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Background: Mounting evidence has demonstrated that an imbalance in

liquid–liquid phase separation (LLPS) can induce alteration in the

spatiotemporal coordination of biomolecular condensates, which plays a role

in carcinogenesis and cachexia. However, the role of LLPS in the occurrence

and progression of bladder cancer (BLCA) remains to be elucidated. Identifying

the role of LLPS in carcinogenesis may aid in cancer therapeutics.

Methods: A total of 1,351 BLCA samples from six cohorts were retrieved from

publicly available databases like The Cancer Genome Atlas, Gene Expression

Omnibus, and ArrayExpress. The samples were divided into three distinct

clusters, and their multi-dimensional heterogeneities were explored. The

LLPS patterns of all patients were determined based on the LLPS-related risk

score (LLPSRS), and its multifaceted landscape was depicted and

experimentally validated at the multi-omics level. Finally, a cytotoxicity-

related and LLPSRS-based classifier was established to predict the patient’s

response to immune checkpoint blockade (ICB) treatment.

Results: Three LLPS-related subtypes were identified and validated. The

differences in prognosis, tumor microenvironment (TME) features, cancer

hallmarks, and certain signatures of the three LLPS-related subtypes were

validated. LLPSRS was calculated, which could be used as a prognostic

biomarker. A close correlation was observed between clinicopathological

features, genomic variations, biological mechanisms, immune infiltration in

TME, chemosensitivity, and LLPSRS. Furthermore, our classifier could

effectively predict immunotherapy response in patients with BLCA.
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Conclusions: Our study identified a novel categorization of BLCA patients

based on LLPS. The LLPSRS could predict the prognosis of patients and aid in

designing personalized medicine. Further, our binary classifier could effectively

predict patients’ sensitivity to immunotherapy.
KEYWORDS

immunotherapy, cytotoxicity, bladder cancer, liquid-liquid phase separation,
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Introduction

Bladder cancer (BLCA) is an extremely complex disease, and

aberrations occur at the genetic, epigenetic, transcriptomic,

epitranscriptomic, proteomic, and phenotypic levels. In a

classical view, “hallmarks of cancer” is envisaged to empower

cancer malignancy (1). However, various studies showed that

intrinsically disordered regions (IDRs) could be the underlying

cause of cancer-associated cachexia (2–4). IDRs may undergo

liquid–liquid phase separation (LLPS) to form liquid droplets,

which affect multiple downstream pathways, including changes

in gene expression and histology (5). LLPS is a dynamic process

wherein the biomolecular condensates, like various proteins and

nucleic acids, turn into liquid aggregates without surrounding

membranes (6). A study has shown that LLPS could mediate the

spatiotemporal assembly of membraneless organelles, such as

stress granules (SGs) and processing bodies (P-bodies) (7).

Various studies have shown that LLPS plays a non-negligible

role in various pathological conditions like the occurrence and

progression of cancers (5). It has been well established that

genetic mutations and transcriptional dysregulation are the

underlying cause of cancers. Previous studies have shown that

LLPS could induce genetic mutation in cancers (8). For instance,

IDRs’ LLPS in NUP98-HOXA9 promotes oncogenes’ activation

that induces mutations and carcinogenesis (8). EWS::FLI1,

which suppressed nucleolar transcription by LLPS, was a

potential target to hinder carcinogenesis (9). Additionally,

LLPS plays an important role in regulating multiple pathways

associated with cancer, such as DNA damage repair, metabolic

rewiring, and immune response (10). Together, these studies

indicate the potential role of LLPS in cancers. This would aid in

enhancing our understanding of the underlying pathological

mechanism of cancers and developing anticancer therapies.

BLCA is the 11th most common cancer worldwide.

Approximately 550,000 new cases of BLCA are diagnosed, and

200,000 BLCA-related deaths occur annually (11). Histologically,

BLCA cases are categorized into non-muscle-invasive andmuscle-
02
invasive (12). Approximately 10% of BLCA cases, characterized by

abundant chromosomal alterations and metastasis, would spread

beyond the bladder, resulting in a 5-year overall survival (OS) rate

of only 5% to 30% (13). A comprehensive genetic analysis

performed by The Cancer Genome Atlas (TCGA) revealed

subtypes closer to native biological BLCA, confirming that the

pathogenesis of BLCA is more complex than the previous

understanding (12). Transcriptomic signatures of patients with

BLCA have been identified and used to construct models that can

predict the prognosis and response to immune checkpoint

blockade (ICB) in BLCA patients (14). However, the

performance of most prognostic models was not satisfactory in

clinical settings. Meanwhile, the only four targeted drugs available

nowadays harbored limited scope of application in BLCA (15).

Further, radiotherapy induces an immunosuppressive tumor

microenvironment (TME), which leads to cancer recurrence

(16, 17). Therefore, more personalized and effective biomarkers

are required for BLCA cases. Cachexia in patients with BLCA is

caused by several LLPS-related factors; however, previous studies

have only analyzed the association between single molecules

associated with LLPS and cancers rather than exploring the

interaction between multiple LLPS-related genes in cancers (8,

9). Therefore, it is necessary to study the correlation between

LLPS-related genes and heterogeneities in TME to analyze LLPS

patterns in BLCA. To address these concerns, in this study, we

have identified LLPS-relevant subtypes and evaluated LLPS-

related genes by analyzing data from 1,351 patients with

BLCA cases.
Materials and methods

Data sources and process

The overall workflow of our study is shown in Figure 1. The

data sources and workflow details are shown in the

Supplementary Material.
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FIGURE 1

Overview of the flow diagram for this study.
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Identification of liquid–liquid phase
separation-related subtypes

Based on several LLPS-related genes, the patients with BLCA

were classified into different subtypes using non-negative matrix

factorization (NMF). The patients were classified into three LLPS

clusters: C1, C2, and C3. The biological and clinicopathological

features of the three subtypes were investigated. The workflow is

summarized in the Supplementary Material.
Construction and evaluation of liquid–
liquid phase separation-related risk score

Based on previous studies, the individual LLPS patterns were

identified. Stepwise multivariate Cox regression analysis was

performed to create a scoring system called LLPS-related risk

score (LLPSRS) (18). The LLPSRS formula is as follows:

LLPSRS =on
i=1Coefi � (LLPS genes)i

The performance of the LLPSRS formula was further

evaluated to predict the clinical outcomes of BLCA patients.

The robustness and versatility of the LLPSRS formula were also

validated. The details of the methodology are described in the

Supplementary Material.
Establishment of an artificial
neural network

An artificial neural network (ANN) was established using a

binary classifier to identify patients who might benefit from ICB.

The formula for calculating classification score using the ANN

model is as follows:

neuraHF =on
i=1(Neural Network Weight)i � (Gene Expression)i

The details of the procedure are described in the

Supplementary Material.
Statistical analysis

All statistical analyses were conducted using R (https://www.

r-project.org/). The Wilcoxon test was used to compare two

groups, and the Kruskal–Wallis test was used to compare more

than two groups. The statistical details and experimental

methods are summarized in the Supplementary Material.
Frontiers in Immunology 04
Results

Identification of liquid–liquid phase
separation-related molecular subtypes in
bladder cancer

Figure 1 shows a flow diagram that systematically describes our

study. A total of 3,633 LLPS-related genes were identified from

TCGA-BLCA cohort and extracted from the data resource of LLPS

(DrLLPS) (19) of which a total of 586 prognostic genes were

identified using univariate Cox regression analysis (p< 0.01). To

determine the impact of these genes on BLCA, the Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses were performed. These genes

enriched processes associated with the extracellular matrix,

immunoreaction, transcription, proliferation, and metabolism

(Figure 2A). The patients from TCGA-BLCA cohort were

categorized into three LLPS clusters based on the expression of

586 genes using NMF (Supplementary Figures 1A, B, Figure 2B).

