
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Christophe Pellefigues,
CNRS EMR8252 Centre de Recherche
sur l’Inflammation, France

REVIEWED BY

Bernhard F. Gibbs,
University of Oldenburg, Germany
Adrian Piliponsky,
Seattle Children’s Research Institute,
United States

*CORRESPONDENCE

Brian S. Kim

itchdoctor@mountsinai.org

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 30 September 2022
ACCEPTED 12 December 2022

PUBLISHED 22 December 2022

CITATION

Shibuya R and Kim BS (2022) Skin-
homing basophils and beyond.
Front. Immunol. 13:1059098.
doi: 10.3389/fimmu.2022.1059098

COPYRIGHT

© 2022 Shibuya and Kim. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Hypothesis and Theory
PUBLISHED 22 December 2022

DOI 10.3389/fimmu.2022.1059098
Skin-homing basophils
and beyond

Rintaro Shibuya1,2,3 and Brian S. Kim1,2,4,5*

1Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount
Sinai, New York City, NY, United States, 2Mark Lebwohl Center for Neuroinflammation and
Sensation, Icahn School of Medicine at Mount Sinai, New York City, NY, United States, 3Department
of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan, 4Marc and Jennifer
Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City,
NY, United States, 5Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York
City, NY, United States
Basophils have been implicated in type 2 inflammation and numerous disorders

in the skin such as helminth infection, atopic dermatitis, and urticaria. Although

similar in form and function to tissue-resident mast cells, classical studies on

basophils have centered on those from the hematopoietic compartment.

However, increasing studies in tissues like the skin demonstrate that

basophils may take on particular characteristics by responding to unique

developmental, chemotactic, and activation cues. Herein, we highlight how

recent studies in barrier immunology suggest the presence of skin-homing

basophils that harbor a unique identity in terms of phenotype, function, and

motility. These concepts may uniquely inform how basophils contribute to

diseases at multiple epithelial surfaces and our ability to therapeutically target

the innate immune system in disease.
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Introduction

Basophils are rare granulocytes, accounting for <1% of leukocytes in the peripheral

blood, spleen, and bone marrow. Basophils were first described by Paul Ehrlich in 1879.

Subsequently, several groups have discovered that basophils in the blood are a source of

histamine in the 1950s (1–3). However, it was not until 1972 that basophils were shown

to be activated by allergens in an IgE-mediated fashion (4). Given their similarity in form

and function to tissue-resident mast cells, basophils have long been considered

“circulating mast cells”, although their differences and similarities are often debated.

Thus, they have long been studied as a surrogate for mast cells due to their accessibility

via the peripheral blood.

Monitoring of human basophils by flow cytometry has revealed changes in cell

surface markers and activation of basophils (5). Moreover, a recent study on human

basophils by Blom et al. reported unique chemokine receptor expression patterns upon
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IgE-mediated or non-IgE-mediated activation, strongly

suggesting heterogeneous activation manners in human

basophils (6). In contrast to human basophils, the

characteristics and functions of murine basophils in vivo have

come to light with the advent of antibody-mediated cell

depletion methods (e.g., anti-FcϵRIa, CD200R3, or Thy1

antibodies) (7–9). However, such methods were not sufficient

to distinguish the unique role of murine basophils from mast

cells in vivo due to the bystander effects on mast cells. This

problem was overcome with the development of unique

transgenic mouse technologies and the identification of

basophil-specific genes and markers (e.g., Mcpt8-DTR, Mcpt8-

Cre, Bas-TRECK Tg, and Basoph8 mice) (10–13). Indeed, these

advances have made it possible to directly compare basophils

with mast cells, revealing that these two myeloid cell populations

differ in surface marker expression, factors required for terminal

differentiation, signaling pathways, release of inflammatory

mediators, and impact on disease.

Furthermore, it is generally accepted that basophils are

effector cells of the innate immune system that promote type 2

immunity and inflammation through the release of a variety of

mediators including the type 2 cytokines IL-4 and IL-13.

