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ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family

of transmembrane proteases involved in the shedding of some cell membrane

proteins and regulating various signaling pathways. More than 90 substrates are

regulated by ADAM17, some of which are closely relevant to tumor formation

and development. Besides, ADAM17 is also responsible for immune regulation

and its substrate-mediated signal transduction. Recently, ADAM17 has been

considered as a major target for the treatment of tumors and yet its

immunomodulatory roles and mechanisms remain unclear. In this paper, we

summarized the recent understanding of structure and several regulatory roles

of ADAM17. Importantly, we highlighted the immunomodulatory roles of

ADAM17 in tumor development, as well as small molecule inhibitors and

monoclonal antibodies targeting ADAM17.
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Introduction

Transmembrane proteolysis is a post-translational modification that plays an

important role in cellular biological processes, such as signal transduction and

immune responses (1–3). Many transmembrane proteins need to be cleaved from the

cell surface and released in a soluble form to initiate cellular or intercellular signal

transduction (4–6). ADAM17, also known as tumor necrosis factor (TNF)-a converting

enzyme (TACE), CD156B, NISBD1, and snake venom-like protease (cSVP), is a member

of the disintegrin and metalloprotease family. ADAM17 exists in two forms: precursor

and activated ADAM17. Activation of ADAM17 is required for the cleavage of its

prodomain and exposure of the active site. In response to the inflammatory stimuli,
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activated ADAM17 prompts multiple receptor-mediated signal

transduction by cleaving ectodomains of membrane proteins,

including inflammatory cytokines, growth factors, receptors, and

adhesion factors (7). The expression of ADAM17 in mouse

articular cartilage is positively correlated with the development

of arthritis, and its deletion attenuates articular cartilage

degeneration (8). Moreover, ADAM17 is associated with

glomerular inflammation and fibrosis (9). In diabetic mice,

ADAM17 deletion in the proximal tubules improves glucose

tolerance, prevents podocyte loss, and inhibits the accumulation

of glomerular macrophages and collagen (9). More importantly,

ADAM17 is contributory to the occurrence and development of

cancers, including lung carcinoma (10), ovarian carcinoma (11),

breast carcinoma (12–14), gastric carcinoma (15), and cervical

carcinoma (16). Interestingly, it regulates some immune

signaling pathways through the shedding activity, which may

facilitate the inflammatory response in tumor development (17–

19). However, the study of the relationship between the

abnormal expression of this metalloproteinase in tumors and

its immune regulation is still not well studied. Herein, we

summarized and updated multiple regulatory roles of

ADAM17 as well as the development of ADAM17 inhibitors

with a focus on the immunomodulatory role of ADAM17 in

tumor development, which may provide reasonable insights for

the prevention and treatment of cancer diseases.
Characterization of ADAM17

ADAM17 is a widely distributed transmembrane protein

that is involved in different physiological processes such as

inflammation, cell proliferation and apoptosis by its hydrolysis

of various precursor membrane proteins, such as TNF-a,
TNFRII, HB-EGF, IL-1R1, etc. It is localized in the

membranes and cytoplasm of normal and tumor tissues and

expressed in human lung, bronchus, nasopharynx, placenta, and

lymphoid tissues (20, 21). In lung or respiratory tissues,

activation of ADAM17 may contribute to the shedding of the

collectrin-like part of ACE2, leading to the formation of soluble

ACE2 (sACE2) (22, 23) and the development of inflammatory

response (24). Furthermore, in distinct cells from the lung,

ADAM17 expression is relatively high in pneumocytes and

endothelial cells (20), suggesting that ADAM17 may be

participating in the cleavage and shedding of key proteins in

lung tissues. Activation of ADAM17 promotes the release of

soluble fms-like tyrosine kinase 1 (sFlt1) in the placenta and

induces preeclampsia (25). ADAM17 also induces T-cell

activation in lymphoid tissues through the promotion of L-

selectin hydrolysis and shedding (26). ADAM17 is lowly

expressed in NK cells and its activation by IL-15 obstructs the

proliferation of NK cells (19). Among multiple immune cells,

ADAM17 is relatively high expressed in granulocytes and

monocytes (20). ADAM17 mediates IL-6R shedding from
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neutrophils and induces apoptosis (27), which may be

associated with a pro-inflammatory response mediated by the

sIL-6R/IL-6 trans-signaling pathway (28).
Structure of ADAM17

ADAM17 is a member of the adamalysins subfamily of

metzincin metalloproteinases consisting of 824 amino acids

with zinc-dependent catalytic activities (29). The human

ADAM17 protein sequence contains an N-terminal signal

sequence (SS), a prodomain (PD), a catalytic metalloprotease

domain (MD), a disintegrin domain (DD), a membrane-

proximal protein domain (MPD), a conserved ADAM17

interaction sequence (CANDIS), a transmembrane domain

(TM), and a C-terminal cytoplasmic domain (CD), which are

located at amino acid residues 1-17, 18-216, 217-474, 480-559,

581-642, 643-666, 672-694, and 695-824, respectively (7, 30)

(Figure 1A). Among them, the first five protein sequences that

make up its extracellular domain may be involved in regulating

multiple biological functions, including angiogenesis, cell

migration, cell proliferation, inflammation, and immune

responses. SS transfers the newly synthesized ADAM17

protein (110 kDa) to endoplasmic reticulum and Golgi

apparatus (32). The PD obstructs the catalytic activity of

metalloproteinases based on the cysteine-switch mechanism

(33) (Figure 1B). During activation, furin, PC7 and PC5B pro-

protein convertases are able to remove the prodomain of

ADAM17 and induce production of the matured protein (80

kDa) (34). The cysteine-switch mechanism is not essential for

the maintenance of inactivated ADAM17, which may be due to

the presence of subdomains in the amino-terminal region of the

prodomain (35). The MD serves as the main catalytic region of

ADAM17 that contains a zinc-dependent HexGH-XXGXXHD

motif (36). Amino acid residues His405, His409 and His415 located

in this motif bind to zinc ions and determine the activity of the

ADAM17 enzyme (31). The curved “Met turn” structure

consisting of amino acid residues Tyr433, Val434, Met435,

Tyr436, also known as 1,4-b-turn, is prone to ADAM17

cleavage and its mutations (37, 38). The DD can impair

multiple functions of integrins, thereby affecting cell-cell/

extracellular matrix interactions (20). In contrast to other

members of ADAMs family, ADAM17 shows disulfide bonds

in the MD, but its DD lacks typical calcium binding sites (39,

40). ADAM17 MPD plays crucial roles in substrate recognition

and protein shedding. Due to the dimerization of ADAM17 and

its substrate specificity, cysteine-rich and epidermal growth

factor (EGF)-like domains are considered important

components of MPD (41, 42). The hypervariable region of the

former contributes to substrate recognition and shedding of

extra-substrate domains and the latter affects the protein

regulation of ADAM17 activity (43, 44). However, the

existence of EGF-like domain remains controversial (45). In
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addition, the positively charged motif (Arg625-Lys628) in MPD

binds to phosphatidylserine in the outer membrane, affects the

conformation of ADAM17, and induces its activation (46). TM

and CD mainly regulate the response of exocytodomain

signaling molecule-related events (7, 38, 47), which may be

attributed to the functional assembly of the Src SH3-binding

motif (20). The CANDIS domain lies between MPD and TM,

consisting of amino acid residues 643-666 (48), which binds to

the type I transmembrane protein IL-6R but not the type II

transmembrane protein TNF-a (49). As shown in Figure 1C, the

visualized crystal structure of the catalytic domain of ADAM17

has five a-helices and five highly distorted b-sheet structures.
The N-terminus binds to b1 and b3 sites, and the C-terminus

binds to the a5 sites (31, 50). ADAM17 has shallower

hydrophobic S1’ and very deep hydrophobic S3’ pockets linked

by water channels, which facilitate the binding of the
Frontiers in Immunology 03
hydroxamic acid-based inhibitor TAPI-1 (also called an