Principal component analysis (PCA) was further used to validate

the differential expression of 586 genes in three clusters, and the

clusters’ similar consistency could be distinguished (Figure 2C). The

Kaplan–Meier (KM) survival curve revealed significant differences

in the prognoses of patients among three clusters (log-rank test, p<

0.0001). The clinical outcomes of patients in C2 were significantly

better compared to those in C1 and C3 (Figure 2D, Supplementary

Table 2). To determine the reproducibility of LLPS clusters, three

external BLCA cohorts were integrated into a meta-BLCA cohort,

and three distinct clusters were identified as anticipated

(Supplementary Figures 1C–E). A significant difference was

observed in the prognoses of patients among the three clusters

(p< 0.001); the prognoses of patients in C2 were the best, thereby

confirming that three robust LLPS clusters exist in BLCA

(Supplementary Figure 1F).
Identification of tumor
microenvironment characteristics and
biological features in liquid–liquid phase
separation clusters

Various studies have demonstrated LLPS’s correlation with

dysregulation in the TME remodeling and signaling pathways.

Hence, the characteristics of TME were analyzed in three LLPS

clusters. A decrease in levels of most tumor-infiltrating immune

cells (TIICs) like CD4+T, CD8+T, NK, dendritic cells, and

macrophages was observed in cluster C2 (Figure 2E). In

tracking tumor immunophenotype (TIP), a significant increase

in antitumor immune responses was observed in C1 and C3
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compared to C2; however, these results were inconsistent with

survival outcomes (Figure 2F). Next, the representative hallmark

gene sets of the three clusters were visualized. The hallmarks of

C1 enriched oncogenic signaling pathways like the PI3K-AKT-

mTOR, P53, mTORC1, and MYC signaling pathways. The
Frontiers in Immunology 05
hallmarks of C3 enriched the stromal signatures like

epithelial–mesenchymal transition (EMT) and angiogenesis.

However, the downregulation of hallmarks associated with

immune responses like IL6-JAK-STAT3 or NF-kB-TNFa
signaling pathways was observed in C2 (Figure 2G). A
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FIGURE 2

Subtype identification, TME infiltration characteristics, and biological signal features of three distinct LLPS clusters in BLCA. (A) The GO terms
and KEGG pathway enrichment analysis of 586 prognostic LLPS-related genes. The different colors represent different terms or pathways.
(B) Consensus map of NMF based on 586 prognostic LLPS-related genes when k = 3. (C) PCA plot to distinguish LLPS clusters. (D) KM curve
exhibited significantly different OS among LLPS clusters in TCGA-BLCA cohort. (E, F) Differences in 34 TME-infiltrating cells and steps of the
cancer immunity cycle among LLPS clusters. (G) Heatmap illustrated cancer hallmarks’ enrichment among three LLPS clusters. Red represents
high scores, and green represents low scores. The line in the box represents the median value, and the asterisks represent the p-value (*p<
0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001); the statistical analyses were performed by the Kruskal–Wallis test. TME, tumor microenvironment;
LLPS, liquid–liquid phase separation; BLCA, bladder cancer; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NMF,
non-negative matrix factorization; PCA, principal component analysis; KM, Kaplan–Meier; OS, overall survival. ns, no significance.
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previous study has shown that TME can be divided into three

immunophenotypes: inflamed, excluded, and desert (20).

Despite the abundance of TIICs in excluded TME, the TIICs

only surrounded the parenchyma. No TIICs were observed in

the parenchyma, which indicates that the stromal barrier

surrounding the tumor inhibited the cytotoxic effects of TIICs

in the TME. Since interstitial activation could suppress the effect

of TIICs, the differential enrichment of 12 BLCA signatures (21)

was explored among three LLPS clusters (Supplementary

Figure 1G). As expected, C1 was of basal subtype featured by

heightened IFN response, mitochondrial dysfunction, etc.,

which indicates damage caused by inflammation and cancer

development. C3 was featured by the presence of EMT, etc.,

indicating fibrosis and muscle invasion. Meanwhile, cluster C2

was of a luminal subtype with Ta stage and high differentiation

grade; low infiltration of TIIC could likely be due to small tumor

size. Further, the enrichment of processes associated with

stromal activation, mismatch repair, and immune response-

relevant (SA-MR-IR) signatures was determined in the three

LLPS clusters (Supplementary Figure 1H). The processes

enriched in patients in C1 were mismatch repair, including

homologous recombination, base excision, and repair. C3 was

characterized by stromal activation, including angiogenesis,

Pan-F-TBRS, and EMT. Downregulation in processes related

to an immune response, like CD8+T effector and immune

checkpoint, was observed in cluster C2. These results

suggested that the TME of three LLPS clusters had distinct

immunophenotypes and enriched different oncogenic processes.

Together, these results indicated that LLPS played an

indispensable role in BLCA. Further, 19 oncogenic pathways’

enrichment was analyzed among LLPS clusters (Supplementary

Figure 1I) (14). As expected, the pathways enriched in C1 were

associated with the cell cycle, including activated MYC and PI3K

signaling pathways. The WNT signaling pathway was enriched

in C3, confirming the increased EMT, metastasis, and muscle

invasion. Interestingly, the Hippo, NOTCH, and RAS pathways

were inhibited in C2. Thus, the unique TME characteristics of

three LLPS clusters were analyzed.
Comprehensive analysis of differentially
expressed genes among liquid–liquid
phase separation clusters of
bladder cancer

To unravel the potential biological behavior of three LLPS

clusters, a total of 470 differentially expressed genes (DEGs) were

identified and annotated (Supplementary Figure 2A). These DEGs

significantly enriched the pathways associated with metabolism

reprogramming, dyssecretosis, increase in cell-autonomous

proliferation, alteration biosynthesis, extracellular matrix, and

immunoediting (Figures 3A–D). To explore a more accurate

classification of BLCA subtypes and uncover underlying
Frontiers in Immunology 06
mechanisms, TCGA-BLCA cohort was classified into three

clusters based on differential expression of 197 prognosis-related

genes (p< 0.01) using NMF (Supplementary Figures 2B, C,

Figure 3E). The patients were classified into three clusters:

