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The complexity of intestinal homeostasis results from the ability of the intestinal

epithelium to absorb nutrients, harbor multiple external and internal antigens,

and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes

(IELs) are a unique cell population embedded within the intestinal epithelial

layer, contributing to the formation of themucosal epithelial barrier and serving

as a first-line defense against microbial invasion. TCRab+ CD4- CD8aa+

CD8ab- and TCRgd+ CD4- CD8aa+ CD8ab- IELs are the two predominant

subsets of natural IELs. These cells play an essential role in various intestinal

diseases, such as infections and inflammatory diseases, and act as immune

regulators in the gut. However, their developmental and functional patterns are

extremely distinct, and the mechanisms underlying their development and

migration to the intestine are not fully understood. One example is that Bcl-2

promotes the survival of thymic precursors of IELs. Mature TCRab+ CD4-

CD8aa+ CD8ab- IELs seem to be involved in immune regulation, while

TCRgd+ CD4- CD8aa+ CD8ab- IELs might be involved in immune surveillance

by promoting homeostasis of host microbiota, protecting and restoring the

integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting

excessive inflammation. In this review, we elucidated and organized effectively

the functions and development of these cells to guide future studies in this field.

We also discussed key scientific questions that need to be addressed in this area.

KEYWORDS

intraepithelial lymphocytes (IELs), CD8aa+, intraepithelial lymphocytes precursors
(IELps), thymus, TCRab+ CD8aa+ IELs, TCRgd+ CD8aa+ IELs
Introduction

Intestinal intraepithelial lymphocytes (IELs) are embedded within the intestinal

epithelial layer of many species, including fish, pigs, mice, and humans (1, 2), although

their quantity and distribution varies among species (3). These cells were initially described

in 1847 as round cells within the epithelium of the small intestine and were defined as
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nutrition-absorbing cells (4). Later research suggested that they

are predominantly composed of T cells and play a role in dealing

with antigens from the intestinal lumen (4, 5). IELs were

previously divided into conventional and unconventional

subsets, with the former originating from CD4+ or T cell

receptor (TCR)ab+ CD8ab+ T cells and migrating from

peripheral lymphoid tissues, and the latter arising from CD4-

CD8ab- double-negative cells andmigrating from the thymus (5).

Further studies have identified several subsets of TCR-negative

cells and revealed that IELs are a heterogeneous cell population

that contains diverse TCR-positive and TCR-negative subsets (6).

TCR-IELs have been classified in recent years, including innate

lymphoid (ILC)-like cells, iCD8a cells, and other iCD3+ cells

(iCD8a cells are a special subtype of iCD3+ cells that express

CD8a homodimers) (6–9). TCR+ IELs are classified as induced

and natural IELs. Induced IELs are mostly either CD4+ or CD8ab+,
with a minority of CD8aa+ (6, 10); natural TCR+ IELs comprise

TCRab+ and TCRgd+ T cells along with CD8a homodimers, instead

of CD4 or CD8ab (10). TCRab+ CD4- CD8ab- CD8aa+ (hereafter

called TCRab+ CD8aa+ IELs) and TCRgd+ CD4- CD8ab- CD8aa+

(hereafter called TCRgd+ CD8aa+ IELs) cells are two subtypes of

natural IELs that decrease with age, also named natural CD8aa
IELs, because CD8aa is regarded as their hallmark (11).

Substantial evidence indicates that CD8aa IELs share specific

phenotypes, developmental pathways, migration patterns, gene

profiles, and functions with other IELs subsets. Although the two

CD8aa IELs subsets share multiple characteristics, and thus, can

sometimes be classified into the same population, several significant

differences were observed. To the best of our knowledge, TCRab+

CD8aa+ IELs and TCRgd+ CD8aa+ IELs are the two major cell

populations within the intestinal epithelium and account for the

majority of IELs. Recent studies have also partly uncovered their

role in immune surveillance, immune response, mucosal epithelial

protection and restoration, immune homeostasis, systemic

metabolism, and immune regulation in the local environment of

the intestine. This review focuses on TCRab+ CD8aa+ and

TCRgd+ CD8aa+ IELs and aims to reveal the unique pathways

of their development and functional characteristics.
Classification of IELs

TCR- IELs

TCR+ IELs have been investigated for several decades;

nevertheless, TCR- IELs have been recently discovered and

shown to comprise several cellular subsets (Figure 1). NKp44+

CD103+ ILC1 populations that express CD160 and CD101

(markers of intraepithelial lymphocyte) are embedded not only

within the intestinal epithelium of humans but their counterparts

have been identified in mice as cell populations expressing

CD160, NKp46, and NK1.1 (8). In addition, partial CD3- IELs

express CD56, NKp44, IL-23R, RORgt, and gut-homing
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chemokine receptor CCR6, thus displaying the characteristics of

three cell subsets: NK cells, ILC1, and ILC3 (12). In a subsequent

study, a more comprehensive strategy for characterizing ILC was

established by suggesting that these are closely associatedwithNK

cells and are described as ILC-like cells (13).

