (Figure 2). It is

reported, recently, that miR-873 could facilitate the

differentiation of CD4+ T cells into Th17 lineage by targeting

Foxo1. miR-873 expression was significantly up-regulated in

patients with SLE, and its expression was positively associated

with disease severity (65). miR-124 suppresses the immune

activity of CD4 + T cells from SLE patients by downregulating

interferon regulatory factor 1(IRF1) (66). miR-301a-3p was

found significantly upregulated in peripheral blood

mononuclear cells (PBMC) from SLE patients, and the

increasing miR-301a-3p promoted IFN-gamma, IL-17, and IL-

6 expression in PBMC in vivo (67). miR-4512 expression was

significantly decreased in PBMC and macrophages of

SLE patients. miR-4512 regulates the level and type of

chemokines by TLR4 and C-X-C motif chemokine ligand

(CXCL)2 pathway, which point out that the miR-4512-TLR4-

CXCL2 axis as a potential novel therapeutic target in SLE (68).

miR-let-7b is a TLR-7 agonist and plays a role in the induction of

proinflammatory responses in vascular cells by proinflammatory

neutrophil (low-density granulocyte (LDG)) nets in SLE (69).

Downregulation of miR-125a attenuated the suppressive effect of

IL-16 gene, thereby up-regulating neutrophil chemokine

expression in lung epithelial cells, resulting in lung injury in

SLE (70).

Follicular T helper (Tfh) cells play a great role in mediating

the interaction between T and B cells with their important

surface molecules for mediating the interaction between T and

B cells. miR-17-92 cluster has a negative and positive effect on

Tfh cell differentiation. Additional studies found that regulation

of Tfh cell differentiation by miRNA makes difference in

maintaining immune tolerance and preventing SLE (71). Geng,

Tang et al. reported recently that miR-663 impairs BMSC-

mediated downregulation of Tfh cells and upregulation of

Tregs by targeting transforming growth factor b1 (TGF-b1)
(72). And miR-663 is considered as one of the candidates of

targets for therapies.

Direct damages caused by autoantibodies and immune

complexes in the inflamed tissues are the characteristic

features in SLE. Association between miR-30a, miR-155,

miR-181b, miR-15a, and hyperactive B cells suggests that
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miRNAs are the major regulator in the production of

autoantibodies (73). Luo, Ding et al. found that Kruppel-like

factor 5 (KLF5) was a direct target of miR-152-3p, and it could

bind to the promoter region of BAFF and inhibit its expression

in B-cells. It means miR-152-3p participates in the disease

process of SLE by regulating B-cell self-reactivity and

autoantibody production (74).
Exosome-derived miRNA and its function
in SLE

Valadi et al.found that mRNA and miRNA were contained

in exosomes for the first time (75). There is generated immense

evidence showing that exosome-derived miRNA has tightly

relevance to the immune system and autoimmune diseases.

Exosome is a small lipid vesicle that can contain protein and

nucleic acid, which can be released by different immune cells,

including B cells, T cells, DC cells, and mast cells (76). Exosome

is just one particular type of extracellular vesicles (EV), and they

are divided according to the diameter, which technically include

exosome(30-120nm), microvesicles(100-1000 nm), and

apoptotic bodies (50-5000 nm). Apart from different size and

characteristics in morphology, these three types of extracellular
Frontiers in Immunology 07
vesicles also vary in biochemical composition and biogenesis (77,

78). One of the exosomes’ functions may be specific interaction

with the target recipient cell, enhancing the communication

among different cells by delivering cargo, and strengthening the

spread of immune factors.

Different origin exosomes can facilitate the immune

response (79), it’s the function in antigen presentation,

inflammation, programmed cell death, and angiogenesis, has

been carefully studied (80). An increasing number of studies

have proved that miRNA transferred by exosomes to recipient

cells can precisely affect the target genes. Subsequently, the

specific miRNA of exosome triggers functional responses in

the target cells such as lymphocytes, monocytes, and

neutrophils. Meanwhile, these activated forms of target cells

with increased IFNR1 (Interferon Alpha And Beta Receptor

Subunit 1) expression may exert beneficial roles in regulating the

function of the adaptive and innate immune systems (81–87).