DEG-C1, C2, and C3. A total of 99 patients with BLCA were

classified in C1, 175 patients with BLCA were grouped in C2, and

108 patients with BLCA were classified in C3 (Figure 3E). PCA

was used to validate the expression patterns of 197 DEGs in three

DEG clusters, and similar consistency was distinguished

(Figure 3F). Additionally, the KM curve showed significant

differences in the prognoses of patients among three DEG

clusters (log-rank test, p< 0.0001). The OS of patients in DEG-

C2 was significantly better compared to that of patients in DEG-

C1 and C3 (Figure 3G). Most patients in LLPS-C2 were classified

in DEG-C2 (166/181 = 91.72%), 81.30% of patients in LLPS-C1

(100/123) were reassigned to DEG-C3, and 87.18% of patients in

LLPS-C3 (68/78) were included in DEG-C1. Eventually, the TME

characteristics of three DEG clusters were analyzed, and the

results were similar to our previous results (Figures 3H–J,

Supplementary Figures 2D–F, Supplementary Table 3).
Establishment and evaluation of liquid–
liquid phase separation-related risk score

Given the heterogeneity and complexity of LLPS, the LLPSRS

was calculated to quantify LLPS-related clusters and predict

patients’ prognoses. In the training cohort, 424 prognosis-related

genes were identified. Univariate and least absolute shrinkage and

selection operator Cox regression analyses identified 60 genes as

candidate genes (Supplementary Figures 3A, B). Next, stepwise

multivariate Cox proportional regression analysis was used to

screen for 29 robust genes to calculate LLPSRS (Figure 4A,

Supplementary Table 4). In the training cohort, patients were

classified into the high- (n = 135) and low-risk (n = 135)

subgroups based on median LLPSRS as a cutoff value. The

patients in the validation cohort were also divided based on these

criteria. The difference in the distribution of subtypes, risk, and OS

was calculated, and the results revealed significant differences in

LLPSRS among LLPS or DEG clusters (p< 0.0001, Figures 4B–D).

The LLPSRS of patients in C2 was lower compared to that of

patients in C1 and C3, thus suggesting that LLPSRS may be useful

in predicting BLCA subtypes.

Subsequently, the ability of LLPSRS to predict the prognosis

was determined. In training, TCGA-BLCA, validation, and

several external cohorts, the prognoses of patients with high

LLPSRS were poor (Figures 4E–H, Supplementary Figure 3F–I).

The area under the receiver operating characteristic (ROC) curve

(AUC) was used to validate the performance of LLPSRS to

predict the OS of patients with BLCA (Figures 4I, J). In TCGA-

BLCA cohort and training and validation cohorts, a decrease in

the expression of 14 genes that conferred protection was

observed, while 15 risk-associated genes were upregulated as
frontiersin.org
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FIGURE 3

Subtype identification, TME infiltration characteristics, and biological signal features of three distinct DEG clusters in BLCA. (A–C) The GO terms
enrichment analysis (BP, Biological Process; CC, Cellular Component; MF, Molecular Function) of 470 DEGs. (D) The KEGG pathway enrichment
analysis of 470 DEGs. (E) Consensus map of NMF based on 197 prognostic LLPS-related DEGs when k = 3. (F) PCA plot for 197 prognostic
LLPS-related DEGs’ expression. (G) KM curve exhibited significantly different OS among DEG clusters in TCGA-BLCA cohort. (H, I) Differences in
34 TME-infiltrating cells and steps of the cancer immunity cycle among DEG clusters. (J) Heatmap illustrating cancer hallmarks’ enrichment
among three DEG clusters. Red represents high scores, and green represents low scores. The line in the box represents the median value, and
the asterisks represent the p-value (*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001); the statistical analyses were performed by the Kruskal–
Wallis test. TME, tumor microenvironment; DEG, differentially expressed gene; BLCA, bladder cancer; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; NMF, non-negative matrix factorization; LLPS, liquid–liquid phase separation; KM, Kaplan–Meier.
ns, no significance.
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FIGURE 4

Establishment and evaluation of LLPSRS. (A) Forest plot of hazard ratios with 95% CI for 29 RSGs by univariate Cox. (B) Sankey diagram showing
the changes of LLPS, DEG clusters, risk, and OS in TCGA-BLCA cohort. (C, D) Comparison of LLPSRS among LLPS and DEG clusters. (E–H) KM
curves of LLPSRS in the training, TCGA-BLCA, validation, and GSE188715 cohorts. (I) Time-dependent ROC–AUC values plotted for different
durations of survival for LLPSRS in the training, TCGA-BLCA, and validation sets. (J) ROC curves of LLPSRS in GSE188715 cohort. (K–M) Time-
dependent C-index, ROC–AUC, and DCA showing a measure of LLPSRS with six prognostic signatures with the survival of patients in TCGA-
BLCA cohort. LLPSRS, liquid–liquid phase separation-related risk score; DEG, differentially expressed gene; OS, overall survival; LLPS, liquid–
liquid phase separation; KM, Kaplan–Meier; ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve;
DCA, decision curve analysis.
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LLPSRS increased (Supplementary Figures 3C–E). In summary,

these results determined the utility and robustness of LLPSRS in

predicting the clinical outcomes of patients with BLCA. In other

publicly available cohorts, most patients with BLCA were

Caucasians or Africans, whereas patients with BLCA in

GSE188715 were Chinese; therefore, LLPSRS could be used to

predict patients’ prognoses from different ethnicities. Moreover,

compared to the performance of the previously published six

prognostic models (14, 18, 22–25), the performance of our

model was better on several appraisal algorithms. In TCGA-

BLCA cohort, our model showed the highest net benefit,

concordance index, and AUC, thus confirming that the

adaptability of our model was better compared to that of the

previously published six models (Figures 4K–M, Supplementary

Figure 3J). Since our retrospective study was currently restricted

to retrospective studies, the differential expression of seven core

genes from 29 LLPSRS-related genes (RSGs) was verified in vitro

(Figure 5A, Supplementary Figure 4A). qRT-PCR was used to

study the differential expression of these genes between one

bladder and two BLCA cell lines. The results revealed a

significant increase in the expression of five genes in BLCA

cell lines, consistent with results via TCGA-BLCA cohort;

however, no difference in the expression of the other two

genes was observed.

Since LLPSRS was related to the advanced stage of cancer,

the per fo rmance o f LLPSRS was compared wi th

clinicopathological features in predicting patients’ OS. The

univariate and multivariate Cox regression analyses were

performed on TCGA-BLCA cohort, and the results showed

that the hazard ratios of LLPSRS were 1.70 and 1.69 (p<

0.0001), respectively. This indicates that the performance of

LLPSRS to predict prognosis was robust (Figure 5B,

Supplementary Figure 4B). Moreover, the AUC and decision

curve analysis (DCA) results confirmed the highest efficacy of

LLPSRS over other clinical parameters (Figure 5C,

Supplementary Figure 4C–G). Furthermore, to compensate for

bias caused by differences in clinicopathological features,

univariate Cox analysis was performed on subgroups with

different clinicopathological features. It demonstrated that

LLPSRS was an independent prognostic factor after

adjustment (Figure 5D). The molecular subtypes aid in

designing personalized treatment (26). Further, an association

between several BLCA subtypes (21) and LLPSRS exists. Hence,

the differences in the clinical landscape between the two

subgroups in TCGA-BLCA cohort were explored (Figure 5E).