In addition to ILC-like subsets, other special cell populations of

TCR- IELs have been recently identified: iCD3+ and iCD8a+

populations. iCD8a cells comprises a new innate TCR- IELs

population expressing CD8a as homodimers and was discovered

in both humans andmice (9). Similar toTCRab+CD8aa+ IELs and

TCR gd + IELs, the development of iCD8a cells also requires IL-15

and E8I enhancers (9). Another subset of TCR
- -IELs was further

identified to reside in both humans and mice. These cells display

hybrid characteristics of ILCs and T cells, express intracellular CD3,

and are named iCD3 cells (7),. This evidence suggests that iCD8a
cells might belong to the group of iCD3 cells (7).
TCR+ IELs

TCR+ IELs are a well-characterized population of cells (6)

and include diverse TCRab+ and TCRgd+ cells (Figure 1). They
can be classified into induced and natural IELs based on different

developmental origins and phenotypes (14). Induced IELs

primarily express CD4 or CD8ab, derive from conventional

TCR ab+ T cells of peripheral lymphoid tissues, and include

TCRab+ CD4+, TCRab+ CD8ab+, TCRab+ CD4+ CD8aa+,

and TCRab+ CD8ab+ CD8aa+ IELs (5, 6). In contrast to

induced IELs, natural IELs comprise TCRab+, TCRab+

CD8aa+, TCRgd+, and TCRgd+ CD8aa+ cells, and originate

from TCR ab+ CD4- CD8ab- and TCRgd+ CD4- CD8ab-

double-negative cells, respectively. The latter are able to

migrate to the intestinal epithelium after undergoing thymic

development and subsequently acquire the CD8aa phenotype

(5). Furthermore, TCR-IELs belong to natural IELs. In addition

to distinct developmental pathways, induced IELs are absent at

birth and increase with age, while natural IELs are present at

birth and decrease with age (5, 6). This suggests that the

reduction in natural IELs may be due to an increase in

induced IELs. TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs

are two important subsets of TCR+ IELs, which comprise a large

proportion of IELs and play critical roles in the intestinal

immune response and tolerance.

Development of natural
CD8aa+ IELs

TCRab+ CD8aa+ IELs

TCRab+ CD8aa+ IELs are first identified in mice and the

existence of them in humans remains controversial (4). Some

studies suggested that this population is present in gestation and
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rare in adult humans (4, 6). This group of cells are one of the

predominant populations in diverse IELs subsets. Nonetheless,

TCRab+ CD8aa+ IELs have a contentious origin. It was initially

thought that development and differentiation occur in the

thymus, but further studies reported the presence of TCRab+

CD8aa+ IELs in irradiated, neonatally thymectomized, and

athymic mice, thus suggesting that not all IEL populations are

developed by a functional thymus (15). In subsequent studies,

some researchers proposed that TCRab+ CD8aa+ IELs are

generated independently of the thymus, whereas the generation

of other subsets of IELs, including CD8 ab+ and CD4+CD8aa+,

is thymus-dependent (16). Meanwhile, precursors of CD8aa+

IELs are present in the gut, making some researchers believe that

the development and differentiation of CD8aa+ IELs occur in

the intestinal region (17). In subsequent studies on the

identification of iCD8a IELs, the hypothesis that the

precursors of conventional IELs were TCR- CD8a+ cells in

the intestinal epithelia, was controversial. Furthermore,

substantial evidence has indicated that both TCRab+ CD8aa+

and TCRgd+ CD8aa+ IELs originate from thymic cells,

suggesting that the potential precursors reside in double-

negative thymocytes. Meanwhile, athymic mice had a lower
Frontiers in Immunology 03
number of TCRab+ CD8aa+ IELs which could be restored

after transplanting the fetal thymus, confirming that the

majority of TCRab+ CD8aa+ IELs arose from the thymus,

while the extrathymic pathway may also provide such cells in

adults (Figure 2) (18–20).