ADAM17 inhibitor) to the isobutyl side chain S1’ pocket and

its other long chain to the S3’ pocket (31, 45). The structure and

function of MD and MPD catalyzed by ADAM17 have been

studied extensively, but the crystal structure and exact function

of the remaining domains are still unclear.
Regulatory roles of ADAM17

ADAM17 regulates
post-translational modification

Post-translational modification of precursor proteins includes

proteolysis, phosphorylation, glycosylation, methylation and

acetylation (51). It can regulate the hydrolysis and cleavage of

proteins, affect their activities, localization and interaction with

other cellular molecules. As an irreversible post-translational

modification, proteolysis/cleavage of transmembrane proteins is

responsible for activating multiple cytokine-mediated signal

transduction pathways. ADAM17 was first identified as the

TNF-a converting enzyme, and its transmembrane proteolysis

is related to inflammation (52) and immune regulation (26). TNF

consists of TNF-a and TNF-b, to be secreted by macrophages

and/or T lymphocytes (53, 54). TNF-a interacts with its receptors

TNFR1 and TNFR2. TNFR1 is widely expressed in various human

cells and is involved in cell survival and cellular damage (55, 56).

The death domain of TNFR1 is occupied by the silencer of death

domains (SODD) which blocks the binding of TRADD to TNFR1

and suppresses the TNFR1 signaling pathway (57). The binding of

TNF-a and TNFR1 enables the shedding of SODD from the death

domain of TNFR1 and leads to the formation of the TNFR1-

TRADD-RIP1-TRAF2 complex, thus promoting cell survival (57).

In addition, TNFR1 is also internalized by the clathrin protein,

which subsequently triggers the assembly of intracellular death-

inducing signaling complex and activation of caspase8, leading to

apoptosis or necrosis (57, 58). TNFR2 is mainly distributed in

immune cells and plays a role in regulating the function of the

immune system (59). Numerous studies have shown that furin

endopeptidase close to the prodomain can remove the NH2-

terminus of ADAM17 by proteolysis/protein cleavage (60),

thereby activating it and inducing shedding of pro-TNF-a,
TNFR1, and TNFR2 and subsequent pro-inflammatory

response. Besides, ADAM17 triggers the hydrolysis and release

of more than 90 substrate proteins. These have been further

discussed in “ADAM17 Mediates Substrate Shedding Activity”

section. Phosphorylation of ADAM17’s cytoplasmic tail is

another post-translational modification. ADAM17 is often

hyperphosphorylated in patients with emphysema (61). As

shown in Figure 2, ADAM17 can be phosphorylated by various

protein kinases, such as PKC (3), PKL2 (3), PTK2 (18), MAPKs

(3, 62), Akt/GSK (63), and Smad2/3 (64). Recent studies have
FIGURE 1

Molecular structure of the ADAM17 protein. (A) Sequence and
structure of ADAM17. ADAM17 protein mainly comprises five
extracellular domains, a transmembrane domain, and a
cytoplasmic domain. (B) The classic cysteine-switch mechanism.
The conserved cysteine switch is located in the prodomain. It
coordinates with Zn2+ at the catalytic site of the
metalloproteinase domain to produce an inactivated enzyme
(ADAM17 precursor). Once its prodomain is cleaved, the adjacent
furin site (RVKR sequence) is responsible for catalyzing the
separation of zinc from cysteine, ultimately leading to ADAM17
activation. (C) The 3D catalytic structure of ADAM17 (PDB CODE:
1BKC) (31) with a hydroxamic acid-based inhibitor INN and Zn2+

shows N-terminal domains, a-helix (blue), b-sheet (green), and
C-terminal domains. INN stands for N-{(2R)-2-[2-
(hydroxyamino)-2-oxoethyl]-4-methylpentanoyl}-3-methyl-L-
valyl-N-(2-aminoethyl)-L-alaninamide with the chemical
structure of C19H37N5O5. INN, also known as TAPI-2, is an
analogue of TAPI-1. This 3D image was made with the SWISS-
MODEL Expasy.
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shown that the extracellular domain of ADAM17 with a

homodimer structure can bind tightly to selective ADAM17

inhibitors, while serine 819 (Ser819) and threonine 735 (Thr735)

in the cytoplasmic tail release selective ADAM17 inhibitors, which

activate ADAM17 by inhibiting its phosphorylation-induced

dimerization (65, 66). In addition, ADAM17 phosphorylation

further promotes the shedding of TNF-a and two TNF receptors

(32). Short term pro-TNF-a shedding by ADAM17 substrate does

not depend on rapid phosphorylation of pro-TNF-a or the

cytoplasmic tail of ADAM17 and it is mainly regulated by

serine/threonine kinases (67). It has been reported that serine

phosphorylation of ADAM17 substrate NRG1-ICD can restrain

its cleavage of these post-translational modified substrates to some

extent (68). Glycosylation of ADAM17 plays an important role in

regulating enzyme activity or binding to substrates (69). ADAM17

glycosylation is significantly different between mammalian and

insect cells (69). The glycosylation of ADAM17 cannot be

detected in CRIB-1 cells (70). ADAM17-mediated TNF-a
shedding is associated with O-glycosylation in the extracellular

proximal membrane region (71). O-glycosylation at Ser41,

however, prevented ADAM17-dependent cleavage of b1-AR
(72). Glycosylation not only alters protein folding and

conformation and affects ADAM17 activity, but also regulates

receptor-mediated signal transduction (73, 74) and facilitates drug

interventions targeting non-zinc-binding exosome sites of

ADAM17 (69). Chen et al. found that zidovudine-based

treatment inhibited the glycosylation of ADAM17 and the lysis

of monocyte CD163 (75), indicating the important role of

glycosylation in ADAM17 activity and disease progression.
Frontiers in Immunology 04
ADAM17 affects
post-transcriptional regulation

In addition to post-translational modifications, ADAM17

also affects post-transcriptional regulation. ADAM17 is highly

expressed or upregulated in cancer (76, 77) and other

inflammation-related diseases, including kidney disease (78),

sepsis (79), cicatrization (80), diabetic retinopathy (81),

myocardial fibrosis (82), aortic dissection (83), arthritis (84)

and atherosclerosis (7). The guanine-cytosine (G-C) sequences

in the promoter region of ADAM17 are capable of binding

specifically to many transcription factors (85–87). The gain- or

loss-of-function of ADAM17 is attributed to the regulation of

the following transcription factors, such as NF-kB (77, 88, 89),

AP-1 (77, 88), SP1 (85), HIF-1a (82, 83), C/EBP-b (76), EGR1

(79), Sim1 (90), RUNX2 (91). For instance, inflammatory

induction of inactive rhomboid protein 2 (iRhom2) stimulated

by TNF and IFN-g drives the activation and upregulation of

ADAM17 expression and subsequent shedding of cell-surface

molecules (77, 88, 89), which is blocked by NF-kB and AP-1 (77,

88, 89). However, ADAM17 can negatively regulate miR-449b-

3p expression and its promoter activity via activating NF-kB
transcription. MiR-449b-3p is a downstream target of ADAM17

and has a binding site of NF-kB in its promoter (77). He et al.