The patients in the high-risk subgroup had a basal subtype

characterized by high malignancy, whereas the patients in the

low-risk subgroup had a more differentiated luminal subtype,

and their clinical outcomes were better (chi-squared test, p<

0.05). Furthermore, the clinicopathological features of patients

in the low-risk subgroup were similar to those in C2. Therefore,

these results indicated that the LLPSRS could be used as a
Frontiers in Immunology 09
biomarker for predicting heterogeneity and designing

personalized therapy for patients with BLCA.
Depicting the landscape of genomic
variations and epigenetic alternations

To determine the underlying genomic alterations caused by

LLPSRS, the genomic variations between the two subgroups

were explored. The copy number variations (CNVs) in RSGs on

chromosomes were analyzed and visualized. The results showed

significant amplifications in 16 RSGs, whereas five RSGs

harbored deletions (Figure 5F, Supplementary Figure 4H).

Furthermore, the mutation landscape of the top 20 mutated

RSGs is shown in Figures 5G, H. The patients in the high-risk

subgroup had distinct mutation patterns, the top three mutated

genes were observed in patients from the same subgroup, and

there was a difference in the abundance of other mutated genes

in the patients from the two subgroups. Moreover, as potential

indices for ICB response and neoantigens epitopes, tumor

mutational burden (TMB) and purity data were obtained. A

negative correlation was observed between TMB, tumor purity,

and the LLPSRS (Supplementary Figures 4I, J, p< 0.05). In

addition, the interconnection and mutation landscape of RSGs

were visualized (Supplementary Figures 4K, L). In addition to

genomic mutations, epigenetic aberrations play an important

role in oncogenesis. Changes in DNA methylation pattern,

which plays an important role in pre-transcriptional

modification, were next explored. Previous studies have shown

that the prognoses of patients with DNA hypomethylation were

poor, whereas patients with DNA hypermethylation may

experience cachexia (27, 28). A total of 26,583 differentially

methylated CpG islands (DMCGs) were identified (Figure 5I).

The methylation levels in patients in the high-risk subgroup

were higher, which confirms our hypothesis. Furthermore, 240

genes were identified as DNA methylation driver genes (MET-

DGs). These genes enriched pathways associated with

biosynthesis disorders, cancer, and cell proliferation pathways,

which indicates that these genes are involved in activating

various oncogenic pathways (Supplementary Figure 5A). The

top 35 MET-DGs were visualized, and the results revealed that

the LLPSRS was characterized by the hypermethylation of tumor

suppressor genes (Supplementary Figure 5B).

Of these 29 RSGs, NSUN5 is an RNA methyltransferase

responsible for 5-methylcytidine (m5C) modification, whereas

DHX16 and HNRNPH3 regulate alternative splicing (AS)

during pre-mRNA splicing. Knockdown of NSUN5 expression

reduces cell proliferation (29), DHX16 is a biomarker for

immune-related adverse events (irAEs) (30), and HNRNPH3

directly alters the mRNA splicing of proto-oncogene MST1R

(31). Since RNA editing and AS are key regulators of

carcinogenesis, the correlation between the LLPSRS and post-
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FIGURE 5

LLPSRS’s association with clinicopathological features, genomic variations, and epigenetic alternations. (A) Differential transcript levels of
HNRNPH3 and CNOT11 in BLCA and normal urothelial cell lines. (B, C) Multivariate Cox analysis and DCA of LLPSRS and seven clinical traits in
TCGA-BLCA cohort. (D) Univariate Cox analysis of LLPSRS with OS in several stratifications. (E) Differential clinical traits and molecular subtypes
between the high- and low-risk subgroups (chi-square test). (F) Twenty-nine RSGs’ location of CNV alterations on chromosomes. (G, H)
Waterfall plots showing the mutation distribution of top 20 mutated genes in two subgroups. (I) Heatmap of DMCGs in two subgroups. (J) The
interactive network and prognostic implications of LLPSRS and 21 RNA editing regulators. The left half-circle represents different RNA
modification patterns, and the right half-circle represents whether these regulators were risk or protective factors for OS. The color of lines
indicates correlations between abovementioned regulators, and the size of circles represents p-values for prognostic implications of these
regulators. (K) Statistics on the counts and types of 161 DEGs with AS. The asterisks represent the p-value (*p< 0.05; **p< 0.01; ***p< 0.001).
LLPSRS, liquid–liquid phase separation-related risk score; BLCA, bladder cancer; DCA, decision curve analysis; OS, overall survival; CNV, copy
number variation; DMCGs, differentially methylated CpG islands; AS, alternative splicing.
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transcriptional regulation was explored. The expression of 95

RNA-editing regulators in different subgroups was analyzed, and

the results revealed differential expression in most RNA-editing

regulators between two subgroups (Supplementary Figures 5C–

E). Next, a correlation was observed between 786 out of 1,416

DEGs and 71 RNA-editing regulators. These genes were

annotated as hormone secretion, cell division, metabolic

rewiring, and immunosuppressive TME (|R| > 0.3, p< 0.0001,

Supplementary Figures 5F, G). A network was constructed using

21 RNA-editing regulators and LLPSRS to demonstrate their

correlation and prognostic roles. Interestingly, a correlation was

observed between LLPSRS and most regulators (Figure 5J,

univariate Cox regression analysis, p< 0.05). In addition to the

correlation between LLPSRS and m5C regulators, a correlation

between LLPSRS and other regulators was also observed. This

indicates that diverse crosstalk between LLPSRS and RNA-

editing regulators plays a crucial role at the epitranscriptomic

level in BLCA. Moreover, 483 AS events were observed in 161

DEGs. These genes enriched pathways associated with

carcinogenesis and immunogenicity, thus implying that

LLPSRS may regulate these pathways by AS of DEG

(Figure 5K, Supplementary Figure 5H). Correlation networks

were constructed between 37 AS events and 22 splicing factors

(Supplementary Figure 5I). Taken together, our results

demonstrated that the LLPS-mediated epigenetic alterations

played an important role in the progression of BLCA.
Guidance of liquid–liquid phase
separation-related risk score on
potentially relevant biological mechanisms

The GO and KEGG pathway enrichment analyses were

performed using DEGs to decipher LLPSRS-relevant biological

mechanisms using KOBAS-i (32). The correlation between the

LLPSRS, SA-MR-IR, and oncogene signatures was further explored.

The LLPSRS was associated with metabolic rewiring, cell-

autonomous hyperproliferation, immunoediting, and biosynthesis

derangements, thus indicating that LLPSRS played an important

role in carcinogenesis (Figures 6A–E). Higher LLPSRS reveals

persistent stromal activation and transcriptional dysregulation,

thus implying tumor cell-autonomous proliferation and excluded

immunophenotype (Figure 6F). Meanwhile, a positive correlation

was observed between LLPSRS and a decrease in the expression of

tumor suppressor genes, as well as an increase in oncogenes’

expression like PI3K, RAS, and TGF-b, thereby suggesting a

higher degree of malignancy. As expected, the gene set

enrichment analysis results revealed that hallmarks of cancers like

angiogenesis, EMT, and the TGF-b and WNT signaling pathways

were upregulated in the patients in the high-risk subgroup. This

indicates the frequent occurrence of cachexia-relevant signatures

and an increase in the activation of oncogenes (Figure 6G).
Frontiers in Immunology 11
Correlation between liquid–liquid phase
separation-related risk score and intrinsic
as well as extrinsic immunoediting