Until now, thymus-dependent development of TCRab+

CD8aa+ IELs was mostly agreed upon, as the thymus is an

important organ for self-antigen recognition and selection of T

cells. After induction by TCRb, pre-TCR-CD3 signaling, and

other signaling molecules, a small fraction of CD4+ CD8ab+

CD8aa+ thymocytes (i.e., TP cells), were the post-selection

precursors of TCRab+ CD8aa+ IELs (21), which retained the

expression of CD8aa at the stage of positive selection (21). The

noncoding region of Cd8 gene, E8I, as well as the combination of

E8I and E8II (both CD8a enhancers) are also involved in the

expression of CD8aa and the suppression of the expression of

CD8ab in immature thymocytes (22–24). Recently, the specific

precursors of TCRab+ CD8aa+ IELs have been identified. Two

subsets of precursors of TCRab+ CD8aa+ IELs (hereafter called

IELps) were identified from the TCRb+ CD5+ CD122+ H-2Kb+

CD4- CD8- thymocytes: PD-1+ T-bet- cells (hereafter called PD-

1+ IELps) and T-bet+ PD-1- cells (hereafter called T-bet+ IELps)
FIGURE 1

The classification and location of intraepithelial lymphocytes (IELs). Gut epithelium is composed of a single layer of enteroendocrine cells
(intestinal epithelial cells). IELs are a group of heterogenous cells embedded within intestinal epithelium. Dependeing on the expression of TCR,
they can be divided into TCR+ and TCR- IELs. TCR+ IELs include ab and gd T cells. The former includes TCRab+ CD4+, TCRab+ CD8ab+, as well
as induced TCRab+ CD4+ CD8aa+ and TCRab+ CD8ab+ CD8aa+ cells. TCRab+, TCRab+ CD8aa+, gd IELs and TCR- IELs cells are natural
cellular subsets. gd IELs consists of TCRgd+ and TCRgd+ CD8aa+ cells, while TCR- IELs comprises ILC1-like, ILC3-like, and iCD3+ cells including
its special subset, iCD8a.
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(25). PD-1+ IELps are localized in the cortex and restricted by

classical major histocompatibility complex (MHC) molecules.

They are nascent and self-reactive, whereas T-bet+ IELps are

located in the medulla and restricted by non-classical MHC I

molecules, and their number increases with age (25). Meanwhile,

only T-bet+ IELps expressed the memory marker CD44 and

chemokine receptor CXCR3, while neither PD-1+ IELps nor T-

bet+ IELps expressed CCR7 (25). Although two kinds of IELps

could give rise to TCRab+ CD8aa+ IELs, evidence indicates that

T-bet+ IELps are preferentially retained in the thymus, and PD-

1+ IELps are the main precursors of TCRab+ CD8aa+ IELs (25).

In a subsequent study, CD122+ PD-1+ a4b7+ CD103- IELps and
CD122+ PD-1- a4b−

7 CD103+ IELps were identified, and it was

proposed that the former subset was congruent with PD-1+

IELps, whereas the latter was represented by T-bet+ IELps (26).

This further proves the presence of two types of thymic IELps. In

a recent study, researchers found a group of killer innate-like T

cells (ILTCks) could mediate cancer immunity, whereas showed

abILTCk-TCR expressing thymocytes co-expressed PD-1 and

CD122, which is similar to IELps, revealed the abILTCk-TCR
thymocytes could also differentiate into IELs (27).

Furthermore, IL-15 might participate in the differentiation of

TP precursors (21). The maturation of IELps is accompanied by the

upregulation of MHC class I molecules H-2Kb and CD122 (25, 28).

Jiang et al. proposed that c-Myc regulates the development of IELps

via IL-15- and Bcl-2-dependent survival (29). Agonist selection and

IL-15 receptor signaling can induce T-bet expression, indicating

that T-bet, TGF-b, and PD-1 are all involved in the development of

CD8aa+ IELs (Figure 2) (25, 30, 31). The development of thymic
Frontiers in Immunology 04
IELps does not depend on IL-15 (25, 32). Although researchers have

defined several characteristics of IELps, their maturation,

localization, and emigration patterns are still not fully understood.

The development of different T cell lineages requires TCR

signals. Similar to regulatory T cells, TCRab+ CD8aa+ IELs are

self-reactive and require exposure to self-agonists in the thymus

(26, 33). PD-1+ IELps express PD-1, CD69, Nur77, and Egr2,

display signs of elevated TCR signaling (34), and are capable of self-

reactivity after undergoing positive agonist selection (35, 36).