found that EGR1 is bound to the ADAM17-172A>G

(rs12692386) promoter region with affinity, leading to

upregulation of ADAM17 promoter activity and transcription

(79). However, the loss of EGR1 function prevents ADAM17

expression and induces a pro-inflammatory response. HIF-1a is
FIGURE 2

Multiple regulatory roles of ADAM17. ADAM17 activity is affected by transcriptional regulation, and post-transcriptional and post-translational
modification. ADAM17 activity is also associated with substrate shedding. iRhoms affect the shedding of ADAM17 and regulation of its
downstream signaling pathways.
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an upstream target of ADAM17, and the transcriptional

activation of HIF-1a promotes the upregulation of ADAM17

expression (82, 83). The latter regulates AMPK metabolism-

related diseases through the adrenergic receptor (ADRA1A)

(82). In addition, miR-145 downregulates ADAM17 expression

by binding to the 3’-UTR of ADAM17, which leads to activation

of the ADAM17-EGFR-Akt-C/EBP-b feedback loop and

induction of tumor invasion (76). Epigenetic regulation of

histone post-transcriptional modifications also plays a pivotal

role in the post-transcriptional regulation of ADAM17.

Recruitment/deletion of histone H3K4me3/H3K27me3 at the

ADAM17 gene promoter downregulates ADAM17 expression

(92), suggesting that dynamic chromatin modifications at this

site lead to inflammatory responses.
ADAM17 mediates substrate
shedding activity

Due to the shedding activity, ectodomains of many

transmembrane proteins are hydrolyzed and released by

ADAMs metalloproteinases. Studies over the past five years

revealed that ADAM17 has more than 90 substrates (7, 32)

with distinct functions (Table 1), which are involved in various

cellular processes, including cell adhesion, migration,

development, inflammation, immune response, tumorigenesis,

signal transduction. The cleavage and release of substrates

(inflammatory cytokines, growth factors, receptors, adhesion

molecules, and others) for ADAM17 may result in different

functions of substrate proteins. Some substrate proteins, such as

glycocalyx (104), TNFR (173, 178), and JAM-A/FIIR (156), are

shed by ADAM17 in the form of active molecules. Glycocalyx is

a polysaccharide protein complex that covers the aperture

membrane surface of vascular endothelial cells and regulates

the homeostasis of the cytoplasmic membrane through

proteoglycan-glycoprotein attachment to endothelial cells.

Recent studies have shown that activation of S100B/RAGE

signaling by traumatic brain injury contributes significantly to

ADAM17-mediated endothelial calyx shedding, which

aggravates blood-brain barrier dysfunction and increased

vascular permeability (104). The sheddase activity of ADAM17

drives scramblase-dependent phosphatidylserine (PS) exposure

to the membrane surface, allowing the substrate to be cleaved

and shed at the membrane surface (178, 179). The inability of

ADAM17 to interact directly with PS may be due to the ability of

the ortho-phosphorylserine form of PS to competitively inhibit

the shedding of ADAM17 substrates (179). ANO6 facilitates the

regulation of phosphatidylserine on the plasma membrane due

to its scramblase activity. Veit M et al. found that

downregulation of ANO6 expression by RNA interference

significantly reduced the cleavage and release of TNFR1 by
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ADAM17 in HUVECs (178) and that free TNFR1 promotes

TNF-induced cell necrosis (173). ADAM17-mediated JAM-A/

FIIR shedding is responsible for aging-related abnormal

endothelial remodeling (156). However, other substrates, like

EGFR ligands (17, 97, 180), E-cadherin (124), VLDLR (4), IL-

11R (5), CD137 (94), P75 (11), GPIBa (6), HPP1 (119), and

NRG1 (10) are precursor proteins or fusion proteins that can

yield active components or soluble active receptors only after

cleavage and release by ADAM17 (Figure 2). Evidence suggests

that ADAM17 promotes tumor-associated macrophage

polarization and angiotensin II-mediated pro-growth and pro-

migration signals by shedding EGFR ligands, including heparin-

binding EGF-like growth factor (HB-EGF) and AREG (members

of the EGF family), from the cell membrane (17, 32). E-cadherin

is a key substrate for ADAM17, which is conducive to epigenetic

regulation, endocytosis and efflux of cells by cleaving and

shedding E-cadherin. Once ADAM17 binds to CD82,

ADAM17 metalloproteinase activity is inhibited, leading to a

reduction in E-cadherin cleavage products (124). IL-11 is

a member of the IL-6 family that binds to IL-11R and forms a

complex with CP130 to mediate anti-inflammatory signal

transduction. On the other hand, IL-11R is hydrolyzed to

soluble IL-11R (sIL-11R) via ADAM17 overexpression,

mediating IL-11 trans-signaling pathway (5), which confers

pro-inflammatory cytokine activity. Similarly, the bidirectional

regulation of CD137/CD137L-mediated cellular responses has

been implicated in the development of tumors and

autoimmunity. The shedding protease ADAM17 triggers the

production of soluble CD137 (sCD137), a spliceosome of

CD137, which subsequently enhances T cell proliferation,

whereas inhibition of ADAM17 activity intercepts the sCD137

production (94). VLDLR, an apolipoprotein receptor, plays an

important role in foam cell formation, plasma triglyceride

metabolism and inflammation. Its soluble ectodomain-

mediated anti-inflammatory effect is related to the activation

of the Wnt signaling pathway. ADAM17 induces the release of

soluble VLDLR (sVLDLR), which inhibits the Wnt pathway and

leads to macular degeneration in eye tissue, whereas the

shedding of sVLDLR is blocked by selective ADAM17

inhibitors (4). Carrido et al. revealed that tumor formation

mechanisms were probably caused by ADAM17-mediated

cleavage of the P75 ectodomain (11). In addition, the

increased ectodomain cleavage of other ADAM17 substrates

(GPIBa and HPP1) may be required for immune platelet

clearance and tumor suppression (119, 181). However, in

another study related to oncogenic KRAS, KRAS mutations

triggered enhanced ADAM17-mediated NPG1 shedding of the

SLC3A2-NPG1 fusion protein, which in turn promoted tumor

cell growth (10). Collectively, the pro-inflammatory and anti-

inflammatory effects induced by ADAM17 substrate shedding

may be related to distinct regulatory effects and functions of

the substrates.
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TABLE 1 Updated ADAM17 substrates (7, 32).

Cytokines Growth factors Receptors Adhesion molecules Others

CSF1 (93) AREG (17) 4-1BB/CD137 (94) ALCAM/CD166 (95, 96) EGFRL (97)

CX3CL1 (98) Epigen (99) ACE2 (100, 101) CD44 (102, 103) Glycocalyx (104)

FLT-3L (105) Epiregulin (106) APP (107) CD62L/L-selectin (108) Klotho (109)

INFg (110) HB-EGF (111) CA IX (112) Collagen XVII (113–115) Pref1 (116, 117)

Jagged1 (118) HPP1/TMEFF2/Tomoegulin2 (119) CD163 (75) Desmoglein2 (95, 120) SEMA4D (121)

Kit-ligand l and 2 (122) NRG1 (10) CD30 (123) E-cadherin (124) VASN/Vasorin (125)

LAG-3 (126) TGFa (127) CD40 (128, 129) EpCAM (130)

MICA (131) CD89/FcaR (132) ICAM1 (133)

MICB (134) c-MET (38, 135) L1-CAM (136)

RANKL (7, 137) EMMPRIN/CD147 (138) NCAM (139)

TNFa (140) EPCR (141) Nectin4 (142)

TNFb (143) ErbB4 (96) PTP-LAR (144)

