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Splenic protection network
revealed by transcriptome
analysis in inactivated vaccine-
immunized flounder
(Paralichthys olivaceus) against
Edwardsiella tarda infection

Xiaoyan Wu, Jing Xing*, Xiaoqian Tang, Xiuzhen Sheng,
Heng Chi and Wenbin Zhan*

Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, MOE,
Ocean University of China, Qingdao, China
The protective immune response produced by fish after vaccination is crucial

for vaccine effectiveness. Our previous studies have shown inactivated vaccine

against Edwardsiella tarda can induce immune response in flounder

(Paralichthys olivaceus). To elucidate the protective immune response at the

genetic level, in this study, flounder was immunized with inactivated E. tarda for

5 weeks, and then they were challenged with E. tarda. The spleen was dissected

at 7th day post immunization, 1st and 7th day post challenge, respectively.

Transcriptome analysis showed that average of 46 million clean reads were

obtained per library, while percentage of clean reads being mapped to

reference genome was more than 89% in all cases, which suggested good

quality of samples. As for differentially expressed genes (DEGs) identification in

inactivated E. tarda groups, at 7th day post immunization, 1422 DEGs were

identified and significantly enriched in innate immune-related pathways, such

as Phagosome, Cell adhesion molecules and NF-kappa B signaling pathway; At

1st post challenge day, 1210 DEGs were identified and enriched to Antigen

processing and presentation and Cell adhesion molecules, indicating that the

pathogen was rapidly recognized and delivered; At 7th post challenge day, 1929

DEGs were identified, belonged to Toll-like receptor signaling pathway,

Antigen processing and presentation, Th1 and Th2 cell differentiation and

Th17 cell differentiation. Compared to 7th post immunization day, 73

immune-associated DEGs were identified at 1st post challenge day. Protein-

protein interaction networks analysis revealed 11 hub genes (TLR7, TLR3,

CXCR4, IFIH1, TLR8 etc), associated with recognition of pathogens and

activation of innate immunity; while for 7th post challenge day, 141 immune-

associated DEGs were identified. 30 hub genes (IL6, STAT1, HSP90A.1, TLR7,

IL12b etc) were associated with stimulation of lymphocyte differentiation and

activation of cellular immunity. Ten immune-related genes were randomly

selected for RT-qPCR validation at each time point. In conclusion, data
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1058599/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1058599&domain=pdf&date_stamp=2022-11-09
mailto:xingjing@ouc.edu.cn
mailto:wbzhan@ouc.edu.cn
https://doi.org/10.3389/fimmu.2022.1058599
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1058599
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2022.1058599

Frontiers in Immunology
revealed protection of flounder against E. tarda infection by inactivated vaccine

is mediated via immediate recognition of pathogen and subsequently

activation of cellular immunity. Results give new aspect for vaccine

protection cascades, is good references for vaccine evaluation.
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Introduction

Vaccines induce protective immune responses in fish (1, 2).

The immune protection involves the relative percentage survival

(RPS), antibody production and T/B lymphocyte response

against challenge etc (3–5). RPS has been widely used to assess

vaccine protection (6, 7). Besides of the RPS, the production of

antibodies is the strategy of vaccines. Antibodies specifically

recognize and bind antigens, which promote phagocytosis and

achieve clearance of pathogens (8, 9). T/B lymphocytes are

essential component of the adaptive immune response for

assessing vaccine protection (10, 11). Study in turbot

(Scophthalmus maximus) immunized with inactivated bivalent

vaccine (IVVah1) showed high RPS to Vibrio anguillarum and

Vibrio harveyi infection were maintained from week 4 to week 8

post immunization. In addition to RPS, antibody levels showed a

trend of increasing and then decreasing, peaking at weeks 2 and

3. After 8 weeks of immunization against the pathogen,

antibodies increased within a week. This indicates that at the

protein and individual level, turbot immunized with IVVah1 are

protected against the pathogen (12). In the study of vaccine-

immunized flounder (Paralichthys olivaceus) challenged with

Edwardsiella tarda, antibodies increased significantly at week 3.

The percentage of T lymphocytes peaked at day 7. The

percentage of IgM+ B lymphocytes showed a trend of

increasing and then decreasing, peaking at week 2. This

suggested that inactivated vaccine enhanced protective

humoral and cellular immune responses in fish after challenge

(13). In addition to this, the immune protection of fish vaccines

needs to be supported by fine grained networks and

comprehensive data. This is urgently needed for the

development and application of effective vaccines.

Flounder is valuable marine fish. In recent years, with the

rapid development of intensive aquaculture, the incidence of

disease outbreaks has been increasing, which seriously affects the

culture of flounder (14). E. tarda is a gram-negative bacterium

with intracellular parasitism (15). It causes high mortality and

significant economic losses in flounder through invasion of

epithelial cells, production of toxins, and evasion of

phagocyte-mediated killing (16, 17). Safe and effective vaccines
02
are essential for the control of bacterial diseases (18, 19), among

which inactivated vaccines have become commercialized vaccine

species (20). For elucidating the protective immunity

mechanism of inactivated vaccines, it is essential to study the

response of immune organs in pre-vaccinated flounder after

infection (21). Similar to mammals, the spleen of fish is the main

peripheral lymphoid organ (22). Here most of the antigens in the

blood are captured and engulfed by macrophages. At the same

time, it is also the site of aggregation of T and B lymphocytes for

antigen presentation and initiation of adaptive immune

responses. The spleen is an essential organ for resolving the

immune response in fish (23–25).

Transcriptome sequencing analyzes gene expression

dynamics at the level of individual transcripts, which can

contribute to the resolution of immune-related genetic

information and functional molecules (26, 27). RNA-Seq has

been applied to analyze immune-related genes and signaling

pathways in fish such as flounder, grass carp, large yellow

croaker and turbot (28–31). The spleen red blood cells of

flounder challenged with E. tarda were analyzed by

transcriptome. 21 key genes were identified, mainly involved

in antigen processing and presentation, pathogen recognition

and inflammation (32). The phagosome pathway was activated

in the head kidney of turbot inoculated with bivalent inactivated

bacteria vaccine Aeromonas salmonicida and Vibrio

scophthalmi. Antigenic peptide transport protein 1 (TAP1),

complement fraction 3 (C3) and mannose receptor (MR) were

significantly upregulated (33). However, it is often limited to the

analysis of tissues such as head kidney, gill and blood at different

time points after immunization or infection. This is still

inadequate for supporting the molecular mechanisms of

immune protection in fish. In addition, genes in organisms are

functionally interconnected and together control the activities of

the organism (34). For example, kidney from flounder infected

with E. tarda was sequenced. Immune-related genes were used to

construct protein-protein interaction networks (35). The

identification of hub genes helps to understand the protective

mechanism of the vaccine.