However, the high affinity of TCRs for self-antigens or MHC is

removed to maintain self-tolerance. The number of PD-1+ IELps

increased in Bim-deficient mice, suggesting that IELps may also be

produced by clonal deletion (37). However, the mechanism by

which IELps escape deletions is not fully understood. Some DP

thymocytes survive by downregulating the expression of CD8b and
upregulating the expression ofCD8aa, CD8aa+ cells, whichwould

also activate an altered gene expression program (21, 38–41). These

results indicate a possible mechanism by which IELps survive.

Furthermore, RAS Guanyl Releasing Protein 1 (RasGRP1), a Ras

activator required to transmit weak TCR signals, is also an essential

molecule for the survival of TCRab+CD8aa+ IELps during agonist

selection (26). In addition, CD28-deficient mice have more PD-1+

IELps (25), and PD-1 can inactivate CD28 signaling (42),

suggesting that PD-1 and CD28 may play roles in the survival

and differentiation of IELps. Meanwhile, the anti-apoptotic protein

Bcl-2 promotes the survival of IELps andTCRab+CD8aa+ IELs by

antagonizing Bim (43).

Although recent evidence has shed light on the development

of TCRab+ CD8aa+ IELs, the different signals, gene programs,
FIGURE 2

The development, migration, maintenance, and proliferation of TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs. Both types arise from thymic IELps.
TP cells become DN cells by regulation from E8I, E8II, IL-15, Bcl-2, and RasGRP1. E8I and E8II can suppress the expression of CD8ab. RasGRP1
contributes to the transmission of weak TCR signals in the process of selection. Besides, c-Myc controls the development of TCRab+ CD8aa+

IELps via IL-15 and Bcl-2. After agonist selection, pre-mature TCRab+ CD8aa+ IELps further develop with the help of T-bet, TGF-b, and PD-1.
Mature TCRab+ CD8aa+ IELps migrate to the intestine directly with the help of S1PR1, a4b7, CD103, and CCR9. Besides these molecules,
TCRgd+ CD8aa+ IELps also require GPCR18 and GPCR55 for localization and regulation of their accumulation. After IELps arrive in the intestine,
the expression of CD5 and CD90 is downregulated, while the expression of T-bet is upregulated, exhibiting the phenotype of CD8aa.
Meanwhile, the crosstalk between commensal bacteria, IECs, and CD8aa IELs contributes to the maintenance and proliferation of CD8aa cells,
via NOD2 signaling, TLRs signaling, RIG-I signaling, IL-15, and other signaling pathways. In addition, BTNL1, BTLN3, BTNL6 and BTNL8 could
promote the maturation and expansion of gd IELs.
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and molecules involved in the development of these cells are not

fully understood.
TCRgd+ CD8aa+ IELs

gd T cells reside in various organs such as the intestine, skin,

vagina, gingiva, uterus, and tongue (44–48). Meanwhile, more gd
T cells reside in the intestinal intraepithelial tissue than in other

tissues. TCRgd+ CD8aa+ IELs are present in both humans and

mice. In humans, only 13% of IELs are gd T cells (49), whereas in

mice, the proportion of gdT cells is around 50-60% (6, 10, 49, 50).

Most gd IELs expressed CD8aa homodimers (hereafter TCRgd+

IELs referred to both TCRgd+ IELs and TCRgd+ CD8aa+ IELs).

The TCR specificity of TCRgd+ CD8aa+ IELs is unknown,

but seems similar to that of conventional peripheral gd T cells

(6). Comparable to TCRab+ CD8aa+ IELs, the origin and

development of TCRgd+ CD8aa+ IELs have been controversial

(Figure 2). Previous studies indicated that they developed in the

absence of the thymus, while others proposed they originate

from the thymus. Although the thymic precursors and

development of TCRgd+ CD8aa+ IELs remain poorly

understood, their development and differentiation are very

similar to those of TCRab+ CD8aa+ IELs, for example, in

terms of the expression of CD8aa as well as the suppression

of CD8b. Additionally, they may require the same molecules and

programs to develop, differentiate, and survive. Nonetheless, in

contrast to TCRab+ CD8aa+ IELs, the repertoire and

development of TCRgd+ CD8aa+ IELs seemed to be

unaffected by MHC antigens and RasGRP1 (26), and were

independent of microbial and food antigens (51).