GHR (145) VCAM1 (146)

GPIba (6)

GPV (147)

GPVI (148)

IGFR1 (138)

IGF2R (149)

IL-11R (5)

IL-1RII (150, 151)

IL-6R (152, 153)

Integrin b1 (154, 155)

JAM-A/FIIR (156)

KIM1 (157)

LeptinR (158)

LOX1 (159, 160)

LRP1 (46, 161)

MEGF10 (162)

MerTK (163)

Notch1 (164)

NPR (32, 165)

p55TNFaR1 (140)

P75 (11)

p75 TNFR (127)

Ptprz (166)

PTPRA/PTPa (167)

sVLDLR (4)

Syndecan-1 and -4 (168)

TGFbR1 (169)

TIL4 (170)

TIM-3 (171, 172)

TNFR1 (173)

Trop2 (174, 175)

VEGFR2 (176)

VPS10P (177)
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ADAM17 participates in the regulation of
its downstream signaling pathways

ADAM17 regulates signal transduction in many

pathophysiological processes, including inflammation,

immunity and tumor. The upregulation of ADAM17

expression leads to increased EGFR ligand release and

polarization of the EGFR signaling, which is responsible for

cell proliferation, invasion, and migration (182, 183). However,

downregulation of the ADAM17 expression urges the opposite

effect by suppressing the EGFR/ERK, EGFR/Akt/C/EBP-b or

EGFR/ErbB signaling pathways (76, 184). ADAM17-mediated

EGFR signaling increases the levels of TGF-b and accumulates

extracellular matrix (185), implying the role of TGF-b in the

regulation of multiple immune cells under pro-inflammatory

conditions. Emerging evidence suggest that blocking ADAM17

expression effectively alleviates inflammatory responses, which

may be relevant to the regulation of pro-inflammatory cytokines

IL-1b, IL-6 and TNF-a (186, 187). However, the loss of

ADAM17 function with gene mutations triggers the

development of inflammatory diseases (48, 188). Based on the

aforementioned discussion, we suggest that ADAM17’s critical

role in various signaling pathways ensures its activity is

strictly regulated.

iRhoms, lacking the catalytic motif GxS, are members of the

rhomboid protein family with important biological functions

(189). Recently, iRhoms have been identified as key regulators of

ADAM17 activation. In different tissues, iRhoms appear to form

proteolytic complexes with ADAM17 sheddase, but not other

ADAMs (190), thus mediating ADAM17 cell membrane surface

transport. iRhoms contribute to the activation of ADAM17-

dependent shedding events and substrate recognition, while

deletion of iRhoms hinders ADAM17 activation, suggesting

that iRhoms are required for ADAM17 maturation (190).

iRhoms contain two inactive homologs, iRhom1 and iRhom2,

also known as RHBDF1 and RHBDF2, respectively. iRhom1 is

barely expressed in inflammatory/immune cells and yet iRhom2

is highly expressed in these cells and is responsible for ADAM17

activation (89). iRhom2 deficiency inhibits ADAM17-dependent

substrate release, including bidirectional regulators and TNFs

(191, 192). In iRhom2-mutated macrophages, ADAM17

remains in endoplasmic reticulum (ER), and cannot be

activated by lysis of its prodomain (193). The cytoplasmic

domain of iRhom2 participates in the regulation of ADAM17-

dependent shedding events (189). Shed ADAM17 triggers

phosphorylation of the N-terminus of iRhom2 and promotes

the separation of ADAM17 from the iRhom2/ADAM17

complex by recruiting 14-3-3 protein (194). Despite the loss of

protease activity, iRhom1 and iRhom2 maintain critical non-

protease activities in regulating EGF and TNF-a signaling

pathways (41, 195). Upregulated expression of iRhom1 in ER

may enhance proteasome activity via the PAC1/2 pathway

rather than via EGF signaling. Mice with iRhom2 deficiency
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had severe immunodeficiency and could neither produce the

main inflammatory cytokine, TNF, nor could they respond to

lipopolysaccharide-induced inflammation and immune

responses. Therefore, iRhoms play an integral role in

ADAM17-mediated downstream signal regulation. Hence,

targeting iRhoms and ADAM17 may provide new strategies

for anti-inflammatory treatment.
Immune regulation of ADAM17
in cancers

Abnormal expression of ADAM17
in cancers

Due to the shedding activity, ADAM17 is closely related to

the formation and development of distinct cancer types,

including lung cancer, ovarian cancer, breast cancer, stomach

cancer, colorectal cancer, bladder cancer, melanoma, cervical

cancer, pancreatic cancer, etc.

ADAM17 in lung cancer
Lung cancer has the highest incidence and mortality rate in

the world. ADAM17 is usually an oncogene and its upregulation

is associated with the progression of lung cancer. In LUAD,

KRAS mutation contributes to the phosphorylation of ADAM17

threonine via p38 MAPK, thereby driving ADAM17 to

selectively promote its substrate IL-6R shedding and

subsequent ERK1/2 MAPK-IL-6-mediated trans-signal

transduction, leading to malignant progression of the cancer

(152). Enhanced ADAM17 activity mediated by KRAS mutation

also facilitates the shedding of S-N (SLC3A2-NRG1) fusion

protein NRG1 and the release of soluble NRG1 (sNRG1),

which contributes to the increase in ERBB2-ERBB3

heterocomplex receptors and the activation of the downstream

PI3K-AKT-mTOR pathway, leading to the growth of lung

cancer cells (10). In addition, iRhom2, as a key binding

protein for ADAM17, further promotes KRAS-induced tumor

cell growth by modulating the release of ERBB ligands (196).

However, the efficacy of radiotherapy for non-small cell lung

cancer was enhanced when blockade of ADAM17 function with

the neutralizing antibody (197). These findings suggest that

ADAM17 is a cancer-promoting gene and a potential target

for anti-lung cancer therapies.
ADAM17 in ovarian cancer
Fabbi et al. found that ADAM17 is significantly upregulated

in ovarian cancer, and its high-expression is associated with poor

clinical prognosis in ovarian cancer patients (198). High levels of

ADAM17 in serum and ascites fluid of patients with ovarian

cancer may be used as a hematologic tumor marker for the

detection of ovarian cancer (199). ADAM17 promotes the
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malignant progression of ovarian cancer and causes chemo-

resistance by mediating ADAM17-dependent shedding of

AREG, HB-EGF, IL-6Ra, TNF, TNFR1-a, TGFa and

activating the EGFR signaling pathway (198, 200). Deletion of

ADAM17 or treatment with selective ADAM17 inhibitor

GW280264X is capable of declining substrate cleavage/release

and promoting chemo-sensitization (198, 201). ADAM17-

induced P75 cleavage may also be responsible for ovarian

cancer-promoting activities (11).

ADAM17 in breast cancer
ADAM17 functions as one of the highly expressed genes in

breast cancer that plays an important role in the development of

breast cancer. ADAM17 promotes cleavage of PD-L1 on the surface

of breast cancer cells (12), regulates the interaction between PD-L1

and PD-1 (12), and may contribute to immune escape of triple-

negative breast cancer cells (12, 202). ADAM17 can mediate the

release of sTNFR1 and sTNFR2, which inhibit the secretion of

metastasis-promoting chemokines (CXCL8, CCL5, CXCL) and

induce anti-metastasis effects in triple-negative breast cancer cells

(203). An earlier study indicated that breast cancer-associated

fibroblasts stimulated breast cancer cell proliferation through

ADAM17-mediated cleavage of TGF-a (204). Interestingly,

ADAM17 is also present in platelets and is involved in tumor

immune escape. It was found that downregulation of ADAM17 in

activated platelets from breast cancer patients was associated with

tumormetastasis and clinical stage of breast cancer (14). D8P1C1, an

anti-ADAM17 monoclonal antibody, remarkably inhibited tumor

growth in triple-negative breast cancer mouse models (205). Similar

results were reported in another published paper (13). In summary,

the critical role of ADAM17 in breast cancer makes it a potential

target for breast cancer therapy.