In this study, flounder were immunized with inactivated E.

tarda vaccine for five weeks and then challenged with E. tarda.
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The infection status of flounder was evaluated. Spleens of

flounder were sampled for transcriptome analysis at 7th post

immunization day, 1st and 7th post challenge day. RNA

sequencing (RNA-Seq) was performed using the Illumina

Novaseq6000 platform. The results showed that an average of

46 million clean reads were obtained per library, with clean reads

accounting for more than 99% of raw reads and Q30 greater than

92% in all cases; while the percentage of clean reads being

mapped to the reference genome was more than 89% in all

cases. 1422, 1210 and 1929 differentially expressed genes (DEGs)

were identified at 7th post immunization, 1st and 7th post

challenge day, respectively. Differential genes were annotated

into Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional databases. These genes are

involved in many immune processes, mainly Toll-like receptor

signaling pathways, antigen processing and presentation, and

Th1 and Th2 cell differentiation. At 1st and 7th post challenge

day, respectively, 73 and 141 immune-related DEGs were used to

construct protein-protein interaction network, predicting 11 and

30 hub genes involved in the immune response. This study

provides the basis for further elucidation of the immune

protection against bacterial infection in flounder immunized

with inactivated vaccine.
Materials and methods

Experiment fish

Healthy flounder (P. olivaceus) (length range: 15-17 cm)

were purchased from a farm in Rizhao, Shandong Province,

China. The experimental fish were kept in the laboratory

basement for two weeks, during which the water temperature

was maintained at 21 ± 1°C in aerated seawater. The fish were

fed with commercial pellets at 3% of body weight per day, and 1/

3 of the seawater in the tanks was replaced. Before the

experiment, flounders were randomly tested as free of

pathogenic bacteria (36). Fish were anesthetized with tricaine

methylate (MS-222, Sigma, USA) before tissue sampling. The

treatment of fish in this study was approved by the Institutional

Animal Care and Use Committee of the Ocean University of

China (permit number: 20150101).
Inactivated Edwardsiella tarda vaccine

E. tarda HC01090721 strain was isolated from the ascites of

diseased flounder by researchers in our laboratory and stored in

brain heart infusion (BHI) medium containing 15% glycerol at

-80°C (37). The inactivated E. tarda vaccine was prepared by

referring to the previous process (38). First, the conserved strains

were inoculated on BHI solid medium by continuous scribing

and cultured at 28°C for 24 h. Single colonies were inoculated on
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BHI liquid medium in oscillating incubator at 28°C and 180 rpm

for expansion. After the bacteria had grown to the logarithmic

growth phase, bacterial precipitates were obtained by

centrifugation at 8000 g for 5 min and resuspended in

sterilized 0.01 M phosphate-buffered saline (PBS; pH=7.4).

The bacterial concentration was adjusted to 10× 109 CFU/mL

and inactivated by the adding 0.5% formalin (V/V) and shaking

at 4°C for 72 h. The precipitate was collected by centrifugation at

8000 g for 5 min and resuspended with sterile PBS. 200 µL of

inactivated bacteria were coated in BHI solid medium and

incubated for 24 h at 28°C. The inactivation was proved to be

successful if no colonies grew. The bacterial concentration was

adjusted to 2.0×109 CFU/mL and stored in a refrigerator at 4°C

until use.
Vaccination, challenge and sampling

Healthy flounder were randomly divided into two groups,

the PBS group was injected intraperitoneally with 100 mL of PBS

with complete Freund’s adjuvant (1:1) and the inactivated

vaccine group was injected intraperitoneally with 100 mL of

inactivated E. tarda with complete Freund’s adjuvant (1:1). After

5 weeks of immunization, 1.0 × 106 CFU of E. tarda was

inoculated for the challenge experiment. At 7th day post

immunization and 1st and 7th day post challenge, respectively,

spleens from three fish in each group were randomly sampled

and snap-frozen in liquid nitrogen for RNA extraction. Samples

were marked: CS-7 (CS-7-1/CS-7-2/CS-7-3) for fish on the

seventh day after immunization with PBS, IPS-7 (IPS -7-1/IPS

-7-2/IPS-7-3) for fish on the seventh day after immunization

with inactivated vaccine, ACS-1 (ACS-1-1/ACS-1-2/ACS-1-3)

for fish on the first day after five weeks of PBS immunization

with E. tarda infection, AIPS-1 (AIPS-1-1/AIPS-1-2/AIPS-1-3)

for fish on the first day after five weeks of vaccine immunization

with E. tarda infection, ACS-7 (ACS-7-1/ACS-7-2/ACS-7-3) for

fish on the seventh day after five weeks of PBS immunization

with E. tarda infection, AIPS-7 (AIPS-7-1/AIPS-7-2/AIPS-7-3)

for fish on the seventh day after five weeks of vaccine

immunization with E. tarda infection. To detect the infection

status of sampled fish, remaining spleen tissue after challenge

was immersed in RNALater (TaKaRa) for detection of bacterial

load and also fully embedded in Tissue-Tek O.C.T. Compound

(Sakura Finetek USA) and stored at -80°C for 4 h for

immunofluorescence analysis. The specific experimental

procedure is shown in Figure 1.
RNA sample preparation, library
construction and sequencing

For transcriptome analysis, 18 RNA-seq libraries were

constructed using spleens. RNA was extracted from spleen
frontiersin.org
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using the Trizol according to the manufacturer’s instructions for

RNA-seq analysis and subsequent RT-qPCR validation of

transcriptomic data. RNA samples from spleens were subjected

to RNase free agarose gel electrophoresis and Agilent 2100

Bioanalyzer for quality and integrity. The mRNA was enriched

by Oligo(dT) beads and fragmented with fragmentation buffer.