Butyrophilin-like proteins (BTNL; members of the B7

superfamily of costimulatory receptors) are expected to act as

co-stimulators of IEL receptors. However, the functions of BTNL

members have not yet been elucidated. BTNL1, BTNL3, BTNL6,

BTNL8, BTN3A1, BTN3A2, and Skint1 are involved in the

regulation of TCR gd + cells, with BTNL1, BTNL4, and

BTNL6 being widely expressed in the mouse gut (52). The

number of TCRgd+ IELs is reduced in Btnl1-/- mice, suggesting

that BTNL1 expressed by the epithelial cells of small intestinal

villi, promotes the maturation and expansion of TCRgd+ IELs

(51). In addition, BTNL1 together with BTNL6 can induce TCR-

dependent stimulation of gd+ T cells (51). Further experiments

confirmed that BTNL6 and BTNL1 are required for the

development of TCR gd + IELs (53). Additionally, BTNL3 and

BTNL8 expressed in the human gut epithelium can regulate the

development of TCR Vg4 (51). Furthermore, Skint, a Btnl gene

expressed by thymic epithelial cells and suprabasal

keratinocytes, drives the maturation of progenitors of dendritic

epidermal T cells (DETCs) (54, 55), suggesting that this gene

may also facilitate the maturation of TCRgd+ IELs. However, this

is debatable, because Skint genes are only expressed in gd T cells

residing in the skin and thymus (55). Collectively, these results
Frontiers in Immunology 05
suggest that intestinal epithelial cells (IECs) may facilitate the

development and function of TCRgd+ CD8aa+ IELs.
Migration and maintenance of
natural CD8aa+ IELs

Conventional T cells arise from lymphoid precursors, which

are derived from pluripotent stem cells in the marrow and

migrate to the thymus. In the thymus, within the cortex, T cell

progenitors undergo positive selection and migrate to the

medulla for further differentiation, selection, and maturation,

which imply a delicate regulatory program. For example, the

expression of CCR7 is upregulated to facilitate migration. In

addition, TGF-b-activated kinase 1 (TAK1) facilitates the

functional maturation of T cells, and NF-kB signaling is

required for cell proliferation and egress (56, 57). After

acquiring the competence to proliferate and migrate, T cells

move from the perivascular spaces into the vasculature in

response to sphingosine-1 phosphate binding to sphingosine-1

phosphate receptor 1 (S1PR1; G-protein-coupled receptor) (58–

63). Like conventional T cells, IELps also express S1PR1,

indicating that they may employ a similar mechanism of

egress from the thymus (Figure 2). Mature IELps express

S1PR1 (59, 62, 63), confirming the hypothesis that IELps

depend on S1PR1 to enable thymic egress (64). After

migrating from thymus to vasculature, lymphocytes roll alone

the endothelial cells, then adhere to them and migrate across the

endothelium to emigrate from the vasculature into tissues (65).

Previous studies exhibited that a4b7 is a receptor to MAdCAM-

1, while MAdCAM-1 is expressed by mucosal venules to help

lymphocyte traffic into Peyer’s patches and the intestinal lamina

propria (LP), suggested a4b7 mediates the adherence of IELs to

intestinal epithelial (65–67). Integrins a4b7 and aEb7 (i.e.,

CD103, a hallmark of tissue-resident T cells), CD122, CD160,

and 2B4 are common molecules associated with gut-homing and

retention of cells (48, 66, 68–71); the expressions of a4b7,
CD103, and CCR9 direct competent IELps migrate, entry and

firmly attach to the gut epithelium (Figure 2) (14, 25, 30, 72, 73).

Meanwhile, recent study showed that transcription factor LRF

could promote the expression of integrin a4b7, control the late
differentiation and facilitate the gut-homing process of CD8aa
IELp (74). Meanwhile, mice lacking the vitamin D receptor

showed low expression of CCR9 (75), indicating that vitamin D

is also a factor affecting the migration of CD8aa+ IELs.

Furthermore, orphan receptor G protein-coupled receptor 18

(GPCR18) is required for the localization of CD8aa IELs,

especially TCRgd+ CD8aa+ IELs (Figure 2) (76). GPCR 55

negatively regulates the accumulation of TCRgd+ CD8aa+

cells (Figure 2) (77).