Although residing in the circulation, basophils are rapidly

recruited into the tissues such as the intestine, lung, and skin

upon inflammation (14). Thus, they have been implicated in

promoting the expulsion of helminth parasites from mucosal

barriers and in the pathophysiology of a variety of allergic

disorders such as asthma, atopic dermatitis (AD), food allergy,

and chronic spontaneous urticaria (CSU) (15–19). Further,

recent studies have shed light on novel functions of basophils

which may even reside in peripheral organs (20–22). However,

how basophils are recruited to the tissues upon stimulation and

the manner in which they are activated or survive in tissues

remain poorly understood. Moreover, the precise contribution

of basophils to various allergic disorders such as AD continues to

be debated even though many studies have implicated basophils

as putative drivers in AD pathogenesis based on both mouse and

human studies (17, 23–27).

Herein, we highlight recent advances in basophil biology in

peripheral organs such as the skin and how they provoke new

hypotheses and theories about basophil function more broadly.

We propose revisiting a number of assumptions about the

properties of basophils in tissues using new approaches,

technology, and therapeutics.
Developmental, maturation, and
activation cues from the tissue

Both basophils and mast cells differentiate from

hematopoietic stem cells via common myeloid progenitors and

granulocyte monocyte progenitors (GMPs). Although similar in
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terms of granularity, expression of the high affinity IgE receptor

(FcϵRI), and shared effector molecules, basophils largely reside

in the circulation while mast cells reside in other tissues. Recent

studies demonstrate that mast cells arise from the yolk sac and

aorta-gonad-mesonephros, and the degree to which they are

replenished by bone marrow precursors is variable depending on

the organ (28). Skin-resident mast cells, in particular, are devoid

of bone marrow-derived mast cells and are mostly seeded in the

early phase of embryonic development (29, 30). These findings

help to explain, at least in part, why the majority of allergic

disorders involving mast cells develop early in life. Furthermore,

these findings provoke the hypothesis that dysregulated mast cell

development could be one explanation for the heterogeneity of

allergic pathologies and therapeutic responses. Notwithstanding

these insights into the diversity of mast cell subpopulations, it is

largely unknown whether related developmental sophistication

underlies basophil heterogeneity.

IL-3 is an important growth factor for both basophils and

mast cells (31). For example, IL-3 deficient mice exhibited

impaired expansion of basophils and mast cells in a setting of

nematode infection despite no obvious abnormality in their

number at steady state (32). IL-3 is also capable of promoting

basophil differentiation from bone marrow cells and survival in

vitro (33, 34). Moreover, IL-3 augments cytokine production

from basophils after IgE crosslinking, a canonical activation

mechanism in basophils (35). Collectively, many of these early

studies established IL-3 as a key regulatory cytokine for

basophils as well as mast cell proliferation and function.

However, most of these studies centered on studying basophils

within the hematopoietic compartment. The precise properties

of basophils within barrier tissues have been traditionally

poorly understood.

In addition to IL-3, granulocyte–macrophage colony-

stimulating factor (GM-CSF), Toll-like receptors (TLRs), and

thymic stromal lymphopoietin (TSLP) are also known to

regulate basophil development (36–38). Among them, TSLP

has been shown to act directly on bone marrow and

extramedullary progenitors to promote basophil hematopoiesis

independently of IL-3 in mice (20, 36). Furthermore, murine

basophils differentiated by TSLP have unique transcriptional

profiles and activation states compared to those developed under

IL-3-enriched conditions (20). In contrast to murine basophils,

human basophils from healthy donors do not respond to TSLP

without IL-3 priming (39). However, disease-associated human

basophils from patients with asthma were responsive to TSLP

alone (40). These findings suggest that inflammatory conditions

could affect the responsiveness of the human basophil. In the

skin, TSLP is consistently upregulated during AD-associated

skin inflammation and has long been pursued as a therapeutic

target in humans (41, 42). However, the efficacy of targeting

TSLP as a therapy in AD has been brought into question, as the

anti-TSLP monoclonal antibody (mAb) tezepelumab has not

been successful in treating AD (43).
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Several studies have implicated TSLP-elicited basophils in

murine models of allergic diseases such as AD, food allergy, and

eosinophilic esophagitis (15, 16, 20). In addition, TSLP-elicited

murine basophils exhibit a highly activated phenotype as

evidenced by upregulation of key activating cytokine receptors

including those for IL-18 (IL-18R) and IL-33 (ST2, IL-33R) in

comparison to IL-3-elicited basophils (20). Both IL-18 and IL-33 are

now considered canonical activating cytokines for basophils and

strongly implicated in AD-associated inflammation in both mice

and humans (44–48). These findings suggest that skin

inflammation in AD may skew basophil development via

epithelial cell-derived TSLP, creating a reservoir of basophils that

can be rapidly activated by skin-associated IL-18 and IL-33. We

refer to these basophils as uniquely skin-homing (Figure 1). Similar

to IL-33, it is now appreciated that IL-18, in contrast to other

organs, acts as an alarmin in the skin to potently promote type 2

immune responses (49). These findings may explain, in part, the

failure of tezepelumab in phase 2 clinical trials for AD, as transient

blockade of TSLP may not be sufficient to reset the population of

basophils that are hyperresponsive to other alarmins in the skin

(43). In other words, a typical 12-week clinical trial would likely not

be able to capture clinical responses related to such biological effects.