The mRNA was reverse transcribed into cDNA using the

NEBNext Ultra RNA Library Prep Kit for Illumina (NEB,

Ipswich, MA, USA). cDNA was purified using 1.8X Agencourt

AMPure XP Beads, followed by end repair, the addition of base

A, and ligation of sequencing adapters. Size selection of ligated

fragments was performed by agarose gel electrophoresis and

polymerase chain reaction (PCR). Sequencing of 18 cDNA

libraries from spleen samples was performed on the Illumina

Novaseq6000 platform at Gene Denovo Biotechnology Co.

(Guangzhou, China).
Data quality control, sequence alignment
analysis and expression statistics

Raw reads of the spleen cDNA libraries contained low quality

bases. The reads containing more than 10% unknown nucleotides

and containing more than 50% low quality (Q-value ≤ 20) bases

and containing adapter are removed according to FASTP (version

0.18.0) (39) to obtain high quality clean reads from the spleen

cDNA libraries. The clean reads were aligned to the ribosomal RNA

(rRNA) database using the short reads alignment tool bowtie2 (40),

and the aligned ribosomal reads in the spleen cDNA libraries were

removed. The retained clean reads were used for subsequent

transcriptome analysis. The clean reads were mapped to the

flounder reference genome (GenBank project accession:

PRJNA344006) using HISAT2.2.4 (41). The mapped reads from

18 spleen cDNA libraries were assembled respectively by using
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StringTie v1.3.1 (42, 43). For each transcribed region, FPKM

(fragment per kilobase of transcript per million mapped reads)

values were calculated using RSEM (44) to quantify its expression

abundance and variation.
Analysis of differentially expressed genes,
GO and KEGG functional enrichment

Splenic differentially expressed genes (DEGs) between the

PBS and inactivated vaccine groups were analyzed using DESeq2

(45), and the screening criteria for differential genes were p ≤

0.05 and expression fold change > 1.5. To further understand the

biological functions of the genes, DEGs were mapped to terms in

the GO database (http://www.geneontology.org/), and the

number of genes per term was calculated. GO terms that were

significantly enriched to differential genes compared to

background genes were identified. KEGG (http://www.genome.

jp/kegg/) is the main database on Pathway. Pathways that were

significantly enriched by differential genes compared to

background genes were obtained. A hypergeometric test was

performed to identify significantly enriched GO terms and

KEGG pathways using p-value ≤ 0.05 as the threshold.
Protein-protein interaction
network analysis

Venn diagram was used to demonstrate shared and unique

DEGs for the three comparison groups after immunization and

challenge. String (http://string-db.org) was applied to analyze

protein-protein interactions that upregulate immune-related

DEGs at 1st and 7th after challenge day, respectively.

Cystoscape (V3.7.1) (https://cytoscape.org/) was used to
FIGURE 1

Experimental procedure of flounder after immunization with inactivated vaccine and subsequent E. tarda challenge.
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visualize network file in which genes as nodes and interaction

relationships as lines of the network. Studying the protein-

protein interaction network helps to identify hub genes.
Quantitative real-time polymerase
chain reaction

To analyze the bacterial load in the spleen of flounder post E.

tarda infection, spleen DNA was extracted using the TIANamp

Marine Animals DNA Kit (Tiangen, Beijing, China) according to

the manufacturer ’s instructions. Specific primers (F:

TAGGGAGGAAGGTGTGAA; R: CTCTAGCTTGCCAGTCTT)

were used for the amplification of E. tarda gene fragments. Each

sample was taken in triplicate. The bacterial load in the spleen (log10
E. tarda cells/0.1 g) was quantified according to a previously

established standard curve (46).

To verify the reliability of the transcriptome data, immune-

related genes were selected for qRT-PCR. RNA was adjusted to

the concentration of 1 mg/mL using Nanodrop 8000

spectrophotometer (Thermo Fisher Scientific, Waltham, MA,

USA). cDNA was obtained using HiScript III RT SuperMix for

qPCR (Vazyme, Nanjing, China) for RNA reverse transcription.

Gene specific primers were designed using Primer Premier 5.0

and the primer sequences are listed in Table 1. b-actin was used

as internal control. The mRNA levels of spleens in the PBS group
Frontiers in Immunology 05
at each time were set to 1. qRT-PCR was performed using the

LightCycler® 480 II Real Time System (Roche, Basel,

Switzerland). Each reaction system contained 10 mL of 2×

Universal SYBR Green Fast qPCR Mix, 2 mL of cDNA

template, 0.4 mL each of forward and reverse primers, and 7.2

mL of DEPC water. The reaction procedure was: pre-

denaturation at 95°C for 3 min, 40 cycles including annealing

at 95°C for 5 s and extension at 60°C for 30 s. Reactions were

performed in triplicate. Gene expression levels were analyzed by

the 2-DDCt method.
Indirect immunofluorescence assay

To analyze the infection of the spleen by E. tarda as

described previously (47), in brief, sections obtained using

Cryostats (Leica CM1900) were fixed in cold acetone for 15

min. Sections were washed three times with phosphate-buffered

saline containing 0.05% Tween-20 (PBST) and then sealed with

5% BSA at 37°C for 45 min. Sections were then washed three

times with PBST for 5 min each and incubated with rabbit anti-

E. tarda polyclonal antibody (1:2000) as primary antibody for 1

h. After washing away the unconjugated primary antibody,

sections were incubated with Alexa Flour 488-conjugated goat

anti-rabbit IgG (1:1000, Thermo Fisher Scientific, Waltham,

MA, USA) for 45 min in the dark at 37 °C. After three washes
TABLE 1 List of primers for qRT-PCR validation of differentially expressed genes.

Primer name Forward primer (5’-3’) Reverse primer (5’-3’) GenBank Accession No.

