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Research progress on unique
paratope structure, antigen
binding modes, and systematic
mutagenesis strategies of
single-domain antibodies

Chang Liu, Hong Lin, Limin Cao, Kaiqiang Wang
and Jianxin Sui*

College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
Single-domain antibodies (sdAbs) showed the incredible advantages of small

molecular weight, excellent affinity, specificity, and stability compared with

traditional IgG antibodies, so their potential in binding hidden antigen epitopes

and hazard detection in food, agricultural and veterinary fields were gradually

explored. Moreover, its low immunogenicity, easy-to-carry target drugs, and

penetration of the blood-brain barrier have made sdAbs remarkable

achievements in medical treatment, toxin neutralization, and medical

imaging. With the continuous development and maturity of modern

molecular biology, protein analysis software and database with different

algorithms, and next-generation sequencing technology, the unique

paratope structure and different antigen binding modes of sdAbs compared

with traditional IgG antibodies have aroused the broad interests of researchers

with the increased related studies. However, the corresponding related

summaries are lacking and needed. Different antigens, especially hapten

antigens, show distinct binding modes with sdAbs. So, in this paper, the

unique paratope structure of sdAbs, different antigen binding cases, and the

current maturation strategy of sdAbs were classified and summarized. We hope

this review lays a theoretical foundation to elucidate the antigen-binding

mechanism of sdAbs and broaden the further application of sdAbs.
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1 Introduction

The traditional heterotetrameric structures of conserved IgG

antibodies have been challenged by the natural discovery of

antibodies that are only retained heavy chains and devoid of

light chains in the sera of Camelidae called heavy-chain

antibodies (HCAbs) (1) and Chondrichthyes called Ig New

Antigen Receptors (IgNARs) (2). With the continuous

maturity of molecular biologies, such as hybridoma technology

(3), DNA recombinant (4), phage display technology (5), and

next-generation sequencing (6), genetic engineering antibodies,

represented by sdAbs, could be in-depth investigated

and developed.

SdAbs are the recombinant antibodies, which are screened

from a library and ultimately heterologously expressed, only

retaining the variable region of HCAbs or IgNARs. In nearly 20

years of research, the advantages like high affinity and specificity

(7), excellent thermostability (8), and organic reagent tolerance

have been gradually put on the map (9). More importantly, after

the unique prolate “rugby ball shaped” paratope structures have

been discovered (10), SdAbs have significantly developed in the

detection of hazard substances in food, agricultural and

veterinary fields (11–13). Although it is only composed of 110-

130 amino acids, it has the equivalent or higher antigen affinity

to traditional antibodies, attained with affinities as low as in

nanomolar range against an antigen epitope (14). Maximum

recorded associations were achieved in the picomolar array in

the binding case of anti-albumin (15).

There are extensive related review articles about the

structural characterization, physicochemical properties and

different application fields of sdAbs. Muyldermans et al. (16)

and Juma et al. (17) reviewed the typical structures of HCAbs-

derived and IgNAR-derived sdAbs and their corresponding

heavy chain antibodies detailly. Goldman et al. (18) reviewed

the strategies to improve the stability of sdAbs, which showed

that the excellent performance of sdAbs enables them to have

development potential in many fields. Hoey et al. (19) and

Khalid et al. (20) looked forward to the potential of sdAbs in

the field of disease treatment, clinical diagnosis and immune

detection, respectively. Meanwhile, Leow et al. (21) reviewed the

potential of sdAbs in medical imaging. Although the potential of

sdAbs in various application scenarios is vast, the actual binding

situation between sdAbs and certain antigens with high affinity

remained unclear. Studies have shown that the binding modes of

sdAbs are different when they bind to certain antigens, especially

haptens. The existing binding cases between specific antigens

and sdAbs are needed to be summarized. Clarifying the binding

modes between sdAbs and different antigens could achieve

systematic maturation and widen their application of sdAbs.

Nowadays, with the continuous development and maturity

of crystallography, protein analysis software with different

algorithms, and next-generation sequencing technology, the

research on the structure-activity relationship and systematic
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maturation of antibodies has become a focused area in sdAbs

research (22). Therefore, we reviewed the existing binding

modes between sdAbs to certain antigens, including

macromolecule antigens and hapten antigens, and the

strategies of systematic maturation of sdAbs, in hoping of

providing a theoretical basis for further elucidating the antigen

binding mechanism of sdAbs and broadening the application

of sdAbs.
2 Structural features of sdAbs

2.1 VHH domains

At present, the basic structure of sdAbs and their

corresponding encoding genes have been investigated

comprehensively. SdAbs derived from camelid heavy-chain

antibodies are called VHH domains. The gene encoding VHH

domain length is about 360 bp, which allows expanded

functionality through the creation of modularity via genetic

fusions to a wide array of proteins, like the creation of multi-

specific antibody fusions (23, 24). VHH domains comprise 9 b-
strands, one 4-stranded b-sheet and another 5-stranded b-sheet,
connected by a conserved disulfide bond between Cys residue at

position 23 (23Cys) and Cys residue at position 94 (94Cys) to

stabilize the structure, packed against a conserved Trp residue

(16). An additional disulfide bond connects the CDR3 loop and

CDR1 in camels or CDR2 in llamas, resulting in a more

constrained conformation (25). Different from the interface

region comprised of highly conserved hydrophobic residues,

usually 47Val, 49Gly, 50Leu, 52Trp. In VHH domains, these

residues are replaced by smaller or hydrophilic amino acids,

primarily 47Phe, 49Glu, 50Arg, and 52Gly (26–29). As a result,

the water solubility is improved while the tendency to form the

aggregate is reduced compared to traditional IgG antibodies (25)

(Figures 1A, B).

Under the existing research, VHH domains typically rely

heavily on the elongated CDR3 regions in antigens bindings.

There’s a lot of evidence proving that the extended CDR3 region

participates in intramolecular interactions with the VHH

framework (19). Based on the length of CDR3, it can be

generally divided into three types: concave type (about 6 aa),

loop type (about 12 aa), and convex type (about 16 aa).

According to the definition of IMGT, in VHH domains, the

length of the CDR3 region is approximately twice than that of

CDR1 and CDR2 regions, as CDR1 and CDR2 regions are

usually 7 aa long, respectively (30). The convex form of CDR3

provides a sufficiently large antigen interacting surface for about

600-800 Å (31), implying a more extensive versatility and

flexibility in binding target antigens (19). Thereby, it is often

found to enhance the additional interaction strength and

penetrate deeply into the cavity of the target antigen.