As discussed previously, LLPSRS-related mechanisms play an

important role in regulating immune responses; hence, the

correlation between LLPSRS and intrinsic as well as extrinsic

immunoediting was analyzed. A negative correlation was observed

between LLPSRS and MHC receptors. A positive correlation was

observed between LLPSRS and immunosuppressive checkpoints,

thus indicating an increase in immune evasion by tumor cells and

a decrease in immunogenicity. Interestingly, a correlation was

observed between low LLPSRS and some ICB-related genes like

(CTLA4, LAG3, PDCD1, etc.), thus indicating higher sensitivity of

patients to ICB (Figure 6H). Apart from the chemokines and their

receptors, a positive correlation was observed between the

protooncogenes and LLPSRS. A negative correlation was observed

between other tumor suppressors and LLPSRS. On the contrary, a

negative correlationwas observed between several immune inhibitors,

immune stimulators, and LLPSRS (Figure 6I). Considering the

multiple complex roles of immunomodulators, the association

between immunomodulators and LLPSRS was insufficient to

elucidate overall immunological features. The extrinsic

immunoediting indicated by TIICs was equally important since

they revealed a functional repertoire of antitumor immunity. A

correlation between the LLPSRS and TIICs was observed. Increased

levels of antitumor TIICs, like CD4+T and CD8+T, were observed,

whereas the levels of pro-tumor TIICs like Treg and Th2 were low in

patients in the low-risk subgroup (Figure 6J). As expected, a positive

correlation was observed between myeloid cells, stromal cells, and

LLPSRS, thereby indicating an increase in damage caused by

inflammation and interstitial activation (Figure 6K). Together, these

results suggested that LLPSRS played an important role in

immunoediting, which indicated that patients with lower LLPSRS

had higher immunogenicity and sensitivity to ICB.
Liquid–liquid phase separation-related
risk score was a promising biomarker
for predicting the efficacy of
adjuvant treatments

The correlation between LLPSRS and anticancer drug

regimens was next determined, which could aid in designing

precision medicine at the pharmacogenomics level. First, the

immunophenoscore of patients in the low-risk group was high,

regardless of the status of indicators, which suggests better

efficacy of ICB (Figure 7A). As expected, the Tumor Immune

Dysfunction and Exclusion analysis revealed that the patients

who responded to ICB treatment had higher LLPSRS. This

indicates that LLPSRS could predict the efficacy of ICB

treatment (Figure 7B). Furthermore, the association between
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LLPSRS and gene signatures of adjuvant treatments was

explored (Figure 7C). A negative correlation was observed

between LLPSRS and oncogenic pathways, and a positive

correlation was observed between the predicted EGFR

pathway, radiotherapy, and irAEs. Therefore, patients with

higher LLPSRS were sensitive to EGFR-targeted therapies and
Frontiers in Immunology 12
radiotherapy, whereas the patients with low LLPSRS were

sensitive to oncogenes’ blockades. Additionally, an inverse

correlation was observed between LLPSRS and Ta stage,

luminal, and urothelial differentiation. The patients in the

high-risk subgroup were characterized by immune evasion and

dysfunction, and neuronal and basal differentiation, thereby
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FIGURE 6

Guidance of LLPSRS on potential biological mechanisms and immunoediting. (A–C) DEGs’ annotation of GO terms (BP, Biological Process; CC,
Cellular Component; MF, Molecular Function). (D, E) DEGs’ annotation of KEGG pathways. (F) LLPSRS’s correlations with SA-MR-IR signatures
(immune response, orange; stromal activation, pink; mismatch repair, purple) and oncogene pathways (activated, red; repressed, blue). (G) GSEA
of hallmark gene sets. (H) LLPSRS’s correlations with MHC molecules (green) and immune checkpoints (inhibitory, blue; stimulatory, red). (I)
LLPSRS’s correlations with immunomodulators (immune inhibitor, purple; immunostimulator, magenta), chemokines (golden), and their
receptors (cyan). (J) LLPSRS’s correlations with lymphocytes (CD4+T, brown; CD8+T, red; gdT, pink; Tm, orange; cytotoxicity, golden; Th2 and
Treg, blue; Tfh, magenta; NKT, indigo; NK, purple; B cell, green; DC, dark blue). (K) LLPSRS’s correlations with mononuclear (macrophage,
magenta; monocyte, orange) and stromal cells (neutrophil, green; mast cell, yellow green; eosinophil, dark green; CAF, blue; mesenchymal cell,
purple; vascular cell, red). LLPSRS, liquid–liquid phase separation-related risk score; DEG, differentially expressed gene; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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indicating that patients in the high-risk group could benefit

from neoadjuvant chemotherapy, whereas ICB might

induce hyperprogression.

Although adjuvant treatment was a major breakthrough in

cancer therapeutics, chemotherapy is still an indispensable part of

BLCA treatment. To determine the use of LLPSRS in determining

BLCA treatment, data on experimentally or clinically used drugs

in BLCA were retrieved from the Genomics of Drug Sensitivity in

Cancer database, and their efficacy was determined.

Chemotherapeutic drugs like dasatinib and IWP-2 were more

suitable for the patients in the high-risk group (Figure 7D–G),

whereas the other eight chemotherapeutic drugs were more

suitable for the patients in the low-risk group (Supplementary

Figures 6A–H). To provide more avenues for LLPSRS-based

therapies, the Cancer Therapeutics Response Portal (CTRP) and

Profiling Relative Inhibition Simultaneously in Mixtures (PRISM)

were used to analyze LLPSRS’s correlation with chemotherapeutic

agents. Five CTRP (e.g., dasatinib and fluvastatin) and five PRISM

drugs (e.g., epothilone-b and tosedostat) were more suitable for

the treatment of patients in the high-risk group (Figure 7H),

whereas four CTRP (e.g., apicidin and brefeldin A) and nine

PRISM drugs (e.g., poziotinib and RITA; Supplementary

Figure 6I) were more suitable for the treatment of patients in

the low-risk group. Further, the data obtained from the CellMiner

(33) were analyzed, and 20 negative and 12 positive LLPSRS-

related drugs were identified. Therefore, all patients with different

LLPSRSs may respond to different chemotherapeutic drugs

(Figure 7I, Supplementary Figure 6J).
Utility and robustness of liquid–liquid
phase separation-related risk score for
predicting immunotherapeutic benefits

Immunotherapy was regarded as an epoch-making

breakthrough. LLPSRS’s correlation with the immunosuppressive

milieu and TMBwas observed, so LLPSRS could likely play a role in

predicting patients’ response to ICB. We analyzed the association

between LLPSRS and sensitivity to ICB in the IMvigor210 cohort.

The patients in the low-risk subgroup had a longer life span and

demonstrated prolonged survival as compared to those in the high-

risk subgroup (log-rank test, p< 0.0001, Figures 8A, B). We also

discovered that the progressive disease subgroup, in which TIICs

exerted a faint effect, had the highest LLPSRS (Kruskal–Wallis test,

p< 0.01, Figure 8C). Together, these results show a positive

correlation between LLPSRS and irAEs, thus suggesting that

patients with lower LLPSRS may respond better to ICB.

PD-L1 expression is an important biomarker for ICB

responsiveness. Hence, we analyzed the correlation between TC

(PD-L1 located on tumor cells), IC (PD-L1 located on immune

cells), immunophenotype (desert, inflamed, and excluded), and

LLPSRS. In the patients in the low-risk subgroup, TC2+ was the

most abundant TC, thus indicating that the patients had higher
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sensitivity to ICB treatment (chi-squared test, p< 0.05, Figure 8D).