IL1b GAGATGGTGCGATTTCTGTTCTAC ATGTTGAAGGTCTGGTAGCACTG XM_020105656.1

CXCL12 TTGGTGTCGTTCTACCCTCAAC TCTTCACCTTGTTGATGGCG XM_020084401.1

IL21R TACAATCTCACTCTGTCCCAACC CTCCAGGTGAAGTGGTGTTGA XM_020083502.1

RT1-B GCAGCGTCTTTGACTTCTACCC CCAGACTTGGGCATGTACTCC XM_020108298.1

LPAR4 TAGTCTACCCTTTCCGTTCGC TCACTGATATTCCTCCACCCAC XM_020088202.1

JUN TCCCACAACCACATGGATCAC TCTCCATGTTGATGGGGGAA XM_020109221.1

TLR7 GCTCAATAGGACCACAGTAACCA CTAGCAATGGACAGGGTGAGG XM_020089659.1

CCL19 GACATCAGCACAGGTTCCCA GGATGGTGGCGTCGATAGAG XM_020106263.1

IRF3 CAGTTCAGGGTGTCGGTGTACT TCGGGTCAGTTTGGCTTGAG XM_020107055.1

DHX58 GGAGTCGCTACACCGCTTCTA GGCTCCCAGTCGTCAAACATC XM_020094280.1

MAPK8 TTGACGCCTCCAAACGAATC CCACTCATCCCAATCACTCACTT XM_020092592.1

CXCL14 GATCAAACCCAAACACCCGTA CCAGATGCGGAACCATTTG XM_020086273.1

TLR8 CGTGATTGTGCTGCTGATGC CTTGATTGTCCACCCTGACGA XM_020089660.1

GADD45b ACTGTCTGACTGTGGGCGTGTA CCTGAAGCAGCGTGAAGTGG XM_020109774.1

PPAP2B CCCAGCATCACCTATCCTCAT AGCGTACCCTGTAACACTCCC XM_020083954.1

CCL25 GGGCACGTTAAGAGGATGAGG TTGGCACAGACAGTCCGTTGT XM_020081297.1

CCL20 AGGTTGTGGTGGATTGTTGTC ATGATGCACAGGGTCTTCTCA XM_020106265.1

HSP90a.1 CGCTGGTGGCTCCTTTACA GCTTCTTCACAATCTCTTTGACTCT XM_020091873.1

STAT1 GCAAGCAGAGTGCCAATGAGA AAGGTGCCGGGACACTTGT XM_020105149.1

IL5Ra GTCACGGTGGAATCGTCAAGT AAGGAATCGGAGGAAACAGAA XM_020106780.1

CXCL8 AGTCTGAGCAATGGAGGAGTGA CCAAGCACTTTATGACCCACG XM_020100336.1

MAPK14A TAATCATGCTGCTCGTCGGA GCTGTTATCCGTTTGTCTGTGTC XM_020089244.1
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with PBST, the sections were counterstained with DAPI on the

nuclei and incubated for 15 min at room temperature in the

dark. After blocking with glycerol, the green positive signal was

observed under fluorescent microscope (Olympus DP70, Tokyo,

Japan). Rabbit negative serum was used as a negative control

(1:1000 diluted in PBS).
Statistical analysis

All experiments were performed three times. Data were

presented as mean ± standard deviation (SD). Data analysis

was performed by SPSS 20.0 (IBM, Armonk, NY, USA). T-test

was used to examine the differences between the PBS and

inactivated vaccine groups. Differences were considered

statistically significant when *p < 0.05. Graphs were plotted

using GraphPad Prism 9 (Inc. San Diego, CA, USA).
Results

The load of E. tarda in the spleen of
flounder after challenge

The presence of E. tarda in spleen samples was characterized

quantitatively by qRT-PCR and qualitatively by indirect

immunofluorescence (Figure 2). At 1st day post challenge, the

bacterial loads in the spleen of PBS and inactivated vaccine

groups showed small differences (p > 0.05). At 7th day post

challenge, the spleen bacterial loads were significantly higher in

the PBS group than in the inactivated vaccine group (p < 0.05). A

large amount of specific green fluorescence was present in PBS
Frontiers in Immunology 06
group, whereas a small amount of green fluorescence was

present in the vaccine group.
Transcriptome sequencing and read
mapping of flounder

At 7th day post immunization, 1st and 7th day post challenge,

respectively, 18 libraries of spleen RNA from PBS and

inactivated vaccine group flounders were sequenced. To ensure

data quality, raw reads were quality controlled. The six groups

produced an average of 43875712, 44863902, 43172840,

55465904, 40599382, and 52051965 clean reads, and the ratio

of clean reads to raw reads was above 99%. Among these clean

reads, the rates of Q20 and Q30 were above 97% and 92%,

respectively, which indicated that the sequencing results were of

good quality. Clean reads were mapped to the flounder reference

genome at a rate of over 89% in all cases, with an average of

20,542 genes annotated to each library (Table 2). The raw

transcriptome sequencing data were submitted to the Sequence

Read Archive (SRA) in NCBI. The accession number

is PRJNA870695.
Analysis of differentially expressed genes
after immunization

The distribution of DEGs between the PBS and inactivated

vaccine groups is shown using the volcano plot (Figure 3A). At

7th day post immunization, there were 1020 genes upregulated

and 402 genes downregulated (Figure 3D). Compared to the PBS

group, interleukin-21 receptor-like (IL21R), interleukin-1 beta-
A B

FIGURE 2

Bacterial load in the spleen of flounder sampled from the PBS and inactivated vaccine groups was determined by qRT-PCR at 1st and 7th post
challenge day (A). Values are shown as mean ± SD (N = 3). Asterisks on the bars represent statistical significance (*p < 0.05). Distribution of E
tarda in the spleen (B) observed by indirect immunofluorescence (Bar = 20 um). The corresponding enlargement of the diagram in the dotted
box is shown in the upper right of the image (Bar = 5 um). The green fluorescent represents signal of E tarda. Cell nuclei were stained with DAPI
in blue.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1058599
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1058599
A B

DC

FIGURE 3

Volcano plots analysis of significantly different genes (DEGs) between samples from the PBS and inactivated vaccine groups at 7th post
immunization day (A) and 1st (B) and 7th (C) post challenge day. The red (expression up-regulated) and blue (expression down-regulated) points
indicate differential expression of genes, and black points are no differences. Statistical plot of DEGs for the PBS and inactivated vaccine groups
at three time points (D).
TABLE 2 Summary of transcriptome data from splenic samples.