Mauro Poggio et al. found that exosome can suppress the

immune response, and its genetic blockage enhances T cell

activity in the draining lymph node to induce systemic

immunity and memory (88). Through the epigenetic

modifications, miR-126, miR-148a, and miR-21 derived from

SLE patients’ exosome can alter the autoimmune-associated

genes’ expression (89).
FIGURE 2

Immune modulatory miRNAs involved in SLE. Dysregulated macrophage polarization and T cell differentiation partially blame on miRNAs. A mass of
miRNAs would trigger IFNa released in DC, B-cell self-reactivity and autoantibody production. All of these manners contribute to the pathogenesis
of SLE, directly or indirectly.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1059887
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2022.1059887
The majority of urinary miRNAs are contained primarily in

exosomes in SLE, including miR335-5p, miR-302, miR-200c,

and miR-146a. Among these exosomal miRNAs, only miR-146a

was found to discriminate active LN (90). miR-146a has an

association with local inflammation, and miR-26a is derived

from urine exosomes involved in renal injury in LN (91).Laura

Claßen et al. reported that the levels of miRNA (miR-155*, miR-

34b, and miR-34a) derived from microvesicles in T lymphocytes

were deregulated in SLE when compared to healthy individuals

(92). This dysregulation of the expression of distinct miRNAs

may be associated with the development of SLE. Valentina Salvi

et al. found that exosomes derived from the plasma of SLE

patients can increase the secretion of IFN-a by human blood

pDCs in vitro. Further investigation clarified that miRNA

isolated from exosome can work as self-ligands of innate

single-stranded endosomal RNA sensors, providing the

potential capacity of exosome-derived miRNAs as novel TLR7

endogenous ligands to induce pDC activation as well as potential

therapeutic targets in SLE (93).

Accumulating evidence showed that exosome have been

found in many body fluids, including blood, urine, breast

milk, and saliva (76). Due to their specific protein, RNA, and

lipid containing and competitive non-invasive diagnostics

methods, exosomes have attractive potential to be applied in

clinical. Exosome-derived miRNAs can be used as biomarkers to

provide an innovative therapeutic approach due to their non-

invasive and accurate detection. The down-regulated serum

expression level of exosomal miR-451a was negatively

correlated with SLEDAI score and kidney damage (94). A

single-center study found that exosomal miR-146a expression

was significantly downregulated and negatively correlated with

anti-dsDNA antibody levels and ESR in SLE patients;

Conversely, miR-21 and miR-155 were significantly elevated

and positively correlated with proteinuria, which indicated that

they may serve as potential biomarkers for the development of

LN (95). The level of miR-183-5p expression in the PBMCs of

SLE patients was positively correlated with SLEDAI-2000 and

the amount of anti-dsDNA antibody by negatively regulating

transcription factor (Foxo1) expression, which can be used as

SLE biomarkers (96). Also, several miRNAs (miR-485-5p, miR-

132, miR-145, and miR-183) have been suggested as promising

SLE biomarkers (97–99). Exosomes have the advantage of low

immunogenicity, and various routes of administration, and high

stability in blood as drug carriers for drug delivery. It can act as a

gene therapy vector or carry therapeutic RNA to target

cells (100).

Javier Perez-Hernandez reported that miR-146a derived

from SLE patients’ urine exosomes can discriminate the

presence of active lupus nephritis (90). Many researches are

constructing a drug delivery system to send specific content

using exosomes. Alvarez-Erviti L et al. experimented brain-

delivery of specific miRNAs on the mouse model (101).

During the past decade, some methods of EV or exosome have
Frontiers in Immunology 08
been applied in the therapeutic of treating autoimmune and

inflammatory diseases, such as EVs derived from mesenchymal

stem cells and antigen-presenting cells (102).
Effects of miRNAs on DNA methylation in
SLE patients

The main epigenetic processes include DNA methylation,

post-translational histone modifications, and noncoding RNA

(miRNAs, lncRNA, and siRNA) that regulate gene expression.