Compared to monoclonal antibodies, VHH domains are also
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exhibited to improve tissue penetration and significantly

increase the stability (32).
2.2 VNAR domains

Compared to VHH domains, sdAbs derived from IgNARs

are called VNAR domains. The features of smaller molecular

weight and stronger ion tolerance of VNAR domains compared

to VHH domains have attracted widespread of interests. The

most distinctive feature of the VNAR domain is the deletion of

C’ and C’’ strands that typically comprise the CDR2 region as the

somatic mutations result (15), making it only consisted of 8 b-
strands, becoming the most minor antigen binding domain
Frontiers in Immunology 03
naturally (33, 34) (Figure 1C). A conserved disulfide bond

connects two b-strands between FR1 (22Cys) and FR3 (83Cys)

(35) [in some studies numbered as 21Cys & 82Cys (20)]. The

absence of the CDR2 region is compensated by two loops,

known as hypervariable region 2 region (HV2) and

hypervariable region 4 region (HV4), with a high diversity of

amino acids. Structurally speaking, the HV2 region forms a

“belt-like” surrounding the VNAR domain, while the HV4

region lies at the top of the VNAR domain, opposite to the

CDR1 region (33, 36).

In contrast to mammalian antibody genes that are typically

organized in the translocon format, shark antibody genes are

exclusively arranged in the cluster configuration (15). This

cluster configuration and multiple re-arrangement events,
A B

D E

C

FIGURE 1

The stereo view of the binding paratopes of Fab (A) (PDB: 1IGT), VHH (B) (PDB: 1I3V) and VNAR (c) (PDB: 2CDQ) (25), Copyright © 2017 Elsevier.
(D, E) represent two examples of the geometrical VHH structures in the “best-fit ellipsoidal model”, PDB: 1BZQ for (D) and PDB: 5OVW for (E),
while axe a-c represents the depth, width and length, respectively (14), Copyright © 2018 Elsevier.
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containing P-nucleotide addition, N-region addition, D-region,

and exonuclease trimming provide diversification in sequence

and length in VNAR domains, especially in the CDR3 region

(15, 25, 37). The length of CDR3 could vary up to 34 amino

acids, while it only generally comprises 8-12 amino acids in

humans (38).

Unlike VHH domains, VNAR domains usually contain non-

canonical cysteines, which could form additional disulfide bonds

and dramatically alter the structure topology of variable loops of

VNAR domains (39–42). Therefore, the divergence of additional

disulfide bonds increased the VNAR domains’ structural

variability and the interaction of antigen epitopes (15). The

inter-domain disulfide bonds formed by Cys residues determine

the structures of the VNAR domains. To further distinguish

different structures of VNAR domains due to the atypical

disulfide bonds, VNAR domains are divided and classified into

different subtypes (40). To date, VNAR domains are mainly

classified into the following four subtypes, as shown in the

following table (Table 1).

Recently, a sizeable next-generation sequencing combing

Perl Script (a customed algorithm used to analyze and merge

the sequences) was used together to analyze approximately 1.2

million full-length VNAR domain sequences gained from an

unimmunized phage-display library constructed from six naïve

nurse sharks (Ginglymostoma cirratum) (51). However, around

5% of VNAR domains cannot be classified in any subtypes

mentioned above but also showed a remarkable binding affinity

to specific antigen epitopes (41). Advancements and

optimization are needed considering the limitation of this

classification method and further understanding of the
Frontiers in Immunology 04
biophys ica l propert ies and the binding modes of

antigen epitopes.
2.3 The unique paratope of sdAbs

In conventional IgG antibodies, the variable fragment

contains six hypervariable loops, also called complementary

determining loops (CDRs), including three loops in light

chains, called CDR-L1, L2, L3, and three loops in heavy

chains, called CDR-H1, H2, H3, sustained by highly conserved

b-sheet frameworks (52). In order to recognize the specific

antigenic regions accurately and specifically, residues usually

encoded by up to six different CDR regions, located at the

interfaces of VH and VL interfaces, were defined as paratopes,

and the corresponding complementary binding sites on the

antigen surface were defined as epitopes (Figure 1A) (53).

In conventional IgG antibodies, the forms of paratopes are

usually a cavity, groove, or flat surface, with an epitope of 600-

900 Å (the size also depends on the amino acid composition, the

loop size, and the difference of algorithm) (54). The entire

structure of IgG antibodies is highly conserved, while the CDR

regions, particularly H3 loops, differ extensively not only in

terms of sequence but also in structures (52). Undoubtedly, the

CDR-H3 loop of traditional IgG antibodies plays an essential

role in binding and recognizing epitopes (55). However, as

mentioned above, the forms of paratope in conventional

antibodies are relatively flat binding surfaces. Thus, it is

considered restricted and struggled in binding certain epitopes,

like active sites of enzymes, parasite coat proteins, viral canyons,
TABLE 1 Subtypes of VNAR domains and their structural features.

Subtypes Non-canonical Cys Location Featural Structural Description Name (Species) Refs

Type I located on FR2 & FR4 1. relatively rigid antigen-binding surface;

2. Cysteines in CDR3 loops form intraloop
disulfide bonds;

3. CDR3 pinned tightly against the side of the
molecule

Nurse shark (Ginglymostoma cirratum);

wobbegong shark (Orectolobus ornatus); (10, 15),
(33, 41),
(43, 44)

Type II located on CDR1 & CDR3 1. stable interloop disulfide bonds;

2. a protrusive “finger-like” CDR3 formation
with an average of 15 and 21 residues

3. CDR1 played an apparent but minor
contribution compared to CDR3 loop in
antigen-binding;

Nurse Shark (Ginglymostoma cirratum);
wobbegong shark (Orectolobus ornatus);

Spiny dogfish (Squalus acanthias);

Smooth dogfish (Mustelus Canis);

Horn shark (Heterodontus francisci);

Bamboo shark (Chiloscyllium plagiosum)

(36, 42),
(43, 44),
(45, 46)

Type IIB
(Type IV)

lacking non-canonical cysteine
residues and disulfide bonds

only two cysteine residues hold VNAR together
(21Cys and 82Cys)

wobbegong shark (Orectolobus ornatus);

Spiny dogfish (Squalus acanthias);

Small-spotted catshark (Scyliorhinus canicula)

(40, 46),
(47, 48)

Type III located on CDR1 and CDR3 with a
highly conserved Trp 31 residue
on CDR1

two of the three diverse regions of type III
VNARs are germline joined and showed less
diversity in CDR3

only found in nurse sharks during neonatal
(Ginglymostoma cirratum) and Spiny dogfish
(Squalus acanthias);

development before maturation of the antigen of
antigen-driven response

(47, 49, 50)
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and recessed cryptic epitopes (56–58). On the other hand, given

the large size of traditional antibodies, it is almost impossible to

achieve tissue penetration, like the blood-brain barrier, or

combine with the target epitope using the conventional IgG

antibodies (59) (Figures 1B, C).