Sample Raw_Data (bp) Clean_Data (bp) Clean reads (%) Q20 (%) Q30 (%) Total_Mapped (%) Total_Genes

CS-7-1 36028808 35901210 99.65 97.22 92.57 90.23 20208

CS-7-2 46360062 46205862 99.67 97.54 93.21 89.11 20297

CS-7-3 49674892 49520064 99.69 97.72 93.62 89.18 20517

IPS-7-1 43635786 43487332 99.66 97.82 93.84 90.96 21438

IPS-7-2 44625620 44476768 99.67 97.64 93.39 90.63 20512

IPS-7-3 46771046 46627606 99.69 97.73 93.65 90.47 20387

ACS-1-1 37501910 37371230 99.65 97.30 92.77 89.87 20420

ACS-1-2 45202050 45034962 99.63 97.10 92.36 90.35 20709

ACS-1-3 47535040 47112328 99.11 97.47 93.08 90.40 20363

AIPS-1-1 68575360 68364728 99.69 97.65 93.47 90.34 21007

AIPS-1-2 47851060 47700772 99.69 97.67 93.53 90.48 20541

AIPS-1-3 50503214 50332212 99.66 97.39 92.84 90.35 20839

ACS-7-1 36282856 36157128 99.65 97.18 92.51 90.15 19969

ACS-7-2 40904182 40764252 99.66 97.24 92.63 90.52 20401

ACS-7-3 45026286 44876766 99.67 97.31 92.72 90.52 20361

AIPS-7-1 47586686 47433578 99.68 97.67 93.50 90.72 20628

AIPS-7-2 56620094 56448808 99.70 97.60 93.31 89.92 20535

AIPS-7-3 52440960 52273510 99.68 97.66 93.49 89.85 20622
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like (IL1b), C-C motif chemokine 25-like (CCL25), C-C motif

chemokine 20-like (CCL20) and other interleukin and

chemokine-related genes were significantly upregulated.

Cytoplasmic dynein 1 intermediate chain 1 (DYNC1I1),

thrombospondin-4-B-like (THBS4B), thrombospondin-2

isoform X1 (THBS2), tubulin beta chain isoform X2 (TUBB),

tubulin beta-4B chain-like (TUBB4B), cathepsin L1-like (CTSS),

CD209 antigen-like protein E (CD209E) and other phagosome-

related genes were significantly upregulated. Contactin-1

(CNTN1A), claudin-23-like (CLDN23), claudin-3-like

(CLDN3), neuroligin-3 (NLGN3), neuroligin-4, X-linked

(NLGN4X), contactin-associated protein 1 (CNTNAP1) and

other cell adhesion molecules-related genes were significantly

upregulated. Phosphatidylinositol 4,5-bisphosphate 3-kinase

c a t a l y t i c s ubun i t a l pha i s o f o rm- l i k e (P IK3CA) ,

phosphatidylinositol 3-kinase regulatory subunit beta-like

(PIK3R2) and other phosphatidylinositol 3’-kinase-related

genes were significantly upregulated. Double-stranded RNA-

specific adenosine deaminase (ADAR), cyclic GMP-AMP

synthase (MB21D1) and other cytosolic DNA-sensing-related

genes were Significantly downregulated (Table 3).

GO functional analysis showed that DEGs were involved in

biological process (BP), molecular function (MF) and cellular

component (CC) after immunization (Figure 4). Top 20 GO

terms of DEGs enrichment were shown according to p < 0.05,

with some GO terms associated with immunization. DEGs were

mainly enriched in receptor binding and actin binding of MF;
Frontiers in Immunology 08
cytoskeleton, extrinsic component of membrane and

intermediate filament cytoskeleton of CC; biological adhesion

and multicellular organismal process of BP (Figure 5A, Table 4).

DEGs were enriched to six branches in KEGG (Figure 6),

and bubble plots were used to demonstrate the top 20 signaling

pathways (p < 0.05). At 7th post immunization day, DEGs were

significantly enriched to Phagosome, Cell adhesion molecules

(CAMs), PI3K-Akt signaling pathway and NF-kappa B signaling

pathway (Figure 7A).
Early transcriptomic responses
in the spleen of flounder challenged
with E. tarda

On the first day after five weeks of immunization with E.

tarda infection, 1210 DEGs (620 up-regulated genes and 590

down-regulated genes) were identified in the inactivated

vaccine group compared with PBS group (Figures 3B, D).

Toll-like receptor 3 (TLR3), toll-like receptor 7 (TLR7), toll-

like receptor 8 (TLR8), toll/interleukin-1 receptor domain-

containing adapter protein isoform X1 (TIRAP) and other

toll-like receptor-related genes were significantly upregulated.

Junctional adhesion molecule B-like (JAM2), cadherin-4-like

isoform X1 (CDH4), neural cell adhesion molecule 1-like

isoform X1 (NCAM1), contactin-1a-like (CNTN1A) and

other ce l l adhes ion molecules-re la ted genes were
TABLE 3 Summary of immune-related genes in the inactivated vaccine group compared to the PBS group at 7th day post immunization.

Gene name ID Description Log2 (FoldChange) PValue

IL21R ncbi_109627108 interleukin-21 receptor-like 1.213259565 4.82E-05

IL1b ncbi_109641260 interleukin-1 beta-like 2.485190275 0.001848352

CCL25 ncbi_109625805 C-C motif chemokine 25-like 3.77792616 1.42E-05

CCL20 ncbi_109642248 C-C motif chemokine 20-like 2.321928095 0.025485066

DYNC1I1 ncbi_109631575 cytoplasmic dynein 1 intermediate chain 1 2.640289575 0.039754988

THBS4B ncbi_109626438 thrombospondin-4-B-like 3.788246099 0.043135722

THBS2 ncbi_109636524 thrombospondin-2 isoform X1 3.475522895 0.014753712

TUBB ncbi_109633300 tubulin beta chain isoform X2 3.065264296 0.00045301

TUBB4B ncbi_109634278 tubulin beta-4B chain-like 1.616223249 0.031015525

CTSS ncbi_109638800 cathepsin L1-like 1.230803026 0.000128832

CD209E ncbi_109634808 CD209 antigen-like protein E 0.716422913 0.025319

CNTN1A ncbi_109632653 contactin-1 2.835505962 0.003605804

CLDN23 ncbi_109627775 claudin-23-like 3.74723393 0.013697027

CLDN3 ncbi_109630440 claudin-3-like 3.829564906 0.000113599

NLGN3 ncbi_109625629 neuroligin-3 3.176877762 0.006897455

NLGN4X ncbi_109640043 neuroligin-4, X-linked 3.040414268 0.004256591

CNTNAP1 ncbi_109634287 contactin-associated protein 1 2.72631835 0.018515565

PIK3CA ncbi_109642929 phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform-like 2.357552005 0.028189952