Recently, epigenetics’ role in the field of SLE has called for tons of

dedication. It has been reported that several miRNAs, especially

miR-21 and miR-126, can control the transcription of DNMT1

(DNA methyltransferase 1), a key component of DNA

methylation (Figure 3). Among them, miR-21 can target

DNMT1 as well as inhibit the RAS-MAPK-ERK signaling

pathway upstream of DNMT1 in T cells (103). In CD4+ T cells

of SLE patients, miR-126 and the sponge(hsa_circ_0012919) for

miR-125-3p were found abnormal expression, which results in a

reduction of DNMT1 by targeting 3′- UTR of DNMT. Decreased

DNMT1 caused the demethylation and up-regulation of

methylation-sensitive genes encoding CD11a and CD70, which

are proportional to disease activity (89, 104, 105).

miR-29b, also upregulated in SLE CD4+ T-cells, can

negatively regulate DNMT1 expression by targeting SP1;

further studies demonstrated that inhibition of miR-29a in the

T-cells of SLE patients reversed DNA hypomethylation and the

upregulation of downstream genes (34). These findings provides

potential novel strategies for therapeutic interventions.
Considerations for miRNAs as
therapeutic targets in SLE

Both specific up-regulation and down-regulation miRNAs

are potential therapeutic targets

in SLE (106–108). Targeted vector design is the key to

achieving the clinical application of miRNAs in the treatment

of SLE, but the cross-talk between cell signaling pathways needs

to be considered when developing effective therapeutic

strategies. How to increase local drug concentration in

carriers, improve efficacy, and reduce side effects is a test. On

the other hand, miRNAs can regulate gene networks involving

multiple signaling pathways, therefore, the possible additional

immunostimulatory effects, off-target effects, nonspecific

inflammatory effects, etc. need to be considered when applying

miRNAs therapy in clinical practice (109). Recently, researchers

found that SLE can be modulated by epigenetics through DNA

methylation, posttranslational histone modifications, and

noncoding RNA (110). Epigenetic processes are tightly

associated with miRNA biogenesis and SLE pathogenesis,

which is an innovative insight into therapies for SLE.
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Existing research results show that miRNA can be used as

biomarkers for the diagnosis of SLE and help to assess the

progression of the disease extent and prognosis. At the same

time, because of its unique advantages such as low

immunogenicity and transmembrane ability, miRNA has

broad application prospects as therapeutic drugs. At present,

there are relatively few studies on miRNA as a drug in the

treatment of autoimmune diseases, including SLE. Therefore,

future studies aim to reveal the exact mechanism of miRNA

action and the involved signaling pathways in autoimmune

diseases, and further expand the studies in vitro or animal

models to ensure the safety and effectiveness of miRNA in the

diagnosis and treatment of SLE.
Conclusion

The procedure of miRNA generation and its function can be

regulated by many factors. Based on the miRNA biogenesis

process, RNase-III-type enzyme, Drosha, Dicer, AGO2, RISC

and other factors can affect the miRNA biogenesis,

transportation and maturation. During these procedures, many

other factors are vital to modulate miRNA processing and
Frontiers in Immunology 09
expression, such as transcriptional and post-transcriptional

regulation, and epigenetic control (DNA methylation, DNA

hydroxymethylation). SLE is a multiple system and organism

involvement disease with complex etiology and clinical

manifestation. Both innate and adaptive immune systems

participate in the pathogenesis of SLE. In the past few years,

many researchers have proved that miRNA can modulate the

immune system by targeting pro-inflammatory cytokine

production, immune cells, IFN signal pathway, etc. Recent

studies claimed that exosome-derived miRNA can also

regulate the immune system and have a close relationship with

SLE. Due to its specific content and the superiority of non-

invasive diagnostics, exosome-derived miRNAs have a potential

to be the biomarker and target of SLE.