Notwithstanding the duration, another possibility is that TSLP

blockade alone is no longer sufficient to suppress basophil-

mediated skin inflammation after the accumulation of basophils

in the skin that exhibit a unique transcriptional signature; such

basophils may require simultaneous blockade of IL-18 and/or IL-33

for synergistic therapeutic efficacy. Future studies are warranted to
Frontiers in Immunology 03
determine the precise array of regulatory cytokines that need to be

disrupted to suppress basophils and AD-associated inflammation.
The emergence of skin-homing
basophils

Classically considered short-lived, both murine and human

basophils have been shown to rapidly lose their viability in a

matter of a few days in vivo and in vitro, respectively (9, 50).

However, these survival assays were performed on bulk

populations of basophils from the bone marrow, blood, or

spleen. It is increasingly appreciated that when basophils

traffick into the skin (or possibly the lung), they can acquire

distinct transcriptional and functional properties (21, 22). We

have long observed that while basophils are generally absent in

healthy skin, upon the induction of AD-like inflammation, they

traffick into the skin as early as day 4 and persist stably through

day 12, and likely well beyond (17, 51). Further, it has recently

been shown that basophils in AD-like skin are distinct from

splenic basophils and persist in the skin beyond the acute

inflammatory phase to aid in the resolution of inflammation.

Strikingly, these late-phase basophils promote the expansion of

M2-like macrophages via cooperative production of IL-4 and

monocyte colony-stimulating factor (M-CSF) (21). It has

recently been shown that basophils which reside in the lung at

early developmental stages imprint a unique developmental

program in alveolar macrophages. Indeed, these lung-
FIGURE 1

Skin-homing basophils may be distinct from conventional circulating basophils. Under steady state, basophil progenitors (BaP) develop into
FcϵRIhi basophils under the influence of IL-3 in the bone marrow (conventional circulating basophils, left). Upon inflammation, TSLP released
from the skin drives the maturation of BaPs to exhibit a highly activated phenotype (skin-homing basophils, right) as evidenced by upregulation
of IL-18R and ST2 in comparison to IL-3-elicited basophils.
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associated basophils demonstrated a distinct transcriptional

profile from those in circulation (22). In addition to

transcriptional differences, basophils in the skin could show

morphologically distinct characteristics compared to circulating

basophils. For example, Cheng et al. found that basophils

accumulated in antigen-sensitized skin close to blood vessels,

while those in non-sensitized skin were more widely distributed

upon antigen challenge (52). Similarly, basophils have been

shown to exhibit unique motility and apparent contacts with

sensory neurons upon the antigen challenge as well in the setting

of AD-like disease (53). Taken together, these studies provoke

the hypothesis that basophils, upon entry into the skin, acquire a

distinct transcriptional program leading to the distinct

morphological changes and unique survival and effector

programs not observed from traditional studies in the

hematopoietic compartments, which likely focused more on

conventional circulating basophils. However, it is important to

note that these studies on basophil heterogeneity usedMcpt8 as a

basophil-specific marker for transcriptional studies and cell-

depletion. Recent studies have suggested that integrinb7+ mast

cells also express Mcpt8 both in the skin and the lung under

allergic inflammation (54, 55). Nevertheless, how basophils

could acquire distinct identities in peripheral organs remains

to be fully clarified and addressed.