Markedly different from the paratopes of traditional

antibodies, the prolate “rugby ball shaped” paratope structure

of sdAbs forms a distinctly convex surface, increasing the

contact frequency of epitopes, making it highly suitable to

bind the rigid, concave, clefts, cavities, and restricted epitopes

and can access the hydrophobic core of epitope enriched with

aromatic residues (60). This may be why sdAbs showed

equivalent or higher binding affinities as conventional Abs

with other excellent antibody properties (16). Recently, a study

reported a “best-fit ellipsoidal model” to geometrically simulate

and quantify the spatial situation of the sdAbs paratope

(Figures 1D, E). In this best-fit ellipsoidal model, the average

depth of the epitope is approximately 6 Å, while width and

length are measured as 12 Å and 17 Å, respectively. In this study,

a total of 28 residues in paratopes formed an approximately 1500

Å antigen contacting surface area on average (14).

The CDR3 region usually plays an essential role in antibody

epitopes. In VHH domains, the CDR3 region could form more

convex and unique paratopes with CDR1, CDR1&2, and

CDR2&FR, respectively (61–64). The paratopes in VHH

domains are enriched in aromatic residues like conventional

antibodies but bear a more hydrophobic character (14). In

VNAR domains, despite restrictions on the formation of

disulfide bonds by non-canonical Cys residues, a wide variety

of VNAR formations can still be adopted, attributed to the

enormous topological latitude inherent in the CDR3 region (40).

The other interesting thing is that there is a significantly

increased frequency for polar and charged amino acids on the

paratope of sdAbs, which is consistent with the fact that sdAbs

are more water-soluble than traditional antibodies (65). Overall,

the diverse and complex paratope architecture of sdAbs provides

more possibilities for binding to antigen epitopes (66, 67). The

latest X-ray structure study showed that sdAbs and traditional

antibodies, targeting the same homologous antigens, covered

similar surface areas and formed similar non-covalent

interactions with the antigens. Compared with traditional

antibodies, sdAbs would preferentially enter different antigen

areas on proteins (68).

There have been researches on analyzing large samples of

camel-derived sdAb-antigen complex structures to look for

trends in camel-derived sdAb-antigen binding and the

paratope of sdAbs. In Mitchell’s research (69), 156 individual

sdAb-antigen complex structures were compared with

corresponding traditional antibody-antigen complex

structures. The study showed that the paratope of sdAbs

showed more substantial diversity in amino acid residues and

binding forces with antigens than traditional antibodies. In

sdAb-antigen binding cases, CDR3 regions are more
Frontiers in Immunology 05
advantageous than other regions in mediating antigen

interaction, in nearly 1/3 binding cases, sdAbs do not contact

antigen through CDR1 and CDR2 regions. In Mitchell’s another

research (70), 90 individual sdAb-antigen protein crystal

structures were analyzed. Results showed that although sdAbs

have only three variable loops, sdAbs could compensate by

increasing the length of three CDR regions, the variation level

of sequences and the diversity of amino acids. Compared with

traditional antibodies, sdAbs have 7% more amino acid residues

in CDR3 regions, so sdAbs showed the equivalent or higher

antigen affinity to traditional antibodies.
3 Antigen binding modes of sdAbs

To date, several methods have been used to investigate the

binding modes of sdAbs targeting certain antigens. One way is

through X-ray crystallography. After analyzing the crystal

structure of the sdAbs-antigen compound, the actual binding

mode and key amino acids were determined. In the early years,

alanine scanning or other experimental methods were used to

predict important residues or paratopes for antigen binding (61,

71, 72). While another approach is to analyze the possible

binding mode and key amino acids through molecular

simulation and docking analysis based on the sequence of

antigen and antibody by protein analysis software with

different algorithms (73–75). These methods have become a

relatively mainstream and reliable way to analyze the modes of

sdAbs-antigen binding. This section summarized the

contributions of key amino acids in different regions and

forces of sdAbs paratopes in binding to different antigens in

the existing research, hoping to discover the combination rules

of sdAbs with certain different antigens.
3.1 The domination of the CDR3 region
in antigen binding

As clarified above, the most distinct characteristics of sdAbs

are the prolate and ellipsoid paratope structures, while the most

distinguishing feature of paratope is the massive topology of the

CDR3 region. Undoubtedly, the CDR3 sequence is essential for

binding most antigens. It has been proved that most binding to

antigen epitopes is attributed to the sdAbs paratopes formed by

its long and flexible CDR3 region. This section summarizes the

current studies on the dominant role of the CDR3 region in

antigen binding, and the relevant key amino acids are

summarized in Table 2.

Lysozyme is a bacteriostatic protein that inhibits bacterial

growth by hydrolyzing peptidoglycan on cell walls with a distinct

concave shape epitope, which has been gradually a widely

studied target protein in antibody binding research (80). In

Desmyter’s research (76), the compound crystal structure of the
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VHH domain and the antigen lysozyme was first discovered. In

this study, the binding mode of sdAbs to antigen was firstly

described at a molecular level. VHH domain enters the active site

of lysozyme cryptic concave epitope through a prominent CDR3

region (~70%). The prolate VHH domain tends to bind the

epitopes of antigens that are more conserved, concave, and rigid

with richer aromatic residues (Figure 2A). Later in the year 2006,

Genst discussed the structure of six VHH-lysozyme compounds.

Six VHH domains all tend to insert into the critical active sites of

lysozyme 35Glu and 52Asp via their long CDR3 loops. Residue

Arg100e of the CDR3 region made a contribution in the binding

that forms a salt bridge with lysozyme to stabilize the

compounds, which was consistent with Desmyter’s research

(60) (Figure 2B). In 2004, Stanfield firstly discovered the

compound crystal structure of the VNAR domain and the

antigen lysozyme (33). Similar to the way the VHH domain

binds to lysozyme, the VNAR domain binds through a

prominent CDR3 region, especially 100Arg and 101Tyr, which

are deeply embedded in the active center of lysozyme. The

residue 100Arg in the CDR3 region forms a salt bridge with

52Asp of lysozyme and partially inhibits lysozyme activity. In

addition, it is also found that the conformation of the CDR1

region of the VNAR domain is not similar to that of human or

murine but instead converges found in VHH domains, and part

of the CDR1 region is also involved in binding with the

antigen (Figure 2C).