Next, the patients in the IC2 subgroup or immune-inflamed type

had the lowest LLPSRS (Kruskal–Wallis test, p< 0.01, p< 0.05,

respectively, Figures 8E, F). A significant difference was observed in

TMB between the high- and low-risk subgroups (Wilcoxon test, p<

0.001, Figure 8G). Further, the predictive ability of the combined

TMB and LLPSRS was better as compared to LLPSRS and TMB

alone (Supplementary Figure 7A). Therefore, for those patients

treated with ICB, LLPSRS could effectively predict individual

responses and immunosuppressive properties.

The outcomes of patients treated with ICB were better;

however, not all patients experienced durable response to ICB

treatment. Hence, there is an urgent need to identify eligible

patients. Further, a diagnostic model was created based on

LLPSRS and cytotoxicity using ANN. Weighted Gene Co-

expression Network Analysis (WGCNA) was used to predict

the patient’s response to ICB and determine its relevance with

LLPSRS. WGCNA was used to extract eigengenes from 1,758

DEGs between the complete response/partial response (CR/

PR) and stable disease/progressive disease (SD/PD) subgroups,

the optimal fitting degree was R2 = 0.85, and soft-thresholding

was b = 3 (Supplementary Figures 7B–F). After the modules

were merged with a disparity coefficient< 0.45 and overall gene

counts< 30, the DEGs were divided into six modules

(Figure 8H). Given that the correlation between clinical

characteristics and module eigengenes (MEs) exists, a

correlation was observed between MEbrown, (the main

module) and LLPSRS, binary response, OS time, OS, and

cytotoxicity (Figure 8I, Spearman’s rank test, p< 0.001).

Eventually, in the MEbrown module, gene significance’s

associations with module membership were analyzed, and the

results of LLPSRS (rho = 0.79, p< 0.0001) and cytotoxicity (rho

= 0.86, p< 0.0001) were significant (Supplementary Figures 7G,

H); thus, 122 genes were regarded as eigengenes. The

eigengenes enriched immune responses such as cytotoxicity,

immunogenicity, PD-L1/PD-1 checkpoints, chemotaxis, T-cell

differentiation, and interferon response, thereby confirming

the successful extraction of eigengenes (Figure 8J).

To build a classifier for identifying ICB-sensitive patients, a

combined prediction model was constructed using random forest

(RF) and ANN algorithms based on eigengenes. Since the number

of patients with BLCA treated with ICB was few, all samples from

the IMvigor210 cohort were randomly split. In the training cohort,

eigengenes were incorporated into the RF classifier, and 180 trees

were selected as the parameter (Figure 8K). Next, the variable

importance was measured, and the top 30 genes were selected

(Supplementary Figure 7I). Based on these genes, an ANN model

was created using the training cohort, which consisted of three

layers: input (expression of 30 genes), hidden (scores and weights of

genes), and output layer (SD/PD or CR/PR results) (Figure 8L).

Finally, the ROC–AUC values for the ANN model in training,

validation, and IMvigor210 cohorts were 1.000, 0.839, and 0.834,

respectively. The accuracy of the model in predicting the response
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1059568
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2022.1059568
A

B

D E F G

IH

C

FIGURE 7

LLPSRS might be a promising biomarker to predict the efficacy of adjuvant treatments. (A) Comparison of immunophenoscore between two
subgroups. (B) Comparison of LLPSRS between responders and non-responders predicted by TIDE. (C) LLPSRS’s correlations with therapeutic
signatures (EGFR ligands, deep purple; radiotherapy, purple; chemotherapy, magenta; irAEs, sky blue), 12 BLCA signatures (red), tumor progression
biomarkers (blue), and additional output of TIDE platform (green). (D–G) Dasatinib, IAP_5620, IWP-2, and zoledronate showed lower IC50 value in
high-risk subgroups via GDSC. (H) Five CTRP-related and five PRISM-related compounds were identified by correlation between LLPSRS and AUC
value. (I) Twenty CellMiner-related potential drugs for patients with higher LLPSRS were identified by correlation between LLPSRS and G150 value.
The line in the box represents the median value, and the asterisks represent the p-value (**p< 0.01; ***p< 0.001); the statistical analyses were
performed by the Mann–Whitney and Spearman’s correlation test. LLPSRS, liquid–liquid phase separation-related risk score; irAEs, immune-related
adverse events; BLCA, bladder cancer; AUC, area under the receiver operating characteristic curve.
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FIGURE 8

Utility and robustness of the LLPSRS for speculating immunotherapeutic benefits in the IMvigor210 cohort. (A, B) KM and ROC curves of LLPSRS
in predicting OS. (C) Difference of LLPSRS among different responses to ICB. (D) Proportions of two subgroups in different TC levels (PD-L1
expression on tumor cells) (chi-square test). (E, F) Differences of LLPSRS among different IC levels (PD-L1 expression on immune cells) or
immunophenotypes. (G) Difference of TMB between high- and low-risk subgroups. (H) The branches of cluster dendrogram correspond to the
different gene modules. Each leaf on the cluster dendrogram corresponds to a gene, and the colored row represents a color-coded module
that contains a group of highly connected genes. (I) Correlation coefficients of WGCNA gene modules with LLPSRS, cytotoxic, binary response,
OS, and OS time. (J) Eigengenes’ annotations of GO terms and KEGG pathways. (K) The influence of number of decision trees on the error rate.
The X-axis represents the number of decision trees, and the Y-axis indicates the error rate. (L) Our ANN can predict patients’ responses to ICB.
(M) Model classification performances are displayed by ROC–AUC values in the IMvigor210 cohort, training, and validation sets. LLPSRS, liquid–
liquid phase separation-related risk score; KM, Kaplan–Meier; ROC, receiver operating characteristic; OS, overall survival; ICB, immune
checkpoint blockade; TMB, tumor mutational burden; WGCNA, Weighted Gene Co-expression Network Analysis; GO, Gene Ontology; KEGG,
Kyoto Encyclopedia of Genes and Genomes; ANN, artificial neural network; AUC, area under the receiver operating characteristic curve.
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to ICB treatment in the training, validation, and IMvigor210

cohorts was 1.000, 0.750, and 0.720, respectively. Together, these

results show the robustness and utility in predicting response to ICB

treatment in patients with BLCA (Figure 8M).
Discussion

LLPS plays an indispensable role in regulating the hallmarks of

cancer. However, the different functions of LLPS in cancer are still

unclear. Studies have shown that LLPS could aid in deciphering the

heterogeneity of TME (34), exploring genomic alterations and

transcriptional aberrations (35), and the impact of drug

distribution into condensate (36). LLPS plays multiple roles in

carcinogenesis; therefore, identifying LLPS-related biomarkers

could offer important insights into defining tumor subtypes and

evaluating the prognoses of patients. However, few studies have

used LLPS in predicting the clinical outcomes of patients with

BLCA. In this study, we have exclusively focused on BLCA and

explored LLPS-related patterns to enhance our understanding of the

role of LLPS in BLCA pathogenesis. We identified three LLPS-

related subtypes of BLCA and distinct features, including cancer

hallmarks and clinicopathological phenotypes. Based on individual

heterogeneity, we calculated LLPSRS for integrative assessments.