ADAM17 in gastric cancer
ADAM17 is probably associated with aggressive metastasis

and poor prognosis of gastric cancer. A meta-analysis associated

with gastric cancer indicated that ADAM17 might be a tumor

marker for poor prognosis in gastric cancer, and high expression

of ADAM17 is associated with lymph node metastasis and

clinical staging of lymph node metastasis in gastric cancer

(15). ADAM17 promotes gastric cancer cell metastasis by

activating the Notch-Wnt signaling pathway (206). Epithelial-

mesenchymal transition (EMT) is a transformation of cell

morphology that occurs in the development of tumors,

including gastric cancer. It was reported that ADAM17

promotes EMT in gastric cancer cells (33, 64). The mechanism

of ADAM17 in gastric cancer may be through TGF-b/p-Smad2/

3-mediated EMT activation (207, 208).
ADAM17 in other cancers
ADAM17 is also highly expressed in cervical cancer, liver

cancer, colorectal cancer and bladder cancer. ADAM17-
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modified bone marrow mesenchymal stem cells may stimulate

the malignant growth of drug-resistant cervical cancer cells by

activating the EGFR/PI3K/Akt pathway (16). ADAM17 is

thought to cleave the Notch receptor and inactivate Notch

signaling, thereby impeding the GPR50/ADAM17/Notch axis-

mediated development of liver cancer (85). ADAM17 can

interact with cellular integrin a5b1 to promote the binding

and uptake of exosomes derived from colorectal cancer (209).

Newly formed exosomes are associated with the malignant

phenotype of tumors. In addition, ADAM17 also promotes

STAT3 activation by induction of EGFR/IL-6 transduction

signaling pathways, which ultimately lead to tumor

progression; inhibition of the ADAM17/IL-6/STAT3 signaling

axis significantly attenuated the growth of colon cancer cells

(210). The ADAM17/EGFR/AKT/GSK3b axis plays a key role in

regulating melanoma cell proliferation, migration, and cell

sensitivity to chemotherapeutic drugs (211). ADAM17 is also

involved in immune-related autocrine and paracrine regulation

(40). However, knockdown of ADAM17 or treatment with anti-

ADAM17 antibody MEDI3622 resulted in regression of

pancreatic tumors, accompanied by down-regulated EGFR/

STAT3 signaling, increased cytotoxic T cells, and decreased

granulocyte-like medullary inhibitory cells in mouse models of

pancreatic cancer (212).
Regulation of macrophages by ADAM17

Tumor microenvironment (TME) refers to a complex

environment closely related to tumorigenesis, tumor growth

and its metastasis, which is composed of a variety of cells

(including macrophages, fibroblasts, lymphocytes, endothelial

cells, etc.), extracellular matrix, and multiple signaling molecules

(cytokines, growth factors, chemokines, hormones, etc.) (213).

Autocrine and paracrine are conducive to the activation of

multiple signaling pathways in tumor cells and non-tumor

cells (e.g., macrophages, lymphocytes, endothelial cells) (214–

216). In this way, the dynamic interaction between tumor cells

and their surrounding matrix triggers tumor cell proliferation,

immune evasion, distal metastasis, and drug resistance, and

angiogenesis as well (217, 218).

Tumor-associated macrophage (TAM) is derived from

mature monocyte in peripheral blood. Monocytes are recruited

to TME through chemokines and cytokines secreted by tumor

cells and become TAMs. TAMs are the most abundant immune

cells in the TME and are closely relevant to tumor growth,

invasion and metastasis (219). For one thing, macrophages

serves as an important component of tumor stromal cells that

are able to gather around blood vessels and promote

angiogenesis, tumor invasion and metastasis (220, 221). For

another thing, it also has the ability to remove tumor cells and

reshape the TME (222). Due to the influence of cytokines in the

TME, TAMs can be divided into two distinct polarized forms,
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M1 and M2 macrophages. The former is responsible for killing

tumor cells; the latter is able to promote tumor growth (223).

Macrophage M1/M2 polarization is adjustable and reversible.

Increased M2-polarized TAMs are often associated with

cytokines and growth factors, e.g., IL-4 (224), IL-10 (225),

CSF-1 (226), TGF-b (227) secreted by tumor cells or Th2 cells

in the TME, indicating a poor prognosis for tumor patients.

Metalloproteinase ADAM17 can shed distinct signaling

proteins on the cell surface, making it a mediator for

intercellular signal transduction (7, 20). Our previous study

showed that the expression of ADAM17 was associated with

infiltration of multiple immune cells, including macrophages

(20), in TCGA pan-cancer samples and yet the specific

regulatory mechanism of ADAM17 is unknown. Recently,

Gnosa et al. have revealed the positive roles of ADAM17 in

regulating the polarization of TAMs (17). By using

bioinformatics analysis based on the TCGA dataset and

immunohistochemical analysis from triple-negative breast

cancer cohort, the authors first confirmed that highly

expressed ADAM17 in tumors is positively correlated with

tumorigenic macrophage markers CD163 or CD206. Deletion

of ADAM17 gene inhibited tumor growth, increased the survival

in tumor-bearing mouse models, and resulted in a significant

decrease in CD163+ cell population. In a co-cultured mouse

bone marrow-derived macrophages with ADAM17-WT or

ADAM17-KO tumor cells , knockdown of ADAM17

significantly diminished the expression of CD163 or CD206,

IL-6, IL-10, and CCR7 in bone marrow-derived polarized

macrophages, suggesting an important role of ADAM17 in

tumorigenic macrophages. Furthermore, the authors used

cellular co-culture and zebrafish embryo propagation models
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to demonstrate that tumor cells, in an ADAM17-dependent

manner, drive macrophage polarization into a tumor-promoting

phenotype and accelerate tumor cell invasion. Based on the

sheddase activity of ADAM17 (38), this macrophage

polarization is regulated by ADAM17-mediated shedding of

EGFR ligands (HB-EGF, AREG). Actually, the mechanism of

macrophage polarization driven by tumor cells has been

reported in many previous works. For instance, the EGFR/

PI3K/AKT/mTOR axis plays an important role in promoting

TAM M2 polarization by secreting EGF from colon cancer cells

(228). Pancreatic cancer triggers the polarization of TAMM2 by

secreting REG4 through the EGFR/AKT/CREB pathway (229).