Besides, Jiao screened the VHH clone A8 specifically binding

various Cry1 toxins of Bacillus thuringiensis (Bt) from the library

and confirmed that the key amino acids in binding Cry1 toxins

were 105Asp, 106Arg, 107Val, and 114Arg in the CDR3 region

by homology modeling and molecular docking techniques (77)

(Figure 2D). Qiu confirmed that the amino acid residues 104Pro,

105Tyr, and 106Ser in the CDR3 region of VHH clone N-28 are

essential for binding the target antigen deoxynivalenol (78)

(Figure 2E). Nie screened a sdAbs called NT-3 that can

effectively inhibit the tumor necrosis factor TNF-a, which
could induce autoimmune diseases and inflammation, with an

IC50 of 0.804 mM (79). Molecular docking showed that the CDR3

region in this clone dominated by 114Trp played an essential

role in affinity function, while other amino acids 37Arg, 39Phe,
Frontiers in Immunology 06
40Ser, 66Gly, 67Ser, and 75Lys located on CDR1 and CDR2 also

participate in the TNF-a binding reaction through salt bridge

and hydrogen bonds (81) (Figure 2F). It is found that although

the CDR3 region plays a leading role in antigen binding, but it is

unlikely to bind the antigen alone.

The VNAR domain 12A-9 was initially screened from a

combinatorial library derived from wobbegong sharks

(Orectolobus maculatus), with the specific binding ability for

the Gingipain K protease from Porphyromaonas gingivalis (45).

In the modeling investigation of type III 12A-9, a large number

of aromatic amino acids were discovered in the CDR3 region,

including 86Tyr, 88Tyr, 96Phe, and 99Tyr. The amino acid

96Phe can form multiple antigen-binding conformations with

different orientations with residues with larger side chains or

charged residues, forming complex and diverse paratopes. When

the epitopes approached the conserved acidic amino acids 97Asp

and 98Glu, this region formed a large acid area around 96Phe.

Residues 86Tyr, 91Ala, 92Glu, 93Leu, 94 Asp, and 95Ser were

also involved in antigen binding.
3.2 The contribution of CDR1 region in
antigen binding

To date, the contribution of CDR1 region in antigen binding is

quite different for macromolecular antigens and small molecular

antigens. For some macromolecular antigens, directed mutations

and variations on CDR1 region usually seems to have less effect on

increasing the affinity in antigen binding, indicating CDR1 region

may be less involved in these macromolecular antigen binding cases.

In Dooley’s research, the KD values of the mutant (Ala30Val)

changed from 9.5 nM to 10 nM, which did not improve

significantly (82). Similarly, there was no significant increasing

affinity of VNAR mutant Ala27Thr on the binding of Plasmodium

falciparum AMA1, the Kd value did not change significantly (from

10-8 M to 1.47×10-7 M) (83). Also, the mutation of Phe29Leu did

lead to an increase in binding affinity to Plasmodium falciparum

AMA1 (approximately 7-fold enhanced compared to the wild type),

but a large proportion of incorrectly folded proteins were produced,

resulting in a large loss of protein stability (84).
TABLE 2 The cases of the CDR3 region dominate in antigen binding.

Target Antigen sdAbs type Main Key amino acid in paratope Main Binding Forces Refs

Hen egg white lysozyme VHH 98Ile, 100Ala, 100aSer, 100bTyr and 100nTyr, – (76)

Hen egg white lysozyme VHH 100aSer, 100eArg salt bridges, hydrogen bonds (60)

Hen egg white lysozyme VNAR 100nArg salt bridges (33)

Cry1 toxins VHH 105Asp, 106Arg, 107Val, 114Arg – (77)

Deoxynivalenol VHH 102Thr, 103Val, 104Pro, 105Tyr, 106Ser – (78)

Tumor necrosis factor TNF-a VHH 114Trp salt bridge and hydrogen bonds (79)

Gingipain K protease VNAR 86Tyr, 88Tyr, 96Phe, 97Asp, 98Glu, 99Tyr. hydrogen bonds; polar and non-polar interactions (45)
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However, in some hapten antigen binding cases, sdAbs

showed a special binding mode: the CDR3 region is rarely

involved in the interactions with haptens, and the binding

mainly contributes to the CDR1 region. In this binding
Frontiers in Immunology 07
situation, the hapten antigen tends to insert its hydrophobic

core into the “tunnel” structure formed by the CDR1 region (85)

(Figure 3A). In Rosa’s research, three VHH domains, called T4,

T9 and T10, which binds to triclocarban (TCC) specifically were
A B

D

E F

C

FIGURE 2

(A) SThe stereo view of the ribbon representation in the X-ray structure of VHH in the complex with lysozyme (76), Copyright © 1996 Nature.
(B) One of six VHH-HEWL complex structures, where the active site residues are labeled and side-chain atoms color-coded (60), Copyright ©

2006 The National Academy of Science of the USA. (C) The stereo view of the crystal structure of VNAR in the complex with HEL, where HEL is
shown in light blue (33), Copyright © 2004 Science. (D) The stereo view of the structure modeling and molecular docking of sdAb-Cry1 toxin
complex (77), Copyright © 2017 Springer. (E) The stereo view of molecular docking of sdAb-anti-DON scFv complex (78), Copyright © 2015
Springer. (F) The stereo view of molecular docking of sdAb-TNF-a complex (79), Copyright © 2021 Elsevier.
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investigated (86). Due to the hydrophobicity of triclocarban, the

interaction between TCC and sdAbs was a hydrophobic force. In

this binding case, the binding mainly occurs in the large and

hydrophobic “tunnel” structure formed by the CDR1 region.