While it is increasingly appreciated that there is

developmental and functional heterogeneity of basophils, it

has only recently come to light how diversity of basophil

function can influence different aspects of a single disease (56,

57). For example, it is well-recognized that basophils are

associated with human AD and promote the pathogenesis of

AD-like disease in mice (17, 21, 23, 24, 27). By contrast, as

described above, it has been observed that in the resolution

phase of AD-like disease in mice, basophils in the skin also

promote restoration of barrier function and disease resolution

(21). In a context of itch sensation, basophils appear to be

dispensable for chronic itch, while they are known to be essential

for allergen-mediated acute itch (25, 27, 53). Indeed, it has been

shown that TSLP promotes a program that is also highly

enriched for the arachidonic acid pathway which leads to the

production of leukotrienes and other bioactive lipids that serve

as key effector molecules of murine basophils (20). One such

leukotriene, namely LTC4 is now recognized as a very potent

pruritogen (53, 58, 59). Taken together, these findings

demonstrate the sophisticated array of effector functions

orchestrated by basophils.

CSU exemplifies how skin-homing basophils can help to

explain disease pathogenesis. CSU is an itchy, immune-mediated

skin disorder that afflicts 1% of the population and has a

profoundly negative impact on quality of life. It is defined by

both hives and itch; these processes are mediated, in part, by

activation of IgE and release of histamine from mast cells.

Notwithstanding the role of mast cells, it is also appreciated

that basophils accumulate in the lesions of urticaria, and that
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blood basophil deficiency is a feature of CSU (60). Thus, it is

hypothesized that basophils recruited to the skin could

contribute to the pathogenesis of CSU. The role of basophils

in CSU is further suggested by a report that the number of

basophils in the blood of CSU patients increases after anti-IgE

mAb (omalizumab) treatment (60). Another study has revealed

that the surface expression of FcϵRI on basophils was lower in

CSU patients who showed better response to omalizumab (61).

In addition, it is known that IgE and FcϵRI trigger the migration

of murine mast cells toward antigens and that IgE and FcϵRI also
mediate human basophil migration in vitro (62–64). Thus, these

studies suggest that omalizumab may inhibit IgE-mediated

activation in basophils, resulting in decreased motility into the

skin. Future studies will be required to clarify this possibility.

However, the activation of basophils in CSU does not seem

to be exclusively explained by IgE- and FcϵRI-mediated

pathways. Antihistamines are the first-line therapy for CSU;

however, even high doses are insufficient in 54% of patients (65).

Anti-IgE therapy is the second-line strategy to which 40% of

patients with CSU are refractory as well (66). These therapeutic

gaps strongly suggest that other histamine- and IgE-independent

pathways are operative. In 2015, a seminal paper by McNeil et al.

identified that Mas-related G protein-coupled receptor B2

(MrgprB2), and its human ortholog, MRGPRX2 are key

receptors that respond to a host of cationic neuropeptides and

drugs that induce IgE-independent mast cell activation or

allergic-like reactions (67). Indeed, MRGPRX2 has been

identified as a possible biomarker in CSU (68). Although the

expression and function of MRGPRX2 were mainly studied in

mast cells, it has recently been reported that human basophils

also express MRGPRX2 (69, 70). Given the potential role of

MRGPRX2 on both mast cells and basophils, the heterogeneity

of the therapeutic response in CSU may be explained, in part, by

the overall composition of IgE-reactive vs. MRGPRX2-reactive

mast cells and basophils, respectively, in CSU. This remains a

major area of investigation to inform new pathways

for treatment.

MRGPRX2 is now emerging as a therapeutic target in the

field of allergy. However, MRGPRX2 expression on basophils

either at steady state or upon activation remains a major area of

controversy (71). It is hypothesized that MRGPRX2 is often

internalized in basophils but could be exposed upon activation

(71). In support of this, it has been shown that MRGPRX2

expression on human basophils was upregulated by cross-

linking of IgE, complement component 5a (C5a), natural N-

formyl peptide (fMLP) or IL-3 stimulation in vitro (69, 70). In

relation to mast cells, MRGPRX2 function was promoted by

TSLP but was dampened by SCF or IL-4 (72–74). Therefore, we

speculate that maturation and/or activating factors for basophils

including IL-18, IL-33, or TSLP could modulate MRGPRX2

expression on human basophils, contributing to their functional

heterogeneity (Figure 2). To this end, future studies are required

to determine the precise ligands and their effects on non-
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canonical basophil activation and function. We hypothesize that,

given MRGPRX2’s close association with skin-resident mast

cells, its expression on basophils likely marks their identity as

also being more skin-associated or homing.
Trafficking of basophils into the skin