PIK3R2 ncbi_109623868 phosphatidylinositol 3-kinase regulatory subunit beta-like 1.518337769 0.019644222

ADAR ncbi_109633429 double-stranded RNA-specific adenosine deaminase -0.68558248 0.001415993

MB21D1 ncbi_109631848 cyclic GMP-AMP synthase -0.67861608 0.016658127
fro
ntiersin.org

https://doi.org/10.3389/fimmu.2022.1058599
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2022.1058599
significantly upregulated. Inhibin beta B chain-like (INHBB),

C-X-C chemokine receptor type 4-like (CXCR4), interleukin-

21 receptor-like (IL21R), bone morphogenetic protein

receptor type-1B isoform X1 (BMPR1B) and other

Cytokine-cytokine receptor-related genes were significantly
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upregulated. Rano class II histocompatibility antigen, A beta

chain-like (RT1-B), H-2 class II histocompatibility antigen, A-

U alpha chain-like (RT1-Ba) and other Antigen processing

and presentation-related genes were significantly upregulated.

DNA replication ATP-dependent helicase/nuclease DNA2

isoform X1 (DNA2), replication factor C subunit 5 (RFC5),

replication factor C subunit 2 (RFC2) and other cell cycle-

related genes were significantly downregulated. G2 and S

phase-expressed protein 1 isoform X1 (GTSE1), serine/

threonine-protein kinase Chk1 (CHEK1), cyclin-G2-like

(CCNG2) and other p53-related genes were significantly

downregulated (Table 5).

GO functional analysis showed that at 1st day post challenge,

DEGs were mainly enriched to motor activity and tubulin

binding of MF; cytoskeleton and microtubule cytoskeleton of

CC; DNA metabolic process, cell cycle, and cell cycle process of

BP (p < 0.05) (Figure 5B, Table 6).

KEGG functional analysis showed that DEGs were

significantly enriched to Antigen processing and presentation,

Cell adhesion molecules (CAMs), p53 signaling pathway (p <

0.05) (Figure 7B).
Late transcriptomic responses
in the spleen of flounder challenged
with E. tarda

On the seventh day after five weeks of immunization with E.

tarda infection, compared with the PBS group, 1106 genes were up-

regulated and 823 genes were down-regulated (Figures 3C, D).

Toll-like receptor 7 (TLR7), signal transducer and activator

of transcription 1-alpha/beta-like isoform X1 (STAT1), toll-like

receptor 5 (TLR5) and other Toll-like receptor-related genes

were significantly upregulated. Interleukin-12 receptor subunit

beta-2-like (ILL2RB2), interleukin-12 subunit beta-like (IL12B),

protein jagged-2-like (JAG2), interleukin-6 (IL6), interleukin-6
FIGURE 4

Gene ontology (GO) enrichment analysis of DEGs in the
inactivated vaccine group compared to the PBS group at 7th post
immunization day and 1st and 7th post challenge day. 3-level GO
annotations are distributed in three categories (biological
process, molecular function and cellular component). Yellow
represents up-regulated expression and blue represents down-
regulated expression.
A B C

FIGURE 5

GO enrichment circle plot of Top 20 GO terms at 7th post immunization day (A) and 1st (B) and 7th (C) post challenge day (p < 0.05). The first
circle is the ID of the GO term, yellow represents the biological process, pink represents the molecular function, and green represents the
cellular component. The second circle is the number of the GO term in the background genes and the p value. The third circle shows the
proportion of up-regulated (deep purple) and down-regulated (blue) genes. The fourth circle shows the Rich Factor value of each GO term
(Rich Factor value is the number of differential genes divided by the number of background genes in the GO term).
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receptor subunit alpha-like (IL6R), heat shock protein HSP 90-

alpha (HSP90A.1) and other T cell differentiation-related genes

were significantly upregulated. Fibroblast growth factor 1

(FGF1), lysophosphatidic acid receptor 3 (LPAR3),
Frontiers in Immunology 10
lysophosphatidic acid receptor 4 (LPAR4), laminin subunit

beta-1(LAMB1), integrin beta-4 isoform X1 (ITGB4) and

other PI3K-Akt signaling pathway-related genes were

significantly upregulated. Claudin-3-like (CLDN3), E-selectin
TABLE 4 ID, description, class and specific P-value of Top 20 GO terms at 7th post immunization day.

ID Description Class P value

GO:0005102 receptor binding Molecular Function 0.000527

GO:0005882 intermediate filament Cellular Component 0.005197

GO:0045111 intermediate filament cytoskeleton Cellular Component 0.005197

GO:0019898 extrinsic component of membrane Cellular Component 0.005656

GO:0005856 cytoskeleton Cellular Component 0.005944

GO:0022610 biological adhesion Biological Process 0.000198

GO:0003779 actin binding Molecular Function 0.00324

GO:0005272 sodium channel activity Molecular Function 0.003345

GO:0032501 multicellular organismal process Biological Process 0.000873

GO:0044707 single-multicellular organism process Biological Process 0.001025

GO:0016310 phosphorylation Biological Process 0.00132

GO:0001871 pattern binding Molecular Function 0.008587

GO:0004312 fatty acid synthase activity Molecular Function 0.009584

GO:0008015 blood circulation Biological Process 0.004093

GO:0006468 protein phosphorylation Biological Process 0.004379

GO:0007155 cell adhesion Biological Process 0.004788

GO:0098742 cell-cell adhesion via plasma-membrane adhesion molecules Biological Process 0.00598

GO:0007275 multicellular organism development Biological Process 0.008496

GO:1903522 regulation of blood circulation Biological Process 0.008771

GO:0051239 regulation of multicellular organismal process Biological Process 0.011304
front
FIGURE 6

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs at 7th post immunization day and 1st and 7th post challenge
day. The enriched pathways were counted in terms of level 1 and 2 classifications.
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(SELE), L-selectin-like (SELL) and other Cell adhesion

molecules-related genes were significantly upregulated.