The more extensive binding interface leads to tight binding with

the dissociation affinity of nanomolar. Similarly, in Ding’s

research, the CDR1 region of the VHH domain also played an

essential role in interacting with the target antigen cortisol. The

hydrophobic part of cortisol inserts into the hydrophobic pocket

formed by the CDR1 region to achieve the binding with sdAb

(85) (Figures 3B, C).
3.3 Numerous CDR regions contribute to
the antigen binding

3.3.1 CDR1 & CDR3
In the research of Decanniere, a VHH domain called cAb-

RN05 was found that it had the specific binding ability to bovine
Frontiers in Immunology 08
ribonuclease A (RNase A) (87). In this binding case, the CDR2

loop is not near the epitope and does not participate in antigen

binding. Residues 27Tyr, 31Tyr, 32Ile, 33Tyr, 95Gly, 96Gly,

97Tyr, 100Arg, Thr100c, and 101Gly as the key amino acids to

form the paratope of sdAbs. The main interaction force of this

binding is the hydrogen bond formed by 27Tyr of paratope and

the amide atom in 62Asn of RNase A. However, in conventional

antibodies, the sizeable hydrophobic side chain of Tyr27 packs

deeply into the internal hydrophobic pocket, so it is therefore

unavailable to interact with the target antigen (Figure 4A). In

Similar research from Koide (61), a VHH domain was screened

that it has a specific binding to RNase A. In this binding case,

after ALA scanning and analysis, CDR1 and CDR3 contribute

nearly equal to the antigen binding. The key amino acids for

antigen binding were identified as 27Tyr, 31Tyr, and 32Ile from

the CDR1 region and 95Gly, 96Gly, 99Leu, and 100dTyr in the

CDR3 region (Figure 4B).

The binding of sdAbs with an azo-dye called RR6 is the

earliest study on the binding of sdAbs to the hapten (67). RR6 is
A

B C

FIGURE 3

(A) The side view and top view of the cortisol in the complex with sdAb called NbCor, where the side chains of CDRs 1-3 in NbCor are shown in
blue, green and red, respectively. The cortisol molecules are represented by spheres (85), Copyright © 2019 John Wiley & Sons. (B) The stereo
view of the structure of TCC (gray carbons) in the complex with sdAb called T9 (blue main chain and white carbons) (86), Copyright © 2018
John Wiley & Sons. (C) The stereo view of the structure of TCC (gray carbons) in the complex with sdAb called T10 (green main chain and white
carbons) (86), Copyright © 2018 John Wiley & Sons.
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an unusual hapten with two copper ions, several aromatic rings,

and numerous charged groups. Despite lacking the adjacent VL

domain, the VHH domain has an excellent binding ability to the

hapten. On the one hand, the CDR3 region can form a sizeable

binding pocket to accommodate the hapten epitope through its

massive topology, which has good surface complementarity with

the hapten. On the other hand, residues 32aHis and 32cHis can

bind to the copper ion in the hapten, resulting in the dissociation

of sdAbs to the hapten RR6 is only 20 nM (67) (Figure 4C).

In this research (44), two VNAR domains that target apical

membrane antigen 1 of plasmodium falciparum malarial

parasites, called 12Y-1 and 12Y-2, were investigated. The

antigen binding mainly contributed to the C-H…p
Frontiers in Immunology 09
interactions by 29Phe from the CDR1 region and 87Tyr,

100Phe from the CDR3 region. The side chains and adjacent

water molecules formed by charged and polar amino acid

residues of 37Tyr, 46Glu, 82Lys, 84Gln, 101Arg, and 104Lys

formed a charged pocket with hydrogen bonds, which are used

for antigen binding. This research also proved that the extended

b-hairpin structure in the VNAR domain could form unique

paratopes to penetrate the hidden epitopes of the antigen.

3.3.2 CDR2 & CDR3
Numerous studies have shown that a-synuclein plays an

essential role in the occurrence and development of Parkinson’s

disease, Alzheimer’s disease, dementia with Lewy bodies, multiple
A B

D E F

C

FIGURE 4

(A) The stereo view of the sdAb called cAb-RN05 (yellow) in the complex with the binding antigen RNase A (grey) (87), Copyright © 1999
Elsevier. (B) The stereo view of the crystal structure of sdAb (green) in the complex with RNase A (gray) (61), Copyright © 2007 Elsevier. (C) The
stereo view of the hapten RR6 molecule in the complex with the sdAb fragment (67), Copyright © 2000 American Chemical Society. (D) The
stereo view of the crystal structure of sdAb called NbSyn2 in the complex with a synthetic peptide called NGYQDYEPEA-C (88), Copyright ©

2010 Elsevier. (E) The stereo view of the hapten RR1 molecule in the complex with the sdAb fragment (66), Copyright © 2001 Academic Press.
(F) The stereo view of hapten MTX molecule in the complex with VHH (89), Copyright © 2011 The Protein Society.
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system atrophy, and other related neurological diseases (90). In

Genst’s research (88), a VHH domain selected by phage display

technology, called NbSyn2, showed excellent binding affinity to a-
synuclein with nanomolar affinity by NMR spectroscopy and X-ray

crystallography. Detailed analysis of VHH-a-synuclein crystal

structure indicated that the paratope formed by 50Arg, 52Asn,

58Lys of CDR2 region and 105Tyr, 107Gly, 113Phe, 116Trp of

CDR3 region makes the contacts with the residues 136Tyr, 137Glu,

138Pro, 139Glu and 140Ala of a-synuclein. This binding case is

mediated primarily by side chain interactions, which are essentially

electrostatic (Figure 4D). In Spinelli’s research (66), a VHH domain

called VHH-52 was selected and confirmed the binding ability to

the hapten azo-dye RR1. RR1 is an aromatic molecule containing

three sulfate groups. In this binding case, the interaction of VHH-

SO32- dominates the binding pattern. The CDR2 and CDR3 regions

form an approximately 8 Å deep crevice, acting as the antigen’s

paratope and leading to a strong interaction with two SO32- groups

of the hapten (Figure 4E).
3.4 Non-CDR or CDR4 of sdAbs in
antigen binding

A growing number of binding cases indicated that the amino

acid residues in the non-CDR region could also act as paratopes to

participate in and mediate the binding to antigens (14). In a

previous statistical study of VHH domains, nearly 16% are

established by the residues from non-CDR interactions (91). In

the research of Desmyter (92), three VHH domains called AMB7,

AMD9, and AMD10 were identified to have the binding ability to

pancreatic a-amylase. In this binding case, it is found that nearly

25-40% of framework residues participated in antigen recognition.