During the agonist-selection process, TP cells express high

levels of CD5 and CD90, indicating that these cells receive high

TCR activation signals and then become DN abT cells (30).
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After CD8aa+ IELs arrive in the gut, the expression of CD5 and

CD90 is downregulated and the expression of CD103 and

CD8aa is upregulated, and CD8aa+ IELs become resident

cells (Figure 2) (21, 30, 78). Meanwhile, CD8aa+ IELs also

upregulate the expression of T-bet, which could induce the

expression of CD8aa homodimers (Figure 2) (30). IL-15 is a

critical molecule that mediates the expression of T-bet and CD5,

and there is evidence that IL-15 is involved in the maintenance

and expansion of CD8aa+ IELs instead of their induction

(Figure 2) (21).

The development, survival, and maintenance of CD8aa+

IELs is affected by diverse molecules and factors (Figure 2).

Exposure to external food antigens or pathogens and different

gut environments can shape and maintain CD8aa+ IELs. Gut

bacteria can shape the differentiation of diverse T cells (79–84).

Cervantes-Barragan et al. showed that Lactobacillus reuteri (L.

reuteri) produced indole derivatives of tryptophan which

ac t iva te the ary l hydrocarbon recep tor , a l lowing

downregulation of the expression of T-helper-inducing POZ/

Krueppel-like factor (ThPOK), which is implicated in the

differentiation of CD4+ CD8aa+ double-positive IELs (DP

IELs) (85). This result suggests that ThPOK plays a role in

regulating the expression of CD8a and that microbial factors or

specific diets could promote the differentiation and maintenance

of IELs.

NOD2 signaling helps maintaining the homeostasis of

CD8aa+ IELs via the recognition of gut microbiota and IL-15

production (86). This further demonstrates that the gut

microbiota promotes the retention of CD8aa+ IELs.

Meanwhile, Yu et al. suggested that MyD88-dependent

signaling contributed to the maintenance of the number of

TCRab+ CD8aa+ IELs and TCRgd+ IELs via IL-15

production, which was influenced by the interaction between

commensal bacteria and IECs via TLRs signaling (87). As c-Myc

regulates the development of IELps via IL-15, and IL-15

mediates the expression of T-bet to induce the expression of

CD8aa homodimers and help maintain the homeostasis

through NOD2 and MyD88-dependent signaling, IL-15 is

considered to be involved in the development and

maintenance of TCRab+ CD8aa+ IELs. Meanwhile, as

another study showed that IECs, macrophages and DCs in the

intestine could express IL-15 (86), and enterocytes express

BTNLl1, BTNL3, BTNL6, and BTNL8 of the BTNL family to

promote the expansion of TCRgd+ CD8aa+ IELs (51), these

results indicated that IECs and other cells in intestine may help

the maintenance and expansion of TCRab+ CD8aa+ and

TCRgd+ CD8aa+ populations via expression of IL-15 and of

BTNL molecules. Commensal viruses and retinoic acid-

inducible gene I (RIG-I) signaling are essential for the

homeostasis of IELs (88). Furthermore, the thymus leukemia
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antigen, which is confined to the surface of IECs, functions as an

effective effector in modulating the IEL response (89). These

results suggested that multiple cells and viruses in the intestine

contribute to the survival and maintenance of CD8aa+ IELs.

Konijnenburg et al. revealed that the dynamic localization and

distribution, migration, scanning patterns, and energy utilization

of TCRgd+ IELs are driven by microbial density through the

sensing of IECs (3), which is a consequence of epithelial-immune

crosstalk. In a subsequent study, Jia et al. identified commensal

bacteria that contributed to gd IELs surveillance (90).

Furthermore, the development and homeostasis of TCRab+

CD8aa+ IELs requires b2m expression, not of classical class I

molecules K and D (70). Moreover, a recent study indicated that

the development and maintenance of CD8aa+ IELs partly

depend on low oxygenic conditions (91).
Function of various IELs in
gut epithelium

The gut epithelium is a unique immunological compartment

that is in contact with numerous external microorganisms and

environmental antigens and as well as with the internal

environment. The gut epithelium comprises a single layer of

IECs, with diverse IELs embedded between these cells, and

provides the first line of defense. This suggests that these cells

may undertake potentially essential functions, despite the small

total proportion of IELs. Considering this characteristic, the gut

mucosal immune system requires a delicate program to respond

to pathogens, while maintaining tolerance to innocuous

antigens. In mice, studies showed that IELs increase in the late

disease process of enteropathies such as CeD, graft vs. host

disease, allograft rejection, autoimmune (4). In human, TCRab+

CD8ab+ IELs and innate-like IEL lacking surface TCR

expression were involved in the development of villous

atrophy in patients with refractory CeD (4). CD8aa
homodimers decreased antigen sensitivity of the TCR and

acted as repressors to negatively regulate T cell activation (92).