Mitogen-activated protein kinase 14A-like isoform X2

(MAPK14A), mitogen-activated protein kinase 8-like isoform

X1 (MAPK8) and other MAPK-related genes were significantly

downregulated (Table 7).

GO functional analysis showed that DEGs were mainly

enriched to NADH dehydrogenase activity, G-protein coupled

nucleotide receptor activity and iron ion binding of MF,

glycerol-3-phosphate metabolic process and endothelial cell

differentiation of BP (Figure 5C, Table 8).

KEGG functional analysis showed that DEGs were

significantly enriched to Th1 and Th2 cell differentiation,

Th17 cell differentiation, IL-17 signaling pathway, Antigen

processing and presentation, Toll-like receptor signaling

pathway and RIG-I-like receptor signaling pathway, which are

closely related to immunity (Figure 7C).
Compared with immunization, the
protection of vaccine on flounder
after challenge

To explore the protection of vaccine after challenge

compared to immunization. Venn diagram was used to show

the common and specific profiles of upregulated DEGs at three

time points. A specific 512 DEGs were upregulated at 1st day

post challenge compared to 7th day post immunization

(Figure 8B). Immune-related 73 DEGs were used to construct

protein-protein interaction networks (Table S1). Their

expression levels at three time points are represented by heat

map (Figure 8D). 57 DEGs showed interactive network

relationships. 11 hub genes (TLR7, TLR3, CXCR4, TLR8 etc)

were identified in the network according to the number of node
Frontiers in Immunology 11
connections, most of which belong to the Toll-like receptor

signaling pathway (Figure 9, Table 9). A specific 1042 DEGs

were upregulated at 7th day post challenge compared to 7th day

post immunization (Figure 8C). Immune-related 141 DEGs were

used to construct protein-protein interaction networks (Table

S2). Their expression levels at three time points are also

represented by heat map (Figure 8E). 127 DEGs showed

interactive network relationships. 30 hub genes (IL6, STAT1,

HSP90A.1, TLR7, IL12B etc) were identified in the network

according to the number of node connections (Figure 10,

Table 10). In addition, a total of 9 DEGs were upregulated at

the three time points. The immune-related DEGs were IL21R,

Lpar4 (Figure 8A).
qRT-PCR validation of transcriptomic
immune-related genes

The expression of ten immune-related genes at each time

point was randomly examined using qRT-PCR. At 7th day post

immunization, the expression of IL1b, CXCL12, IL21R, RT1-B
and LPAR4 were upregulated, while the expression of TLR7,

CCL19, IRF5 and DHX58 were down-regulated (Figure 11A). At

1st day post challenge, the expressions of TLR7, IL21R, MAPK8,

CXCL14, LPAR4 and TLR8 were up-regulated, while the

expressions of GADD45b, PPAP2B, CCL25 and CCL20

expressions were down-regulated (Figure 11B). At 7th day post

challenge, the expressions of IRF5, HSP90a.1, IL21R, TLR7,
STAT1 and LPAR4 were up-regulated, while the expressions of

IL5Ra, CXCL8, MAPK14A and JUN were down-regulated

(Figure 11C). The expression levels of immune-related genes

were basically consistent with the transcriptome results at the

three time points, indicating that the sequencing results were

accurate and reliable.
A B C

FIGURE 7

KEGG enrichment bubble plot of Top 20 pathways between PBS and inactivated vaccine groups at 7th post immunization day (A) and 1st (B) and
7th (C) post challenge day (p < 0.05).
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TABLE 6 ID, description, class and specific P-value of Top 20 GO terms at 1st post challenge day.

ID Description Class P value

GO:0006259 DNA metabolic process Biological Process 0

GO:0003774 motor activity Molecular Function 0

GO:0005875 microtubule associated complex Cellular Component 0.000002

GO:0007049 cell cycle Biological Process 0.000001

GO:0015631 tubulin binding Molecular Function 0.000007

GO:0044430 cytoskeletal part Cellular Component 0.000032

GO:0022402 cell cycle process Biological Process 0.000006

GO:0015630 microtubule cytoskeleton Cellular Component 0.000065

GO:0007017 microtubule-based process Biological Process 0.000012

GO:0005856 cytoskeleton Cellular Component 0.00024

GO:0000280 nuclear division Biological Process 0.000075

GO:0048285 organelle fission Biological Process 0.000089

GO:0034502 protein localization to chromosome Biological Process 0.000138

GO:0051276 chromosome organization Biological Process 0.000427

GO:0006807 nitrogen compound metabolic process Biological Process 0.000582

GO:0006725 cellular aromatic compound metabolic process Biological Process 0.000622

GO:0015669 gas transport Biological Process 0.000707

GO:0006996 organelle organization Biological Process 0.00093

GO:0009987 cellular process Biological Process 0.001137

GO:1901360 organic cyclic compound metabolic process Biological Process 0.001235
Frontiers in Immunology
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TABLE 5 Summary of immune-related genes in the inactivated vaccine group compared to the PBS group at 1st post challenge day.

Gene name ID Description Log2 (FoldChange) PValue

TLR3 ncbi_109641908 toll-like receptor 3 1.165898316 3.13E-06

TLR7 ncbi_109631070 toll-like receptor 7 1.439806437 1.30E-08

TLR8 ncbi_109631071 toll-like receptor 8 0.640640522 0.023441584

TIRAP ncbi_109634523 toll/interleukin-1 receptor domain-containing adapter protein isoform X1 0.794222571 0.015091135

JAM2 ncbi_109631164 junctional adhesion molecule B-like 6.936441641 3.41E-05

CDH4 ncbi_109628880 cadherin-4-like isoform X1 1.854149134 0.014162315

NCAM1 ncbi_109632006 neural cell adhesion molecule 1-like isoform X1 1.784131965 0.000125865

CNTN1A ncbi_109624594 contactin-1a-like 1.438370003 0.027450591

INHBB ncbi_109637318 inhibin beta B chain-like 7.691161905 0.00451912

CXCR4 ncbi_109647982 C-X-C chemokine receptor type 4-like 3.934112064 0.000209948

IL21R ncbi_109627108 interleukin-21 receptor-like 1.570552058 0.004386107

BMPR1B ncbi_109638193 bone morphogenetic protein receptor type-1B isoform X1 1.304854582 0.010382372

RT1-B ncbi_109633037 rano class II histocompatibility antigen, A beta chain-like 1.699003795 0.001496312