These findings further indicate that EGFR ligand shedding

mediated by ADAM17 may be beneficial to activating the

EGFR signaling pathway and inducing the polarization of

tumor-promoting TAMs. Finally, they further demonstrated

the promoting effect of macrophage-derived CXCL1 secretion

on tumor cell invasion by RNA-seq analysis of transcriptome

data from co-cultured macrophages. Taken together, these

findings suggest a critical role of the ADAM17-EGFR (HB-

EGF/AREG) axis in the polarization of TAMs (Figure 3), which

also provides a new strategy for the anti-tumor immunotherapy.
Regulation of NK cells by ADAM17

Natural killer (NK) cells are important lymphocytes to fight

against tumor escape or immune evasion. A large number of

studies have shown that the activity and function of NK cells in

peripheral blood of some cancer patients are significantly

reduced (230), which may be conducive to the development of
FIGURE 3

Immunomodulatory role of ADAM17 in tumor development.
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malignant tumors. In non-small cell lung cancer, the function of

NK cells has been shown to be significantly impaired. Therefore,

immunotherapy targeting NK cells has become a therapeutic

concept for this type of cancer (231). One of the reasons for the

anti-tumor immune activity of NK cells is attributed to the

binding of its surface-activated receptor natural killer cell group

2D (NKG2D) to MHC class I chain-related protein A/B (MICA/

B), an NKG2D ligand on the surface of tumor cells, thus

activating NK cell function and enables NK cells to kill tumor

cells (232). Studies have shown that inhibition of the ADAM9

activity significantly blocked MICA shedding and affected the

immune killing effect of NK cells on tumor cells (233). ADAM17

is also a member of the metalloproteinase family that may have a

similar function. Recently it was found that ADAM17 has the

ability to hydrolyze MICA/B on the surface of tumor cells to

generate soluble MICA/B (sMICA/B) (52), the latter of which

alters the conformation of NKG2D on the surface of NK cells

(234) and affects the recognition and binding of membranous

MICA with NKG2D, thereby inhibiting NK activation signals

and reducing the killing sensitivity of NK cells to tumor cells

(235). Knockdown of ADAM17 prohibits MICA shedding and

boosts MICA expression on the surface of hepatocellular

carcinoma cells (131). In addition, hypoxia-induced shedding

of MICA on the surface of pancreatic cancer cells enables tumor

cells to evade NK cell immune killing (235). The function of

MICA/B monoclonal antibodies is to inhibit MICA/B shedding

by binding antibodies at key epitopes in the MICA/M proximal

membrane domain, and its antitumor immunity activity is

associated with NKG2D and CD16 Fc receptor activation

(236). Inhibition of MICA/B shedding with monoclonal

antibodies drives NK cell-mediated antitumor immunity (237),

suggesting that the sMICA levels may be correlated with

decreased NK cell function. Therefore, blocking ADAM17-

mediated hydrolytic activity to inhibit MICA shedding may be

one of the ways to improve NK cell killing of tumor

cells (Figure 3).

The antitumor immune activity of NK cells is also related to

the antibody-dependent cell-mediated cytotoxicity (ADCC)

induced by CD16 Fc receptor (Figure 3). ADCC is a key

cytolytic mechanism of NK cells. NK cells, on the one hand,

interact with the Fc region of antibodies that recognize proteins

on the surface of tumor cells through their IgG Fc receptors to

target tumor antigens and produce cytotoxic effects. On the

other hand, it also mediates adaptive immune responses. In

human beings, IgG’s FcR family consists of six receptors,

including FcgRI (CD64), FcgRIIa (CD32a), FcgRIIb (CD32b),

FcgRIIc (CD32c), FcgRIIIa (CD16a), and FcgRIIIb (CD16b), of

which CD16a is primarily responsible for triggering NK cell-

mediated ADCC. Therefore, exploring the mechanism of CD16a

contributes to the development of anti-tumor immunotherapy

drugs that enhance ADCC activity. The metalloprotease

ADAM17 has been reported to shed CD16a (238), leading to

decreased ADCC activity and reduced IFN-g production (239).
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However, Blocking CD16 shedding or avoiding cleavage

prompted a stronger tumor cell killing by NK cells (240, 241)

and increased IFN-g production (242). Paradoxically, treatment

with an ADAM17 inhibitor did not increase IFN-g levels

induced by stimulated NK cells (242). CD16a is a hot topic

discussed in recent NK cell anti-tumor immunity, and more

information about the role of ADAM17 in the regulation of

CD16a in NK cells can be seen in some recent studies (238, 243).

In addition, IL-15, an immunomodulatory factor, also plays

a key role in the development, homeostasis, activation and

proliferation of NK cells (244). IL-15 can differentiate

hematopoietic progenitor cells into CD56+ NK cells to induce

pro-proliferative responses. In NOG-IL-15 Tg mice expressing

transgenic human IL-15, there is a significant increase in

transplanted NK cells from healthy subjects’ peripheral blood

(19, 245). In different tumor-bearing animal models, IL-15

treatment contributes to tumor regression, reduction of tumor

metastasis, and improvement of animal survival. Currently, the

developed IL-15 mutant (IL-15N72D) or its stable soluble

complex, ALT-803, has been shown to have similar functions

as IL-15 and significantly improved the antitumor activity of

anti-CD20 monoclonal antibody in NK cells and the

immunotherapeutic efficacy of PD-1/PD/L1 monoclonal

antibody (232). ADAM17 is present in various immune cells,

including NK cells (20), which mediates lysis and shedding of

cell surface receptors. CD62L/L-selectin is an immune cell

homing receptor that regulates the migration of white blood

cells to sites of inflammation. It was found that CD62L

expression is increased in IL-15-stimulated NK cells (19).

Expression of ADAM17 on NK cells promotes the

downregulation of CD62L expression (242). Mishra et al. first

indicated that ADAM17 reduced IL-15-stimulated NK cell

proliferation with the participation of CD62L (19). The

blockade of ADAM17 reversed this event. Overall, IL-15-

mediated NK cell proliferation promotes an increase in CD62L

levels, while prolonged activation of ADAM17 leads to CD62L

shedding and impaired NK cell proliferation stimulated by IL-

15 (Figure 3).
Regulation of endothelial cells
by ADAM17

Metastasis is a form of tumor progression. 90% of tumor-

related deaths are caused by metastasis of tumor cells. The

process includes: 1) the shedding of tumor cells from the

primary tumor; 2) intravasation; 3) survival in the blood

circulation; 4) extravasation of blood vessels and metastases.

The interaction between endothelial cells and tumor cells is an

important step in tumor metastasis. Tumor cell-endothelial cell

tight contacts promote tumor cell adhesion to the vascular wall

through justacrine or paracrine signaling (246). As shown in
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Figure 3, endothelial cells secrete a series of adherent molecules,

such as E-selectin, VCAM-1, etc., to increase the adhesion of

tumor cells with endothelial cells, and further promote tumor

metastasis. The mechanism of tumor metastasis may be related

to EMT, angiogenesis, tumor stem cell characteristics, and the

increase of circulating tumor cells. ADAM17 is widely present in

endothelial cells and is positively correlated with immune

infiltration levels of endothelial cells in multiple cancer species

(20, 88, 173). It is speculated that endothelial ADAM17may help

tumor metastasis. Recent emerging evidence supports this

speculation (173). Julia et al. also confirmed that endothelial

ADAM17 is required for endothelial necrosis, tumor cell

extravasation and metastasis (247). ADAM17-dependent death

receptor TNFR1 ectodomain shedding promotes endothelial cell

necrosis and tumor cell extravasation (173, 247). In addition,

CCL2 secreted by tumor cells and macrophages promotes PKCb
activation by binding to endothelial CCR2, which further leads