The identification of precise mechanisms and regulation of

miRNA biogenesis and its interaction with the immune system

and SLE pathogenesis accelerate the translational application in

clinical and provoke great passion about investigating

treatments for SLE. Nevertheless, translational usage of

miRNAs related targets in clinical trials is still mystic and

requires unprecedented dedication from laboratory to clinical

investigation. Yet further advantages have been gained rapidly at

present, prudently, and hopefully, we anticipate more
FIGURE 3

Effects of miRNAs on DNA methylation. miR-21 and miR-126 binding to the 3’ UTR in DNMT1 mRNA lead to DNMT1 protein decreased, while
miR-29b targets 3’ UTR of SP1 mRNA indirectly inhibiting DNMT1 expression. As a key component of DNA methylation, decreased DNMT1
expression upregulates the level of CD11a and CD70, which ultimately trigger autoreactivity and amount of autoantibodies production.
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groundbreaking progress in this area and advance together

towards new tools for treating SLE.
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80. Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and
function. Nat Rev Immunol (2002) 2(8):569–79. doi: 10.1038/nri855

81. Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed
in biologically meaningful amounts from nutritionally relevant doses of cow milk
and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney
cell cultures, and mouse livers. J Nutr (2014) 144(10):1495–500. doi: 10.3945/
jn.114.196436

82. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T,
et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian
cells and modulate innate immunity. Nat Commun (2014) 5:5488. doi: 10.1038/
ncomms6488

83. Halkein J, Tabruyn SP, Ricke-Hoch M, Haghikia A, Nguyen N-Q-N, Scherr
M, et al. et al: MicroRNA-146a is a therapeutic target and biomarker for peripartum
cardiomyopathy. J Clin Invest (2013) 123(5):2143–54. doi: 10.1172/JCI64365

84. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F, Ochiya T.
Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic
microRNAs regulate cancer cell metastasis. J Biol Chem (2013) 288(15):10849–59.
doi: 10.1074/jbc.M112.446831

85. Sharifpanah F, de Silva S, Preissner K, Wartenberg M, Sauer H. Stimulation of
vasculogenesis and leukopoiesis of embryonic stem cells by extracellular transfer RNA
and ribosomal RNA. Free Radic Biol Med (2015) 89:1203–17. doi: 10.1016/
j.freeradbiomed.2015.10.423

86. Squadrito Mario L, Baer C, Burdet F, Maderna C, Gilfillan Gregor D, Lyle R,
et al. Endogenous RNAs modulate MicroRNA sorting to exosomes and transfer to
acceptor cells. Cell Rep (2014) 8(5):1432–46. doi: 10.1016/j.celrep.2014.07.035

87. Bronevetsky Y, Ansel M. Regulation of miRNA biogenesis and turnover in
the immune system. Immunol Rev (2013) 253(1):304–16. doi: 10.1111/imr.12059

88. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, et al. Suppression of
exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell (2019)
177(2):414–27.e413. doi: 10.1016/j.cell.2019.02.016

89. Zhao S, Wang Y, Liang Y, Zhao M, Long H, Ding S, et al. MicroRNA-126
regulates DNA methylation in CD4+ T cells and contributes to systemic lupus
erythematosus by targeting DNAmethyltransferase 1. Arthritis Rheumatism (2011)
63(5):1376–86. doi: 10.1002/art.30196

90. Perez-Hernandez J, Forner MJ, Pinto C, Chaves FJ, Cortes R, Redon J.
Increased urinary exosomal MicroRNAs in patients with systemic lupus
erythematosus. PloS One (2015) 10(9):e0138618. doi: 10.1371/journal.pone.0138618
Frontiers in Immunology 12
91. Ichii O, Otsuka-Kanazawa S, Horino T, Kimura J, Nakamura T, Matsumoto
M, et al. Decreased miR-26a expression correlates with the progression of podocyte
injury in autoimmune glomerulonephritis. PLOS One (2014) 9(10):1–11. doi:
10.1371/journal.pone.0110383

92. Claßen L, Tykocinski L-O, Wiedmann F, Birr C, Schiller P, Tucher C, et al.
Extracellular vesicles mediate intercellular communication: Transfer of functionally
active microRNAs by microvesicles into phagocytes. Eur J Immunol (2017) 47
(9):1535–49. doi: 10.1002/eji.201646595

93. Salvi V, Gianello V, Busatto S, Bergese P, Andreoli L, D'Oro U, et al.
Exosome-delivered microRNAs promote IFN-a secretion by human plasmacytoid
DCs via TLR7. JCI Insight (2018) 3(10):1–11. doi: 10.1172/jci.insight.98204