Further, we determined the correlation between LLPSRS and

patient prognosis, genomic variations, epigenetic alterations, TME

characteristics, and pharmacogenomics. Our results showed an

inverse correlation between LLPSRS and the efficacy of ICB. We

also constructed an LLPSRS-related eigengenes-based classifier

using the RF and ANN algorithms to predict the patient’s

sensitivity to ICB treatment.

Various studies have shown the involvement of LLPS in

carcinogenesis and metastasis (37). Estrogen triggers MYC to

form condensates in an LLPS-mediated manner, which increases

VEGF expression and promotes angiogenesis (38). Purinosomes

(39) and glucosomes (40) are liquid-like condensates, whereas the

LLPS of glycogen can induce tumorigenesis (41). Moreover, the

LLPS of transcriptional coactivators like YAP/TAZ plays a role in

EMT and cancer aggressiveness (42, 43). In this study, we identified

three LLPS clusters using NMF. The prognoses of patients in C2

were favorable. These patients had immunosuppressive TME, and

the expression of oncogenes was low. The discrepancies in these

results could be due to the small size of the tumor and the

limitations of algorithms, which emphasize absolute quantity

rather than relative quality. Compared to patients in C2, the

prognoses of patients in C1 and C3 were poor, and they had

dysregulated immune responses. Studies have demonstrated that

the levels of TIICs play a vital role in mediating immune responses;

however, the dense stroma prevents the entry of TIICs in tumors.

As expected, the pathways enriched by C3 were associated with

EMT and stromal activation, suggesting that patients had excluded

immunophenotype and activated invasion–metastasis pathway.

Meanwhile, the patients in C1 had basal subtypes and enriched
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the mismatch repair, MYC, and PI3K signaling pathways, which

indicates an increase in cell proliferation and expression of

oncogenes. Together, our results suggest crosstalk between LLPS

and genes’ expression associated with TME features, which

mediated BLCA’s prognosis and progression.

Given the subtypes’ multifaceted heterogeneities, we translated

these qualitative clusters into quantitative LLPSRS to conduct

integrative assessments of individual LLPS patterns in patients

with BLCA. Of the 29 RSGs, EGF and SUPT6H maintain the

functional integrity of biomolecular condensates as regulators.

HNRNPH3 is a scaffold and plays an important role during

condensate formation. LLPS of EGF alters SMAD3

phosphorylation to enhance EMT and stemness of cells (44),

whereas SUPT6H influences the assembly of SGs and P-bodies

(45). In addition, HNRNPH3 represents LLPS driving forces (46).

Other RSGs are clients that bind to scaffolds and condensates,

including P-bodies, SGs, nucleolus, and postsynaptic density.

Studies showed that genetic mutations or epigenetic alterations

play a role in the occurrence and development of cancer

pathogenesis and cachexia. The influence of LLPS on genetic

mutations or epigenetic alterations would aid in enhancing our

understanding of carcinogenesis. For example, ubiquitin-tagged p62

cannot be degraded due to the mutant’s LLPS, which leads to Paget

disease (47). SPOP mutants inhibit LLPS of substrates (48), and

SHP2 mutants recruit wild-type SHP2 to condensates, which

triggers carcinogenesis (49). YTHDC1 is an m6A reader and

undergoes LLPS, which destabilizes mRNA and promotes

tumorigenesis (50). IDRs in chromatins and enzymes undergo

LLPS, leading to chromatin compartmentalization (51). In this

study, the patients with high LLPSRS had distinct mutation

patterns. Interestingly, an inverse correlation was observed

between LLPSRS and TMB. However, a correlation between LLPS

epigenetic aberrations was observed, thereby implying

hyperprogression on treatment with ICB. Higher LLPSRS was

associated with DNA hypermethylation and various RNA-editing

regulators, which indicates that LLPS plays an important role in

epigenetic regulation. Furthermore, AS of several DEGs led to

refractory cachexia between the two subgroups. Our results show

a correlation between epigenetic alterations and LLPSRS, which

results in discrepancies in clinical outcomes.

Due to the target-independent physicochemical features, the

chemotherapeutic drugs can be selectively distributed among

distinct condensates, which reduces the efficacy of the drugs (52).

For undruggable proteins, mediating their condensates offered

intriguing avenues for antineoplastics. LLPS in LINP1 inhibits

DNA repair and induces chemoresistance (53). An inhibition in

MED1 expression could enhance the accumulation of its

condensates on MYC genes, which increases the efficacy of

tamoxifen (52). Furthermore, SHP2 allosteric inhibitors can

disrupt condensates of SHP2 mutants (49), and NCOA1 LLPS

can be attenuated by Elvitegravir (54). Further, the correlation

between LLPSRS and the signatures of adjuvant therapies was

investigated, which could aid in designing personalized treatment
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for patients with BLCA. The patients with high LLPSRS were

sensitive to EGFR-targeted therapies, radiotherapy, and

neoadjuvant chemotherapy. Patients with low LLPSRS may

benefit from therapies targeting oncogenic pathways (like the

FGFR3 and WNT signaling pathways) and ICB therapy. Further,

LLPSRS was used to determine the efficacy of anticancer drugs by

predicting chemosensitivity. Together, these results indicate the

potential role of LLPSRS in predicting personalized treatment at

the pharmacogenomics level; however, additional studies are

required to study the underlying mechanism.

Var ious s tudies have div ided TME into three

immunophenotypes such as inflamed, excluded, and desert;

however, spatiotemporal regulation of TME immunophenotypes

is still unclear. A study has shown that YAP’s LLPS causes ICB

hyperprogression induced by IFN-g (55); therefore, the further

correlation between LLPSRS and TME should be explored. A

study has shown that LLPS of cGAS can activate innate immune

responses and cGAMP production (56). However, STING forms

spherical condensate to inhibit cGAMP signaling, which triggers

innate immune responses (57). This indicates that LLPS plays a

dual role in the cGAS-STING pathway. LLPS of NLRP6 promotes

the secretion of IL-1b and IL-18 and induces pyroptosis (58).

LLPS is involved in both innate and adaptive immune responses.

T-cell receptor stimulators undergo LLPS; however, CD45 is

excluded from condensates to ensure T-cell activation (59). In

this study, the patients with lower LLPSRS had strong immune

responses; hence, they were more likely to benefit from ICB

treatment. By the IMvigor210 cohort, we directly attested that

they responded better to ICB, and LLPSRS was a robust metric for

evaluating individual responses. Only a few patients respond to

ICB treatment, which prolonged their survival; therefore, LLPSRS

could be used to identify patients with BLCA who could benefit

from ICB. A total of 122 LLPSRS-relevant eigengenes were

screened using WGCNA, and a prediction n classifier was

constructed using the RF and ANN algorithms. The classifier

was robust and could effectively predict the response of patients to

ICB therapy.

However, our study has a few limitations. Firstly, we

analyzed cross-sectional and retrospective data; hence,

additional studies with prospective multi-center cohorts are

required to validate our findings. Next, we explored the role of

LLPS-related genes at the macroscopic level; however, these

genes are involved in functions that are independent of LLPS.