Although we have discussed how immune dysregulation may

promote the emergence of a unique population of basophils that is

capable of responding to skin-derived signals, how basophils are

recruited into the skin remains a mystery. It is well-known that

basophils rapidly accumulate into peripheral tissues including the

skin in a variety of settings such as helminth infection, tick bite, or

allergic inflammation (11, 19, 75–77). However, there is still a

paucity of evidence on the specific chemokines or cellular processes

involved in basophil trafficking. Human studies ex vivo have

revealed that basophils can migrate toward numerous

chemokines (e.g., CCL2/3/5/7/11/13, and CXCL12/13), C5a,

Prostaglandin D2 (PGD2), Thromboxane B2, urokinase-type

plasminogen activator, and bacterial/viral peptides (fMLP and

gp41) (78–87). Notably, serum levels of CCL2 were found to be

elevated in a setting of venom- or food-induced anaphylaxis, which

correlated a decrease in circulating basophil numbers (88). In

addition, basophil accumulation in human skin or xenografted

skin was observed after intradermal injection of CCL2 or CCL17,

respectively (89, 90). Another study revealed increased migration of

basophils in patients with systemic lupus erythematosus toward

CXCL12 compared to those from healthy controls (91). A recent

study by Blom et al. revealed that human basophils activated by IgE,

C5a, or fMLP express various types of chemokine receptors
Frontiers in Immunology 05
including CCR4, CCR10, CCR6, CCR8, XCR1 and CCX-CKR,

some of which are known as skin-homing receptors (6). In this

study, they also found a bimodal expression of certain chemokine

receptors such as XCR1, cutaneous lymphocyte antigen (CLA), or

CXCR4 even among the CD63+ activated subset, further supporting

phenotypic heterogeneity of human basophils upon activation.

Puan et al. revealed that FUT6 is essential to sialyl-Lewis x

(CD15s) expression on human basophils and its deficiency

severely reduces their rolling capacity on E-selectins and

cutaneous allergic symptoms (92). In mice, both PGD2 and

CXCL12 have also been shown to be important in basophil

trafficking to secondary lymphoid organs in a murine lupus

model, while other studies showed CCL7-dependent migration to

the draining lymph nodes in a context of pancreatic tumor or type 2

skin inflammation (91, 93–95). The accumulation of basophils in

the lymph nodes after helminth infection depends on IL-3 from

CD4+ T cells (96), while IL-3 supplied by skin-resident CD4+

memory T cells is essential for their recruitment to the skin in

the setting of tick bite (97). In the setting of AD-associated

inflammation, basophil recruitment to the skin is uniquely

dependent on TSLP (20); similar dependence on TSLP has also

been observed with intradermal injection of lipoteichoic acid (LTA),

a cell wall component of bacteria (98). Moreover, under TPA-

induced chronic skin inflammation, TSLP and IL-3 externalize

CXCR4 expression on basophils and their recruitment to the skin

depends on CXCL12-CXCR4 axis and IgE (99). Taken together,

these studies demonstrate that a number of factors have been

implicated in basophil trafficking in the past (Table 1). However,

future studies will have to be aimed at understanding the tissue-

specific signals that drive basophil migration into various organs

and their unique interactions in the context of disease.
FIGURE 2

Hypothetic characteristic activation of skin-homing basophils. TSLP enhances the response to IL-18 and IL-33 in basophils. IL-18 and IL-33
further activate basophils resulting in upregulation of conventional activation markers such as CD203c and enhancement of FcϵRI expression.
However, the effects of these skin-derived cues on MRGPRX2 expression in basophils are still unknown. We hypothesize that skin-derived cues
also upregulate or externalize MRGPRX2, which is considered to be internalized at steady state on human basophils.
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Additionally, it appears that basophils can exhibit

heterogeneous behavior even within the same tissue under the

same inflammatory condition. We have found that in vivo

stimulation with allergen in the skin results in the emergence

of two distinct populations of basophils - one that is enlarged

and immotile and another that is small and highly motile in the

setting of AD-associated acute itch flares (53). Although why

such heterogeneity of motility exists within the skin remains
Frontiers in Immunology 06
unknown, these findings support the hypothesis that there are

likely numerous different subsets of basophils across tissues that

respond differentially to even the same signals. Thus, basophil

trafficking could be regulated in a subset-dependent manner,

indicating increasing complexity in terms of their regulation.

As noted above, there is significant evidence that basophils

imprint unique transcriptional and functional programs onto

macrophages in the skin and lung (21, 22). However, whether
TABLE 1 In vivo or ex vivo evidence for basophil trafficking to tissues.