94. Tan L, Zhao M,WuH, Zhang Y, Tong X, Gao L, et al. Downregulated serum
exosomal miR-451a expression correlates with renal damage and its intercellular
communication role in systemic lupus erythematosus. Front Immunol (2021)
12:630112. doi: 10.3389/fimmu.2021.630112

95. Li W, Liu S, Chen Y, Weng R, Zhang K, He X, et al. Circulating exosomal
microRNAs as biomarkers of systemic lupus erythematosus. Clinics (Sao Paulo
Brazil) (2020) 75:e1528. doi: 10.6061/clinics/2020/e1528

96. Zhou S, Zhang J, Luan P, Ma Z, Dang J, Zhu H, et al. miR-183-5p is a
potential molecular marker of systemic lupus erythematosus. J Immunol Res (2021)
2021:5547635. doi: 10.1155/2021/5547635

97. Lin LJ, Mai LJ, Chen G, Zhao EN, XueM, Su XD. [Expression and diagnostic
value of plasma miR-145 and miR-183 in children with lupus nephritis]. Zhongguo
dang dai er ke za zhi = Chin J Contemp Pediatr (2020) 22(6):632–7. doi: 10.7499/
j.issn.1008-8830.2001013

98. Wu Q, Qin Y, Shi M, Yan L. Diagnostic significance of circulating miR-485-
5p in patients with lupus nephritis and its predictive value evaluation for the
clinical outcomes. J Chin Med Assoc JCMA (2021) 84(5):491–7. doi: 10.1097/
JCMA.0000000000000522

99. Ahmed RF, Shaker OG, Abdelghany HM, Helmy Abdallah N, Elsayed SH,
Kamel BA. Role of micro-RNA132 and its long non coding SOX2 in diagnosis of
lupus nephritis. Lupus (2022) 31(1):89–96. doi: 10.1177/09612033211067166

100. Ingenito F, Roscigno G, Affinito A, Nuzzo S, Scognamiglio I, Quintavalle C,
et al. The role of exo-miRNAs in cancer: A focus on therapeutic and diagnostic
applications. Int J Mol Sci (2019) 20(19). doi: 10.3390/ijms20194687

101. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of
siRNA to the mouse brain by systemic injection of targeted exosomes. Nat
Biotechnol (2011) 29:341. doi: 10.1038/nbt.1807

102. Perez-Hernandez J, Redon J, Cortes R. Extracellular vesicles as therapeutic
agents in systemic lupus erythematosus. Int J Mol Sci (2017) 18(4). doi: 10.3390/
ijms18040717

103. Farivar S, Shaabanpour Aghamaleki F. Effects of major epigenetic factors
on systemic lupus erythematosus. Iran BioMed J (2018) 22(5):294–302. doi:
10.29252/ibj.22.5.294

104. Tao B, Xiang W, Li X, He C, Chen L, Xia X, et al. Regulation of toll-like
receptor-mediated inflammatory response by microRNA-152-3p-mediated
demethylation of MyD88 in systemic lupus erythematosus. Inflammation Res Off
J Eur Histamine Res Soc [et al] (2021) 70(3):285–96. doi: 10.1007/s00011-020-
01433-y

105. Zhang C, Wang X, Chen Y, Wu Z, Zhang C, Shi W. The down-regulation
of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA
methylation of CD11a and CD70 in CD4(+) T cells of systemic lupus
erythematous. Clin Sci (London Engl 1979) (2018) 132(21):2285–98. doi:
10.1042/CS20180403

106. Zhao X, Li S, Wang Z, Bai N, Feng Y. miR−101−3p negatively regulates
inflammation in systemic lupus erythematosus via MAPK1 targeting and
inhibition of the NF−kB pathway. Mol Med Rep (2021) 23(5). doi: 10.3892/
mmr.2021.11998

107. Sun H, Guo F, Xu L. Downregulation of microRNA-101-3p participates in
systemic lupus erythematosus progression via negatively regulating HDAC9. J Cell
Biochem (2020) 121(10):4310–20. doi: 10.1002/jcb.29624

108. Kourti M, Sokratous M, Katsiari CG. Regulation of microRNA in systemic
lupus erythematosus: the role of miR-21 and miR-210. Mediterr J Rheumatol
(2020) 31(1):71–4. doi: 10.31138/mjr.31.1.71
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