A more plausible explanation is that the amino acid residues of the

non-CDR region can compensate for the deficiencies of light chains

of sdAbs, and this compensation mechanism can provide an

equivalent or larger antigen contact surface than that of classical

immunoglobulins. In Fanning’s research (89), the loop structure

composed of amino acid residues at positions 74-82 in the non-

CDR region was defined as the CDR4 region. The residues of

74Arg, 79Asn, and 80Thr in the CDR4 region can form a

hydrophobic pocket with the residues 4Val, 34Trp, 36Met,

100Ala, and 120Tyr and directly interact with the hydrophobic

part of MTX. In this binding case, the CDR4 region plays an

essential role in the affinity and specificity of binding to the hapten.

Future research is needed to illustrate further the role of binding to

antigens in this region (Figure 4F).
3.5 Other binding cases

3.5.1 CDR2 region in antigen binding cases
Xi used the phage display technology and obtained the VHH

domains called AS33595 and AS32611 specific to the essential
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and effective tumor target epidermal growth factor receptor

(EGFR) (93). Homology modeling, molecular docking,

COCOMAPS web application server, and other technical

analysis methods were used to predict and confirm the

paratope site. Results showed that the paratope of clone

AS32611 was mainly on the surface of the CDR2 region.

Residues 52Asn, 56Trp, and 58Asn act as H bond acceptors

and primarily interact with 434Asp, and 436Asp of EGFR. Near

the CDR2 region, residue 64Glu interacts with the 463Lys by

forming a salt bridge (Figure 5A).

3.5.2 HV2 of VNAR domains as the paratope
The HV2 region is the unique structure of IgNAR-derived

sdAbs. For the type I VNAR domain, the CDR3 region is held

tightly in the direction of HV2. Consistent with this structure

feature, the mutations in this particular type are favored,

indicating that the HV2 region may act as the paratope in

antigen binding (65, 95). Zielonka screened and engineered the

HV2 region in the VNAR domain targeting epithelial cell

adhesion molecule (EpCAM) by using the method of yeast

surface display (96), which can bind to the target antigen

independently of the traditional antigen binding sites

composed of CDR1, CDR3 or HV4. Results indicated that the

HV2 region could be used as a potential autonomous paratope

that exclusively facilitates the target antigen binding without

destroying the functional integrity or structure of VNAR

scaffolds. This study provides a theoretical basis for developing

bispecific sdAbs (97).

3.5.3 Dimer-VHH binding
In Lesne’s research (94), the VHH domain combined with

the target hapten caffeine with an unexpected 2:1 ratio. The

caffeine molecule is sandwiched between two CDR3 regions

from their VHH domains, stacking on an extremely dimer

interface. Residues 34Tyr from the CDR1 region and 104Tyr

from the CDR3 region are in direct contact with caffeine by

hydrogen bond and p-p stacking, respectively (Figure 5B).
4 Systematic maturation of sdAbs

The study of the structure-activity relationship ultimately

improves antibodies’ systemic maturation, including the affinity,

stability, solubility, specificity, and other properties of sdAbs.

After defining and confirming the key amino acids, which

contribute primarily to antigen binding, and the binding

modes to the antigens, different strategies, such as the

combination of mutagenesis and screening procedure, can be

adopted at the molecular level to systematically mature the

sdAbs (98). At present, strategies to improve the systematic

maturation of antibodies in vitro are mainly divided into three

strategies: random mutagenesis, target mutagenesis, and in silico

mutagenesis. This section summarizes and classifies the existing
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systematic maturation researches on sdAbs and compares the

advantages and disadvantages of these methods (Table 3).

Several outstanding challenges in the systematic maturation

of sdAbs still need to be addressed. Firstly, saturation mutation

can be used to evaluate every possible amino acid. However, it is

not likely to result in significant gains in a certain ability by

single mutations (112). Finding the actual binding sites of

multiple CDRs mapping to the precise paratopes is not a

trivial task. Secondly, due to the limited capacity of the library

diversity, it is not realistic to test all combinations of single or

multiple mutations in a single library (113). Lastly, for the

systematic maturation of antibodies, the enhancement of one

certain property, such as affinity, stability or specificity, often

comes at the cost of weakening other properties. For example, an

affinity increase often leads to a decrease in specificity (114).

Notably, residues such as Arg and other aromatic amino acids
Frontiers in Immunology 11
tend to be enriched at antibody affinity maturation but also

increase the risk of non-specific antibody interactions (115, 116).
4.1 Random mutagenesis

In random mutagenesis, a certain length of the sequence of

antibodies would be mutated randomly (117). This mutagenesis

method will introduce the mutation into the corresponding

region by employing error-prone PCR (99, 100), DNA

shuffling (101, 102), etc. Mutagenesis in this way can obtain

various sequences from native antibodies, which is an incredible

and powerful tool, but obviously, this mutagenesis method lacks

pertinence and low efficiency.

In Kobayashi’s research (99), the error-prone PCR was used

to introduce random mutants into the sdAbs genes fragment
A

B

FIGURE 5

(A) The stereo view of the interaction between the binding sites of VHH called AS32611 and the domain III of EGFR (93), Copyright © 2020 Elsevier.
(B) The stereo view of VHH dimers in the complex with caffeine, where the caffeine is represented as sticks (94), Copyright © 2019 Springer.
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target to Anti-E2 (a kind of cortisol with therapeutic

significance). A mutant library with a capacity of 105 members

was constructed. After biopanning, the binding ratio of mutants

(23.8) was significantly higher than that of wild types (11.6) at

the same antibody titer (250 ng/well). In Yau’s research (100),

the random hotspot mutation was used to construct the mutant

ribosome display library targeted to the parathyroid hormone.

After the measurement of SPR, the affinity of the mutant could

be increased about 30 times.

In Sheedy’s research (101), DNA shuffling by staggered

extension process (StEP) method was used to create more

recombinant sdAbs parental genes, targeted to auxinic

herbicides. After CDR shuffling of the best sdAb with other

four sdAb clones by staggered extension process and

pentamerization of shuffled clones, it was found that the

affinity of shuffled sdAbs was similar to that of the parental

clone, but their affinity for auxinic herbicides decreased. In

Harmson’s research (102), DNA shuffling and treatment of

resultant library with gastric and jejunal fluid were used before

biopanning. After biopanning, the most stable clone, called

K922, was selected with more stability and higher affinity to

the target antigen E. coli F4 fimbriae (a toxin that causes diarrhea

in newborns).