CD8aa IELs are related to inflammatory bowel disease (IBD)

and infection and play a critical role in protection against

pathogens, as well as in controlling bacterial overgrowth. This

indicates their involvement in the promotion of mucosal defense

and epithelial homeostasis (89, 93–96). Besides, recent study

showed that integrin b7 deficiency protects mice from metabolic

syndrome and against atherosclerosis, whereas IELs in the small

intestine had the highest expression of b7, revealed that b7+

natural IELs could modulate systemic metabolism and accelerate

the progression of cardiovascular disease (97). Although most of

these functions are shared, the functions of the different subsets

of IELs differ slightly (Figure 3).
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Functions of TCRab+ IEL

The function of TCRab+ CD8aa+ IELs has not been

completely elucidated. In general, IELs expressing TCRab can

respond to pathogens. Global analysis revealed that this

population expressed NK receptor-related genes, such as

Ly49A, Ly49C, and Ly49E of the Ly49 family, and genes that

were expected to down-modulate their reactivity (70). These

cells also express fibrinogen-like protein-2, TGF-b3, LAG-3, and
genes associated with corresponding inhibitory or activation

functions, such as 2B4 (70). TCRab+ CD8aa+ IELs and NK cells

share similar characteristics, and TCRab+ CD8aa+, TCRab+

CD8ab+, and TCRgd+ CD8aa+ IELs have significantly different

functions. TCRab+ CD8aa+ IELs might have suppressive and

regulatory roles. Besides, this cellular population prevents

induced colitis, a role mediated by IL-10. This method of

protection is unique and differs from that of TCRgd+ and

TCRab+ CD8ab+ IELs (70, 98). Collectively, these results

indicate that TCRab+ CD8aa+ IELs contributes to the

maintenance of intestinal immunity and immune regulation.
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TCRgd+ IELs were scattered predominantly in the central

and upper locations of the villi (3). Although TCRgd+ and

TCRab+ CD8aa+ IELs share similar developmental pathways

and expression of specific genes, these subsets are significantly

different. In contrast to TCRab+ CD8aa+ IELs, the TCRgd+

population did not show a significantly high expression of NK

receptor-related genes or of the other genes mentioned

previously (70).

Unlike ab T cells, gd T cells commonly contribute to the

maintenance and restoration of body-surface integrity.

Boismenu et al. proposed that activated TCRgd+ IELs produce

keratinocyte growth factor (an epithelial cell growth factor

belonging to the fibroblast growth factor family) and stimulate

the differentiation, regeneration, and migration of epithelial

cells, whereas TCRab+ IELs do not (99). Furthermore, a

substantial amount of TCRgd+ IELs was enriched around the

injured region in dextran sodium sulfate (DSS)-induced mouse

colitis (100). TCRgd+ IELs upregulated the expression of
FIGURE 3

The functions of CD8aa IELs. TCRab+ CD8aa+ IELs express Ly49A, Ly49C, Ly49E, and other genes of the Ly49 family, as well as 2B4,
fibrinogen-like protein-2, TGF-b3, and LAG-3, being involved in immune regulation. In contrast to TCRab+ CD8aa+ IELs, TCRgd+ IELs express
TGFb1, TGFb3, prothymosin b4, heat shock proteins, chemokine KC, and big-h3, being involved in injury healing and protection of the integrity
of epithelium. Meanwhile, these cells could also express cytokines KC, IL-1b, MIP2a, Cxc19, and Cxc116 thus recruiting various inflammatory
cells. Besides, they are characterized by a specific dynamic pattern to surveil and respond to pathogen invasion, undertaking diverse roles in
the intestine.
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cytoprotective factors such as heat shock proteins, chemokine

KC, and big-h3 to promote keratinocyte proliferation and

wound healing during DSS treatment (101). In addition,

TCRgd+ IELs secrete TGFb1, TGFb3, and prothymosin b4
which protect the intestinal epithelium (14). These studies

further confirmed that TCR gd+ IELs resolved inflammatory

lesions by secreting multiple factors. However, although studies

have shown that TCRgd+ IELs help maintain and restore the

integrity of intestinal epithelia in IBD (100, 102), the function of

TCRgd+ IELs in this pathology is not fully understood. TCRgd+

IELs also secrete proinflammatory factors which can induce or

aggravate colitis (103, 104). Park et al. showed that activation of

TCRgd+ IELs by commensal bacteria induces spontaneous colitis

(105). Nevertheless, this also indicates that T regulatory cells

could suppress TCRgd+ IELs via IL-10 to maintain intestinal

homeostasis (105).