Hence, these LLPS-related genes are insufficient to determine the

crosstalk between LLPS patterns and other characteristics. In

this study, we explored the heterogeneity in TME and quantified

LLPS patterns. However, we did not explore the intratumor

heterogeneity in a single patient. We divided the patients into

clusters based on the median LLPSRS as the cutoff value;

however, we performed correlation analyses to reduce the bias.

Since the number of patients with BLCA treated with ICB was

few, we carried out no extra external validations. However, we

carried out internal validations to compensate for this
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shortcoming. Furthermore, we used qRT-PCR to evaluate

LLPSRS in clinical practice; hence, follow-up studies are

required for designing genetic testing kits. Among RSGs,

HNRNPH3 and NSUN5 play an important role in BLCA

based on in vitro results; hence, we further analyzed them.

Nevertheless, our results shed light on different subtypes of

BLCA, which could aid in designing personalized treatment

and provide insights into guidelines for clinical application.
Conclusions

Our results revealed the underlying heterogeneity of tumors

and the impact of LLPS on the biological functions of BLCA at

the multi-omics level. We categorized the patients with BLCA

into three subtypes. These patients had different prognoses,

TME characteristics, cancer hallmarks, etc. We also calculated

the LLPSRS using various algorithms, which could identify

intricate LLPS patterns and develop their robustness from

multifaceted dimensions. Encouragingly, in the era where ICB

sheds new light on anticancer treatment, our binary classifier

could effectively predict patients’ response to ICB, which would

aid in designing personalized therapeutic strategies for patients.

Our results aid in uncovering the complexities of LLPS. We

developed algorithms to categorize patients with BLCA based on

LLPS patterns, which will aid in developing personalized

therapeutic strategies and shed light on personalized

precision medicine.
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SUPPLEMENTARY FIGURE 1

(A, B) Consensus map of NMF based on 586 prognostic LLPS-related genes
when k = 2/3/4/5; and NMF rank survey helped us to choose the appropriate

rank value. (C–E) Consensus map of NMF when k = 2/3/4/5 in Meta-BLCA
samples; and NMF rank survey helped us to choose the appropriate rank

value. (F) KM curve exhibited significantly different OS among 3 LLPS clusters
in Meta-BLCA cohort. (log-rank test, P< 0.001, samples that OS time > 4000

days were deleted). (G–I) Differences in 12 BLCA, 20 SA-MR-IR, and 19

oncogene signatures among LLPS clusters. The line in the box represented
the median value and the asterisk represented the P value (“*” P< 0.05; “**” P<

0.01; “***” P< 0.001; “****” P< 0.0001), while the statistical analyses were
performed by the Kruskal-Wallis test.

SUPPLEMENTARY FIGURE 2

(A) Venn diagrams showed overlaps of 470 DEGs (|log2FC| > 1, P< 0.01)

among the three LLPS clusters. (B, C) Consensus map of NMF based on
197 prognostic LLPS-related DEGs when k = 2/3/4/5; and NMF rank

survey helped us to choose the appropriate rank value. (D–F)
Differences in 12 BLCA, 20 SA-MR-IR, and 19 oncogene signatures

among three DEG clusters. The line in the box represented the median
value and the asterisk represented the P value (“*” P< 0.05; “**” P< 0.01;
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“***” P< 0.001; “****” P< 0.0001), while the statistical analyses were
performed by the Kruskal-Wallis test.

SUPPLEMENTARY FIGURE 3

(A, B) The relation between lambda values and variable coefficients or
partial likelihood deviance in the LASSO regression. (C–E) Patients were

divided into high- and low-risk subgroup in the training set, TCGA-BLCA
cohort, and validation set; survival status of patients in two subgroups;

heatmap of 29 RSGs. (F–I) KM curves for LLPSRS in the external validation

sets (Meta-BLCA, GSE13507, GSE31684, E-MTAB-4321 cohorts). (I–N)
Comparison of LLPSRS with other six prognostic signatures in terms of

DCA, C-index and ROC-AUC values at 1, 3, 5 and 7 years.

SUPPLEMENTARY FIGURE 4

(A) A histogram of differential transcript levels of NSUN5, DAD1, XPO5,

HMG20B and DHX16 in BLCA and normal urothelial cell lines. (B, C)
Univariate Cox analysis and Net reduction analysis of LLPSRS and 7 clinical
traits for the prognostic prediction in the TCGA-BLCA cohort. (D–G) The
ROC curves for LLPSRS and seven clinical traits at 1, 3, 5 and 7 years. (H)
The CNV variation frequency of 29 RSGs in the TCGA-BLCA cohort. The

height of the column represented the alteration frequency, and the
deletion was referred to as green dot while the amplification was

referred to as red dot. (I, J) LLPSRS were inversely correlated with TMB

and purity in the TCGA-BLCA cohort. (K, L) Themulti-omics mutation and
interconnection landscape of 29 RSGs.

SUPPLEMENTARY FIGURE 5

(A) KEGG annotation of 240 DNA methylation-relevant driver genes. The
different colors represented the different terms or pathways. (B) Heatmap

showed the DNA methylation levels of top 35 hypermethylated or

hypomethylated genes. (C–E) Differential expression of RNA modification
regulators between high- and low- risk subgroups. Color code of the

regulators indicated corresponding modification type. (F) Network diagram
showed that 786 of DEGs were discovered to have co-expression relations

with 71 RNA editing regulators with |Pearson’s r| > 0.3 and p< 0.0001 as the
threshold. (G) KEGG annotation of 786 RNA editing-relevant DEGs. The

different colors represented the different terms or pathways. (H) KEGG

annotation of 161 DEGs with AS. The different colors represented the
different terms or pathways. (I) The splicing regulatory network between the

prognostic AS events of DEGs and relevant splicing factors.

SUPPLEMENTARY FIGURE 6

(A–H) Paclitaxel, Gemcitabine, AZD4547, 5-Fluorouracil, Dactinomycin,

Epirubicin, Oxaliplatin, Lapatinib showed lower IC50 value in low-risk

subgroup via GDSC. (I) 4 CTRP-related and 9 PRISM-related compounds
were identified by correlation between LLPSRS and AUC value. (J) 20
Cellminer-related potential drugs for patients with lower LLPSRS were
identified by correlation between LLPSRS and G150 value. The line in the

box represented the median value and the asterisk represented the P
value (“*” P< 0.05; “**” P< 0.01; “***” P< 0.001; “****” P< 0.0001), while the

statistical analyses were performed by the Mann-Whitney and Spearman

correlation test.

SUPPLEMENTARY FIGURE 7

(A) ROC curve of LLPSRS in patients treated with anti-PD-L1 immunotherapy.

The combination of TMB and LLPSRS improved predictive power compared
with that of TMB or LLPSRS alone. (B) Euclidean distance between samples

were calculated by the “dist” function. (C) Relation between the scale

independence (R2) and mean connectivity with the soft threshold (b). (D)
Eigengene adjacency heatmap. (E) Network heatmap plot. (F, G) Scatter plot
ofmodule eigengenes in the brownmodule. (H)Results of the Gini coefficient
method in RF classifier. The X-axis indicated the genetic variable, and the Y-

axis represented the importance index.
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