A new in vitro display technique, called ribosome display,

was established by Pluckthun in 1997 (118), which mainly

involved first constructing a DNA template for ribosome

display, followed by in vitro transcription, translation and

affinity screening. The transcribed product mRNA does not

contain any stop code. During the translation, ribose will stay

at the 3’ end of mRNA, so the target gene’s translation product

can be displayed on the ribosome’s surface, forming a ternary

complex of “mRNA-protein-ribosome.” Elution buffer is used to

dissociate the ribosome and release mRNA. After purification,

the DNA was used as a template for RT-PCR, and various

essential elements of ribosome display were reintroduced for the

next cycle of enrichment and selection. The target DNA with

high affinity was finally screened out. At present, ribosome

display technology has been applied to the optimization of the

affinity of shark-derived sdAbs (119). A type of RNA polymerase

from Qb bacteriophage is one of the most commonly used to
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generate the diversity and transfer the mutated mRNA templates

to ribosomes for translation (120). In Kopsidas’ research (84),

this method was used to create a diverse library of VNAR

domains. Coupling these randomly mutated mRNA templates

directly to the translating ribosome allowed in vitro selection of

affinity matured variants showing enhanced binding to the target

AMA1 from Plasmodium falciparum. Two affinity-matured

variants were isolated carrying the mutations: Pro90Leu

mutant confers a powerful (10-fold) enhancement of antigen-

binding capability compared to the wild type (83).
4.2 Target mutagenesis

In target mutagenesis, one or more selected residues in a

certain region (usually the CDR region) would be mutated.

Target mutagenesis includes Ala scanning, site-directed

mutation, including site-saturation mutagenesis to make a

relatively small library and select the specific mutants through

related display techniques (121).

In Jiao’s research (77), the sdAbs called A8 targeted Cry

toxins of Bacillus thuringiensis by screening a humanized sdAbs

library. Site-saturation of key amino acids 105Asp, 106Arg,

107Val, and 114Arg was carried out by overlap extension

PCR. Two mutants capable of detecting at least six kinds of

Cry1 toxins, called 2-C_1 &2-C_9, were screened, which

broadened the detection range of target antigens. In Qiu’s

research (78), the sdAb called N-28 targeted to the

deoxynicalenol (DON) was screened from a naïve sdAbs

library and indicated the residues 102Thr, 103Val, 104Pro,

105Tyr, and 106Ser are essential in antigen binding. After

saturation mutagenesis of the above five residues, mutants

with improved sensitivity were selected by monoclonal phage

ELISA and sequencing. Results showed that three mutants with

position 102 mutating to Tyr, position 103 mutating to Leu, and

position 105 mutating to Phe showed the half-maximal

inhibitory concentrations (IC50) were 24.49 ± 1.0 ng/mL (3.2-

fold), 51.83 ± 2.5 ng/mL (1.5-fold), and 35.65 ± 1.6 (2.2-fold) ng/

mL, respectively. In Wang’s research (103), the sdAb called

Nb28, which was against the mycotoxin ochratoxin A (OTA)
TABLE 3 The advantages and disadvantages of main mutagenesis strategies.

Mutagenesis
strategies

Different Forms Advantages Disadvantages Refs

Random Mutagenesis error-prone PCR, saturation mutagenesis,
DNA shuffling

Huge library with various
mutants

High proportion of non-relevant
mutations, low efficiency

(84, 99, 100, 101, 102)

Target Mutagenesis Ala scanning, site-directed mutation More targeted,
High efficiency

limited mutants,
Point mutations usually have no effect.

(77, 78, 103, 104, 105, 106,
107, 108)

In silico mutagenesis Protein analysis software combining
different algorithms

Virtual huge library
mutants;
better structure and
interaction analyze

Restrict by different algorithms;
Lack of maturity and credibility

(73, 79, 109, 110, 111)
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from an alpaca immune library was selected. After homology,

molecular docking, and Ala scanning verification, 53Gly, 79Met,

102Ser, and 149Leu were confirmed as key amino acids for

antigen binding. In this study, a two-site saturated mutation

library was used to construct a mutation library to determine the

best mutation combination. After the biopanning and

identification procedure, the mutant with position 53 mutants

to Gln and position 102 mutants to Asp can reduce the IC50 to

0.29 ng/mL (1.4-fold) and KD value to 52 nM (1.36-fold),

respectively. In Tiller’s research, the sdAb called NbSyn2

specific to the C-terminus of a-synuclein from an immune

library was obtained (104). After computational and alanine

scanning, amount of 14 permissive sites, including 49Ala,

52bLeu, 53Gly, 55Val from CDR2 and 94Ala, 95Lys, 96Phe,

97Ser, 99Gly, 100bGly, 100cTyr, 100dSer, 100fSer, 100gAsn

from CDR3. In this research, the mutant with position 52b

mutants to Typ, position 53 mutants to Arg, position 96 mutants

to Ser, and 100 mutants to Thr, called N2.12, achieved more than

7-fold affinity enhancement without compromising stability.

The mutation of position 96 mutants to Ser contributes

positively to affinity and stability, while position 53 mutants to

Arg increases the affinity with the cost of stability.

Numerous studies have shown that targeted mutagenesis to

Cys and the addition of an atypical disulfide bond can effectively

improve the TM values (the temperature at which the antibody

cannot maintain its original tertiary structures and result in

denaturation of the antibody) of sdAbs. In Turner’s research

(105), a VHH specifically binding ricin was screened. Target

mutagenesis of Arg at position 118 to Trp increased TM by 6 °C

without decreasing the affinity of sdAbs. In Liu’s research (106),

a VHH was screened with the specific binding of recombinant

Ebola virus GP protein with nM affinity using phage display

technology. By target mutagenesis, Residues 54Ala and 78Ile

were both mutated to Cys. After adding the disulfide bonds, the

TM of the mutant can be increased by 15-17°C. In the research

of Hagihara (107), the highly conserved residues 54Ala and 78Ile

were mutated to Cys by adding atypical disulfide bonds, which

could form a more stable tertiary structure of sdAbs, and the TM

value of the mutant increased by about 10°C compared with the

wild-type. In the research of Anderson (108), the FR1 region was

reversed to hallmark amino acids by point mutations, which

improved the TM by 2-6°C. Results showed that adding atypical

disulfide bonds to the mutant could increase the TM by 9-13°C

with nearly 100% of initial binding activity remaining.
4.3 In silico mutagenesis

The evolution of DNA sequencing techniques and 3D

structural models using computational approaches have made

remarkable achievements (122, 123). The method of in silico

using computational prediction of antibody 3D structure for

redesigning antibodies has gradually become a new method to
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improve the maturity of antibodies (124, 125). These approaches

are based on statistical models of different exhaustive algorithms,

including Monte Carlo and Dead End Elimination (DEE), then

quality filtration based on energy assessments such as solvent

treatment and electrostatic interactions (126). In parallel, several

mature protein analysis software could combine small fragments

from different proteins and optimize tens of thousands of 3D

protein models, which laid the foundation for model

construction of sdAbs, such as Rosetta and I-Tasser (127–129).