to ADAM17 activation (247). ADAM17 appears to be closely

associated with pathological angiogenesis (138). In

ADAM17flox/flox/Tie2-Cre mice, loss of endothelial ADAM17

inhibits chord formation and impedes ectopic injected tumor

growth (138). In endothelial cells, soluble Robo4 (sRobo4) is

shed and released by ADAM1, which subsequently inhibits

SLIT3-induced angiogenesis (248). Meanwhile, SLIT3

obstructs Robo4 shedding and enhances its signal transduction

(248). ADAM17 may disrupt the barrier effect of vascular

endothelial cells by affecting their attachment and tight

junctions (249). Beyond vascular endothelial cells, ADAM17 is

also important in lymphatic endothelial cell-induced tumor

migration and metastasis. Sun et al. indicated that ADAM17

activation by MAPK14/T180 promoted the secretion of soluble

CX3CL1, which further led to malignant metastasis of liver

cancer cells (18). In addition, Macrophage M2 polarization is

also associated with ADAM17-dependent CX3CL1 secretion

(18). As a critical binding protein for ADAM17, iRhom1 has

been found to promote independent regulation of ADAM17

under physiological shear stress (88). However, there is no report

yet on the regulation of ADAM17 by iRhom1 in endothelial cells

and its effect on tumor malignant progression, which may be an

interesting topic.
ADAM17 inhibitors

ADAM17 has over 90 substrates, some of which are

mediators of cancer diseases, which implies that substrate

based ADAM17 inhibitors have the potential to be used for

the treatment of malignant tumors. In this section, we outline

recent advances in potent and selective ADAM17 inhibitors

containing hydroxamate and non-hydroxamate moieties, as well

as anti-ADAM17 monoclonal antibodies (Figure 4, Table 2).
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Hydroxamate-based
small-molecule inhibitors

The metalloproteinase domain of ADAM17 has a catalytic

site containing a sequence of zinc-dependent amino acid

residues that can bind to zinc ions to interfere with ADAM17

enzyme activity. The hydroxamate moiety is a common zinc-

binding motif, and hydroxamate-based small-molecule

inhibitors targeting the catalytic site may be an effective

strategy against tumors. Marimastat and apratastst are the

earliest synthesized hydroxamate-based inhibitors with limited

selectivity. Marimastat inhibits the cleavage of TNF-a and CD44

and reduces the invasion of tumor cells with an IC50 of 4.75 mM
(102). Shu et al. found that apratastst significantly inhibited

TNF-a cleavage with IC50 of 81.7 ng/mL ex vivo and 144 ng/mL

in vitro, respectively (250). INCB7839 is not ideal as a single

agent, but it enhances the efficacy of trastuzumab in metastatic

HER2-positive breast cancer. INCB7839 suppresses ADAM10/

17-dependent EGFR ligand shedding and potentiates the

antitumor effects of the recombinant peptidase PEPDG278D

(251). Since January 2009, INCB7839 has been used in Phase I/II

clinical trials alone or in combination with rituximab/

trastuzumab + vinorelbine/trastuzumab + docetaxel for the

treatment of diffuse large B cells non-hodgkin lymphoma

gliomas, breast cancer or solid tumors (Table 3). In a subset of

subjects, INCB7839 at a dose of 300 mg b.i.d. (Phase II) in

combination with rituximab resulted in a range of serious side
FIGURE 4

Chemical structures of representative small molecule ADAM17
inhibitors.
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effects, including thromboembolism, pain, and infections

(NCT02141451). However, other anticancer clinical trials

associated with INCB7839 were terminated for some reason or

were not conducted or not yet reported (NCT01254136;

NCT00864175; NCT0429575; NCT00820560). INCB3619, an

early hydroxamate-based inhibitor with the IC50 value of 14

nmol/L, significantly inhibits tumor cell survival by blocking the

shedding of ErbB ligands (252). INCB3619 also enhances the

sensitivity of gefitinib (264), cisplatin (252), and lapatinib (265),

and acts synergistically with CD16 × 33 bispecific killer cell

conjugates against acute myelogenous leukemia (266). KP457
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increases the production of platelets derived from functional

human induced pluripotent stem cells by inhibiting the

exodomain shedding of platelet glycoprotein Iba (GPIba), with

an IC50 value of 10.6 nmol/L for KP457 (253). GW280264X

facilitates the anti-ovarian cancer effect of cisplatin (201) and

restrains the development of lung adenocarcinoma cells (254).

The IC50 value of PF-5480090/TMI-002 in MDA-MB-468 cells

is approximately 1696.6 RFU/mg, which reduces the release of

TGF-a and increases the cytotoxic effects of anti-EGFR/HER

drugs (255). GI254023X is a selective inhibitor of ADAM10 and

ADAM17, but its selectivity for ADAM10 is 100 times higher
TABLE 2 Summary of the inhibitory activities of ADAM17 inhibitors.

Compound
Numbera

Chemical Name or Product Name IC50 Value
b Reference

Hydroxamate-based small-molecule compounds:

1 Marimastat 4.75 mM (102)

2 Apratastat 144 ng/mL (in vitro);
81.7ng/mL (ex vivo)

(250)

3 Aderbasib/INCB7839 N.D. (251)

4 INCB3619 14 nM (252)

5 KP-457 10.6 nM (253)

6 GW280264X N.D. (4, 201, 254)

7 PF-5480090/TMI-002 ~1696.5 RFu/mg (255)

8 GI254023X 541 mM (256)

9 Batimastat N.D. (257)

10 TAPT-1 8.09 mM (107)

11 (2R)-N-hydroxy-2-[(3S)-3-methyl-3-{4-[(2-methylquinolin-4-yl)methoxy]phenyl}-2-
oxopyrrolidin-1-yl]propanamide

N.D. (20)

12 (3S)-4-{[4-(but-2-ynyloxy)phenyl]sulfonyl}-N-hydroxy-2,2-dimethylthiomorpholine-3-
carboxamide

N.D. (20)

13 (3S)-4-{[4-(but-2-ynyloxy)phenyl]sulfonyl}-N-hydroxy-2,2-dimethylthiomorpholine-3-
carboxamide

N.D. (20)

14 Methyl (1R,2S)-2-(hydroxycarbamoyl)-1-{4-[(2-methylquinolin-4-yl)methoxy]benzyl}
cyclopropanecarboxylate

N.D. (20)

15 BMS-561392 0.20 nM (258)

Non-hydroxamate-based small-molecule compounds:

16 ZLDI-8 6.85 mM (259)

17 SN-4 3.22 mM (102)

18 SN-4(Nps)2 N.D. (102)

19 JTP-96193 5.4 nM (258)

20 (1S,3R,6S)-4-oxo-6-{4-[(2-phenylquinolin-4-yl)methoxy]phenyl}-5-azaspiro[2.4]heptane-1-
carboxylic acid

N.D. (20)

21 N-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}-5-methyl-D-tryptophan N.D. (20)

22 (3S)-1-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}pyrrolidine-3-thiol N.D. (20)

23 3-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}propane-1-thiol N.D. (20)

Anti-ADAM17 monoclonal antibodies:

A300E ~0.7 mg/mL (260)

A9(B8) 0.22 nM (human); 0.25 nM
(mouse)

(261)

D1(A12) 4.7 nM (262)

MEDI3622 39 pmol/L (human); 132 pmol/L
(mouse)

(263)
fro
aSee Figure 4; bN.D. refers to not detected.
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than that of ADAM17, with IC50 values of 5.3 mM and 541 mM
for ADAM10 and ADAM17, respectively (256). The

hydroxamate derivative batimastat inhibits ADAM17 shedding

(267) and has prevented the progression of multiple tumors in

clinical trials, particularly the formation of peritoneal

carcinomas (268). TAPI-1 with IC50 value of 8.09 mM is

capable of inhibiting matrix metalloproteinase and blocking

the shedding of cytokine receptors (107). Recent studies have

shown that TAPI-1 appreciably restrains ADAM17 activation

during pseudomonas aeruginosa infection (269). Additionally,

we previously retrieved four novel hydroxamate-based small

molecule compounds 11-14 targeting ADAM17 from the

DrugBank database, but no in vitro and in vivo experimental

data were reported (20). BMS-561392 reduced ADAM17 activity

with an IC50 of 0.2 nM. Overall, most hydroxamate-based

inhibitors exhibit potent ADAM17 shedding activity and resist

tumor progression. Compounds with the hydroxamate group,

however, are usually poorly bioavailable and produce toxic

hydroxylamine through metabolism, which somewhat limits

the clinical use of these compounds (270).
Non-hydroxamate-based
small-molecule inhibitors

To avoid side effects and toxicity caused by the hydroxamate

group and to improve bioavailability, research on new ADAM17

inhibitors has been directed toward non-hydroxamate-based

small-molecule compounds (46). By searching the literature

published in the last five years, we have selected the following

four new compounds for description. With computerized virtual

screening, Lu et al. identified a non-hydroxamate-based

inhibitor, called thioxodihydro pyrimidindione ZLDI-8, which

reversed taxol resistance, displayed an IC50 value equal to 6.85

mM against ADAM17 (259), and inhibited metastasis of

hepatocellular carcinoma (271). It also enhanced the

antitumor effects of sorafenib and 5-fluorouracil (272, 273).