In addition, TCRgd+ IELs upregulated the expression of

chemotactic molecules such as cytokines KC, IL-1b, MIP2a,
and Cxc19, for various inflammatory cells, and the expression of

microbial pattern recognition receptors such as TLR1 and CD4

in DSS-induced colitis (101). Meanwhile, they are accompanied

by increased complement components 1qa, 1qb, and lysozyme,

which are bactericidal proteins, and by increased expression of

RegIIIg (a pancreatitis-associated protein) (101). MyD88 is also

required for regulation of RegIIIg expression, and commensal

bacteria could regulate the response of TCRgd+ IELs to mucosal

damage through MyD88-dependent and MyD88-independent

pathways (101, 106). TCRgd+ IELs could also recruit

inflammatory cells, respond to bacteria, and be associated with

commensal bacteria. Activated TCRgd+ IELs could limit

bacterial penetration of resident microbiota or new organisms

from the environment (106).

In addition, several studies have revealed the cytotoxic

properties of activated TCRgd+ IELs. These cells produce

interferons, TNF-a, and antimicrobial proteins in response to

viral or bacterial infections (1, 107). At the same time, the

immune surveillance of TCRgd+ IELs follows a dynamic

migration pattern: they survey pathogen invasion by shifting

along the basement membrane, migrate into the lateral

intercellular space between two adjacent enterocytes and

change the pattern when pathogen invasion occurs (48).

Additionally, these cells facilitate tumor necrosis factor-

mediated shedding of apoptotic enterocytes with the help of

CD103-mediated extracellular granzyme release (108).

Collectively, although the functions and detailed molecular

mechanisms of TCRgd+ IELs have not been fully defined, current
evidence indicates their roles in preserving and restoring the

integrity of the intestinal epithelium, recruiting inflammatory

cells, surveilling, responding to enteric infection, maintaining

mucosal homeostasis, and facilitating pathological epithelial cell

shedding. These functions indicate the importance and delicate

regulatory traits of TCR gd + IELs.
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Conclusion and
unanswered questions

The gut is an essential nutrient absorption organ that directly

encounters multiple antigens in the gastrointestinal tract and

contains various immune cells with distinct functions and

distributions. IELs are a small number of heterogeneous cells

residing in the intestinal epithelium, undertaking the role of the

first line of defense of the immune system. Their functions also

include maintaining immune homeostasis, other possible

competencies. Besides, studies exhibited IELs are associated with

multiple disease such as CeD, tropical sprue and parasite infections.

Natural TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs are two

special populations of IELs that exhibit phenotypes and

characteristics that are different from conventional T cells or

other subsets of IELs. TCRab+ CD8aa+ IELs are capable of

immune regulation, whereas TCRgd+ CD8aa+ IELs can protect

the integrity of intestinal epithelia, heal injured mucosal epithelia,

maintain homeostasis of the resident microbiota, inhibit

microbiota invasion, respond to pathogens, and limit excessive

inflammation. Meanwhile, recent study revealed the role of natural

IELs in dietary metabolism, showed the potential research value of

these cells. In brief, a number of studies have highlighted the

importance of TCRab+ CD8aa+ and TCRgd+ CD8aa+ IELs,

indicating the possibility of taking advantage of these cells to

strengthen the understanding of intestinal immunity, metabolism

and cure diverse associated illnesses or infections.

However, the development, function, gene profiles of these

cells, as well as the regulatory mechanisms underlying their effect

against different conditions require further exploration. For

instance, although previous studies of TCRab+ CD8aa+ IELs

identified two thymic progenitors and revealed their distinct

features, migrating patterns, and some specific gene profiles, the

proportions and potential functional or phenotypic differences

between the two IELps are not fully understood. TCRab+

CD8aa+ and TCRgd+ CD8aa+ IELs have various roles under

normal or infectious/inflammatory conditions, their existence

being essential in organisms. However, the specific molecules

regulating their function are not clear, although several critical

transcription factors, cytokines, chemokines, and other

molecules involved in their development, maturation,

migration, and function, were identified. These unanswered

questions should be the focus of future research.
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