Very recently, machine learning and deep learning approaches,

such as AlphaFold2 (130) and trRossetta (131), make antibody

prediction and redesignation to a new level. These approaches

are composed of multiple complex neural networks, which could

combine very long-distance evolutionary searches and advanced

local compositional proposals (75). These advances are due to

the improvement of GPU computing power and better

representations of mathematics in the past few years.

Using the database provided by online websites to predict

and redesign sdAbs has become a new approach in silico

mutagenesis. In Wilton’s research (109), a database called

sdAbs-DB (http://www.sdab-db.ca/) was constructed to

provide free sdAbs and related proteins, which were

summarized from NCBI and PDB databases, published articles

and user-submitted contents. The sdAbs-DB is able to predict

the protein structure and perform corresponding bioinformatics

analysis. Similarly, the SAbDab, including the SAbDab-nano

tracker database, was reported by Schneider in 2022 (http://opig.

stats.ox.ac.uk/webapps/newsabdab) (110). This database is used

to track the related research of sdAbs with weekly updates,

providing more physicochemical properties of sdAbs.

The most crucial advantage of in silico maturation is that a

virtual library with a capacity of 1040 members could be

constructed and better analyze the structure and interaction of

antigen and antibody (121). Even if the crystal structure of the

molecule has not been determined, the 3D structures of antigens

and antibodies can be simulated using a considerable number of

modeling and simulation software. While computational

approaches are not generally considered a substitute for

experimental verification, they can help generate testable

assumptions through different algorithms.

In Sefid’s research (73), a specific VHH against Bap antigen in

Acinetobacter baumannii was selected by phage display. Later,

structural prediction and docking of the Bap-VHH complex were

used for designing and validation with a higher affinity of VHH.

According to the VHH interfaces prediction and scores are given by

model evaluation software, it is inferred that mutant 6 (Ile37Glu,

Pro38Ser, Tyr43Asn, Ala82Arg, Asn84Asp, Phe89Ile, Tyr99Ser)

and mutant 9 (Ala82Thr, Asn84Gln, Phe89Arg, Tyr99His) could

significantly improve the binding ability to the antigen. In Nie’s

research, a novel humanized scaffold library was constructed by

introducing degenerate primers (NNK/NNS) in 13-15AA to

improve the diversity of the library (79). Finally, a VHH called

NT-3 with an IC50 of 0.804 mM was screened, effectively inhibiting
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the target antigen tumor necrosis factor TNF-a. In a recent study

(111), the CDR3 region of sdAb was redesigned in silico, called

DesAb-HAS-D3 and DesAb0. Enhancing-sampling molecular

dynamics simulations were used to compare their free energy

distribution. The results showed that although there are more

sequences in the CDR3 region of DesAb-HAS-D3 and could

theoretically generate more conformations, while its actual

binding to antigen still shows strong structural complementarity.

The design of DesAb0 reduces the rigidity of the CDR3 region and

does not positively affect antigen binding.
4.4 Chemical mutagenesis

In Lindstedt’s research (98), two rounds of chemical

mutagenesis of sdAbs, called DesAb-Ab (3-9), by post-

translationally installed synthetically versatile non-canonical

amino acid dehydroalanine (Dha), to further inhibit the

accumulation of Ab42 protein, which is closely related to

Alzheimer’s disease. In all residues of CDR3, 137Glu, 138Thr,

and 139Leu are suitable for mutagenesis. The structural integrity

after chemical mutagenesis was verified by LC-MS and circular

dichroism. The results showed that five orders of magnitude

could increase the inhibition rate of Ab42 protein by 138Thr-

DHA without affecting its stability.
5 Conclusion and future perspective

Nowadays, in addition to the binding analysis based on the

crystal structure of antigen-sdAbs, the continuous upgrading

and optimization of next-generation sequencing, protein

analysis software with different algorithms provide a platform

for the research of binding of sdAbs and different antigens. A

relatively accurate way of sdAbs binding to the antigens can also

be obtained by protein modeling, energy optimization and

molecular docking. In the future, the research on sdAbs based

on protein analysis software with more accurate algorithms will

become the mainstream, providing more accurate results for

revealing the actual binding of sdAbs and different antigens.

In this paper, various binding modes between sdAbs and

antigen molecules were reviewed. In addition to the traditional

cognition, the CDR3 region acts as the main region of antigen

binding, the different convex structure of CDR3 causes the

different specificity and affinity in antigen binding. However,

more studies have also shown that other regions, including the

CDR1 region, the joint influence of multiple CDR regions, the

framework regions, and the unique HV2 region of HCAbs-

derived sdAbs, can be used as the main binding regions and

make a major contribution to the binding of antigen epitopes.

The study of sdAbs’ other regions in binding antigen epitopes is
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beneficial to the subsequent target mutagenesis of sdAbs,

designing and developing the bispecific of multi-specific sdAbs.

Studies have shown that the binding cases of sdAbs to

haptens differ from that of macromolecular antigens. Haptens

are more inclined to bind to the tunnel structure formed by the

CDR1 region of sdAbs. At present, there are still few researches

about the binding of sdAbs to haptens, which are limited to

HCAbs-derived sdAbs. It is of great significance to further clarify

the binding mode of this region with haptens. On the one hand,

the sdAbs could be targeted mutagenesis, to further improve the

affinity and specificity of sdAbs binding to the haptens. On the

other hand, it has potential research value for developing

IgNAR-derived sdAbs with stronger tolerance of organic

reagents and more suitable for detecting liposoluble haptens,

such as organic pesticides.

The study of the binding modes and the related structure-

activity relationship serves for the systematic maturity of

sdAbs. The related antibody properties of sdAbs are

restricted by many factors. Sometimes it is difficult to obtain

the sdAbs that meet all requirements through traditional

biopanning and heterologous expression, so the subsequent

systematic maturation of sdAbs is particularly important.

Nowadays, there are still unavoidable problems in different

antibody systematic maturation methods. It is expected that

protein analysis and docking software, relying on more

accurate algorithms, could solve the issues of low diversity of

mutants, low efficiency and false docking results. It will be an

effective way to analyze the structure-activity relationship and

systematic maturity of sdAbs in the future.
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