Another non-hydroxamate-based inhibitor, SN-4 specifically
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impedes ADAM17-mediated cleavage of TNF-a and CD44

with a higher activity than malistamate and an IC50 value of

3.22 mM (102). SN-4(Nps)2, a prodrug of SN-4, can markedly

enhance its bioavailability. A thiadiazolone derivative JTP-96193

showed 1800 times more selectivity toward ADAM17 over other

matrix metalloproteinases with an IC50 value of 5.4 mM (258).

Compounds 20-23 are novel non-hydroxamate-based small

molecules targeting ADAM17 from the DrugBank database,

whereas their ADAM17 inhibitory activity and potential

mechanism remain to be further explored (20).
Anti-ADAM17 monoclonal antibodies

The development of anti-ADAM17 monoclonal antibodies

has accelerated the progress of innovative ADAM17 inhibitors.

Anti-ADAM17 monoclonal antibodies include A300E, A9 (B8),

D1 (A12), MEDI3622, etc. A300E is rapidly internalized by

ADAM17-expressing cells (274), and its IC50 against ADAM17

is approximately 0.7 mg/mL (260). Trad et al. suggested that

A300E plays a role in cancer cells by transporting a conjugated

toxin to target cells (260). A9 (B8) cross-reacts with both human

and mouse ADAM17, whereas D1 (A12) binds only to human

ADAM17. D1 (A12) is bound to both the catalytic and non-

catalytic domains of ADAM17. Yang et al. found that A9 (B8)

conferred EGFR-TKI-mediated antitumor effects in NSCLC cells

with IC50 values of 0.22 nM and 0.25 nM against human and

murine ADAM17, respectively (261). Ye et al. revealed that A9

(B8) inhibited the shedding of ADAM17 substrate and

contributed to the growth inhibition of pancreatic ductal

adenocarcinoma in vivo and in vitro (275). D1 (A12) at 4.7

nM inhibits 50% TNF-a shedding and induces anti-ovarian

cancer effects (262). Besides, D1 (A12) restrains the progression

of head and neck squamous cell carcinoma by reducing HERS-

transactivation induced by retarded hormone and even has

therapeutic prospects for EGFR TKI-resistant head and neck

squamous cell carcinoma (276). Another anti-ADAM17

monoclonal antibody, MEDI3622, inhibits tumor-dependent
TABLE 3 Currently approved clinical trials using ADAM17 inhibitors for tumor treatment.

Diseases ADAM17 inhibitors Phase for
trial

Trial ID First Posted
date

Recruitment
Status

Last Update
Posted

Diffuse Large B Cell Non-Hodgkin
Lymphoma

INCB7839 + Rituximab Phase I/II NCT02141451 May 19, 2014 Completed Feb 19, 2020

Gliomas INCB7839 Phase I NCT04295759 Mar 4, 2020 Active, not
recruiting

Aug 16, 2022

Breast Cancer INCB007839 + Trastuzumab and
Vinorelbine

Phase I/II NCT01254136 Dec 6, 2010 Terminated Jan 25, 2012

Breast Cancer INCB007839 + trastuzumab and
docetaxel

Phase I/II NCT00864175 Mar 18, 2009 Terminated Jan 18, 2018

Solid Tumors and Hematologic
Malignancy

INCB007839 Phase I NCT00820560 Jan 12, 2009 Completed Jan17, 2018
(Source: the U.S. National Library of Medicine, https://clinicaltrials.gov/).
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EGFR activity with IC50 values of 39 pmol/L and 132 pmol/L

against human and murine ADAM17, respectively (263). In

esophageal and colorectal tumors, the antitumor effect of

MEDI3622 was superior to that of the EGFR/HER pathway

inhibitor, suggesting that MEDI3622 inhibits tumor growth by

partially modulating non-EGFR-mediated pathways (263). In

addition, MEDI3622 enhances the release of antibody-bound

tumor cells binding IFN-g in NK cells by blocking CD16A

shedding (239).

To date, there are no clinically available ADAM17 inhibitors.

The high toxicity and low selectivity of existing ADAM17

inhibitors and the high structural homology between the

catalytic domain of ADAM17 and other metalloproteases (e.g.,

ADAM10) have limited the development of selective ADAM17

inhibitors. However, the advent of small molecule compounds

and anti-ADAM17 monoclonal antibodies targeting the non-

catalytic domain of ADAM17 or the catalytic and non-catalytic

domains of ADAM17 (44, 46, 277–279) further overcome these

problems and improve bioavailability, which may provide a new

strategy for the development of the highly effective low-toxicity

ADAM17 inhibitors. In addition, as iRhom2 is a specific binding

protein of ADAM17, targeting iRhom2 to inhibit ADAM17

activity is also a trend in the development of ADAM17 inhibitors.
Discussion

Metalloproteinase ADAM17 holds a vital role in post-

translational protein modification, gene transcription and

post-transcriptional regulation, and is closely associated with

tumors and inflammation. ADAM17 regulates cell membrane

protein shedding and subsequent signal transduction. It can also

be impacted by the interacting proteins and thus participate in

the regulation of its downstream signaling pathways. ADAM17

has been implicated in immune regulation of tumor

development. However, its immunomodulatory functions and

mechanisms in cancer diseases are not well studied, and

therefore more studies are needed to further determine the

role of ADAM17 in tumor development. In this article, we

summarized the structure and multiple regulatory roles of

ADAM17, the latest immune regulation of ADAM17 in tumor

formation and development, as well as the progress in the

development of ADAM17 inhibitors. On the one hand,

although the regulatory effect of ADAM17 on macrophages,

NK cells, and endothelial cells has been confirmed in tumor,

more key proteins or genes related to ADAM17 need to be

identified, and the immune response involved in TME needs to

be further explored. In addition, the role of ADAM17 in post-

t r ans l a t iona l mod ifica t ions , such as pro t eo l y s i s ,

phosphorylation, glycosylation, and post-transcriptional

regulation in cancer progression remains unclear. On the other

hand, due to the structural homology of ADAM17’s catalytic

domain with other metalloproteinases, more three-dimensional
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crystal structures associated with ADAM17 need to be

uncovered to make them more conducive to highly selective

and toxic drug design for ADAM17 inhibitors. How to reduce or

avoid the toxic side effects of ADAM17 is also a potential

research direction. Therefore, studying the key role and

immunomodulatory mechanisms of ADAM17 in tumor

development will provide new strategies for the prevention,

diagnosis and treatment of cancer diseases.
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