Species Trafficking
sites Factor Tentative Source

Experimental or disease condi-
tion

Experiment
type Ref

Human N/A

CCL2, CCL5, CCL7

N/A

Transwell migiration

Ex vivo (78)

CCL5, CCL7, CCL11,
CCL13

Ex vivo
(79)

CCL2, CCL3, CCL5,
CCL11, CXCL12

Ex vivo
(80)

CCL2, CCL11, CXCL12,
IL-8

Ex vivo
(81)

CCL2, CCL11 Transendothelial migration Ex vivo (82)

C5a

Transwell migiration

Ex vivo (83)

Prostaglandin D2 Ex vivo (84)

Thromboxane B2 Ex vivo (85)

Urokinase-type
plasminogen activator

Ex vivo
(86)

fMLP or gp41 Ex vivo (87)

CD15s Rolling assay Ex vivo (92)

Human

N/A CCL2 Stromal cells? Anaphylaxis In vivo (88)

Skin CCL2 N/A Intradermal injection into human skin In vivo (89)

Skin CCL17
Endothelial cells,
Keratinocytes?

Intradermal injection into skin xenograft
of humanized mice In vivo (90)

Secondary
lymphoid organs CXCL12 N/A Systemic lupus erythematosus In vivo (91)

Skin? CD15s Basphils
Mosquito-bite or skin prick test to house
dust mite In vivo (92)

Murine

Skin IL-3 CD4+ T cells Tick-bite In vivo (97)

Skin TSLP N/A MC903-induced skin inflammation In vivo (20)

Skin TSLP Keratinocytes? Lipoteichoic acid injection In vivo (98)

Skin
TSLP/IL-3, CXCR4 and
IgE N/A TPA-induced skin inflammation In vivo (99)

Lymph nodes IL-3 CD4+ T cells Helminth infection In vivo (96)

Lymph nodes PGD2 N/A Lupus nephritis In vivo (91)

Lymph nodes CXCL12 N/A Lupus nephritis In vivo (93)

Lymph nodes CCL7 Monocytes Pancreatic cancer Ex vivo (94)

Lymph nodes CCL7 Dendritic cells Papain-induced type 2 skin inflammation In vivo (95)

N/A, not applicable.
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skin-resident macrophages recruit basophils into the skin via

reciprocal interactions remain to be shown. There is a large body

of work that suggests that other circulating granulocytes like

neutrophils are heavily influenced by tissue-resident

macrophage-derived signals upon tissue damage or pathogen

entry (100–102). Indeed, macrophages are capable of producing

various types of mediators which have been implicated in

basophil chemotaxis in vitro (e.g., CCL2, CXCL1, CXCL2,

C5a) (103, 104). Thus, we speculate that homologous

mechanisms likely underlie basophil recruitment as well in the

context of helminth parasite invasion or allergic barrier

disruption. Future studies will be required to determine the

full range of cellular and molecular cues that aid in the homing

of basophils into the skin.

Finally, whether specific populations of basophils go back into

the circulation and travel distally also remains poorly understood.

In the setting of helminth infection, it is reported that group 2

innate lymphoid cells (ILC2s) in the tissue are extruded to the

circulation to disseminate type 2 inflammation (105). Both skin-

homing basophils and ILC2s receive similar activation cues from

the skin (e.g., IL-18 or IL-33) to critically mediate type 2

inflammation, despite being rare populations. In light of our

speculation that skin-homing basophils acquire the ability to

survive much longer, it is possible that basophils could also move

from the skin into the circulation and on to other distal sites.

However, future studies will be required to fully understand the

importance of basophil movement into and out of the skin.
Conclusion

The unique characteristics of basophils have been greatly

informed in the last decade due the development of unique

tools. Studies using animal models have revealed their critical

involvement in a number of disease states in the skin including

helminth infection, tick bites, and AD (15–17, 106). However, in

addition to their ability to promote allergy, basophils are

increasingly appreciated for their dynamic ability to respond to

allergen, cytokines, and exhibit both proinflammatory and

restorative properties. By understanding how specific subsets of

basophils may have unique proinflammatory, survival, and

survival properties, we speculate that selectively targeting such

basophils may represent a highly effective therapeutic strategy for

a variety of skin diseases such as AD, or CSU.
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