RT1-BA ncbi_109633417 H-2 class II histocompatibility antigen, A-U alpha chain-like 1.42949101 0.003743397

DNA2 ncbi_109636867 DNA replication ATP-dependent helicase/nuclease DNA2 isoform X1 -0.735787403 0.012755301

RFC5 ncbi_109637136 replication factor C subunit 5 -0.629558444 0.005990157

RFC2 ncbi_109641693 replication factor C subunit 2 -0.910283724 1.77E-06

GTSE1 ncbi_109624619 G2 and S phase-expressed protein 1 isoform X1 -1.002573944 0.004375909

CHEK1 ncbi_109628292 serine/threonine-protein kinase Chk1 -0.625082809 0.026996525

CCNG2 ncbi_109646257 cyclin-G2-like -0.680328178 0.000142464
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Discussion

Immune response induced by vaccines is essential factor in

protecting fish from pathogens (12, 48). In previous studies,
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flounder immunization with inactivated vaccines was effective

against the challenge of E. tarda in terms of RPS, innate and

specific immunity (13). The transcriptome at the genetic level

can provide rich information on the mechanisms of the immune
TABLE 8 ID, description, class and specific P-value of Top 20 GO terms at 7th post challenge day.

ID Description Class P value

GO:0003954 NADH dehydrogenase activity Molecular Function 0.000082

GO:0016655 oxidoreductase activity, acting on NAD(P)H, quinone or similar compound as acceptor Molecular Function 0.000082

GO:0050136 NADH dehydrogenase (quinone) activity Molecular Function 0.000082

GO:0001608 G-protein coupled nucleotide receptor activity Molecular Function 0.001157

GO:0016705 oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen Molecular Function 0.001347

GO:0005506 iron ion binding Molecular Function 0.003659

GO:0016651 oxidoreductase activity, acting on NAD(P)H Molecular Function 0.004839

GO:0016297 acyl-[acyl-carrier-protein] hydrolase activity Molecular Function 0.006364

GO:0016491 oxidoreductase activity Molecular Function 0.008463

GO:0003700 transcription factor activity, sequence-specific DNA binding Molecular Function 0.009143

GO:0006072 glycerol-3-phosphate metabolic process Biological Process 0.00184

GO:0070997 neuron death Biological Process 0.003505

GO:0045446 endothelial cell differentiation Biological Process 0.004331

GO:0006739 NADP metabolic process Biological Process 0.004632

GO:0035588 G-protein coupled purinergic receptor signaling pathway Biological Process 0.005481

GO:0060850 regulation of transcription involved in cell fate commitment Biological Process 0.006216

GO:0035587 purinergic receptor signaling pathway Biological Process 0.006307

GO:0008154 actin polymerization or depolymerization Biological Process 0.008692

GO:0046496 nicotinamide nucleotide metabolic process Biological Process 0.009081

GO:0032535 regulation of cellular component size Biological Process 0.009897
front
TABLE 7 Summary of immune-related genes in the inactivated vaccine group compared to the PBS group at 7th post challenge day.

Gene name ID Description Log2 (FoldChange) PValue

TLR7 ncbi_109631070 toll-like receptor 7 1.260077653 0.007232326

STAT1 ncbi_109640914 signal transducer and activator of transcription 1-alpha/beta-like isoform X1 1.103908424 1.16E-09

TLR5 ncbi_109643067 toll-like receptor 5 1.009899047 0.01759484

IL12RB2 ncbi_109625390 interleukin-12 receptor subunit beta-2-like 2.231325546 0.018502643

IL12B ncbi_109636980 interleukin-12 subunit beta-like 2.127755547 0.03061254

JAG2 ncbi_109645635 protein jagged-2-like 0.753996675 0.004852413

IL6 ncbi_109631714 interleukin-6 9.120669887 0.01019172

IL6R ncbi_109633010 interleukin-6 receptor subunit alpha-like 0.701641389 0.030149799

HSP90A.1 ncbi_109632540 heat shock protein HSP 90-alpha 1.50077805 6.78E-08

FGF1 ncbi_109635763 fibroblast growth factor 1 1.919829651 0.046466637

LPAR3 ncbi_109625857 lysophosphatidic acid receptor 3 1.460125389 9.64E-05

LPAR4 ncbi_109630081 lysophosphatidic acid receptor 4 1.259106188 9.13E-05

LAMB1 ncbi_109642034 laminin subunit beta-1 1.245061497 9.77E-07

ITGB4 ncbi_109627076 integrin beta-4 isoform X1 0.976370254 0.039128664

CLDN3 ncbi_109630427 claudin-3-like 2.611434712 0.042749421

SELE ncbi_109625902 E-selectin 0.845011148 0.048004897

SELL ncbi_109625903 L-selectin-like 0.823798588 0.010752208

MAPK14A ncbi_109630822 mitogen-activated protein kinase 14A-like isoform X2 -0.602102745 0.011441485

MAPK8 ncbi_109633007 mitogen-activated protein kinase 8-like isoform X1 -0.633336555 0.018499353
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response in fish after vaccination and the status of the pathogen

after infection. The spleen is the secondary immune organ with

an important role in hematopoiesis and immunity. Here,

flounder spleens were collected for RNA-Seq at 7th day post

immunization, 1st and 7th day post E. tarda challenge,

respectively. DEGs were functionally annotated to explore

immune response.
Frontiers in Immunology 14
Vaccines trigger the body to produce the immune response

in order to provide protection in case of pathogenic challenge.

When vaccination is administered, the immune system makes a

complex series of responses (3, 5, 49). First, many cytokines and

chemokines are induced, causing an inflammatory response (50,

51). On the seventh day of marbled sleepy goby vaccination with

inactivated iridovirus and rhabdovirus bivalent vaccine, pro-
A

B

D E

C

FIGURE 8

Venn diagram of upregulated genes between the PBS and inactivated vaccine groups at the three time points (A). Venn diagram of genes
upregulated between the seventh day after immunization and the first day after challenge (B) and heat map of 73 immune-related genes
specifically upregulated on the first day after challenge between the PBS and inactivated vaccine groups at the three time points (D). Venn
diagram of genes upregulated between day 7 after immunization and day 7 after challenge (C) and heat map of 141 immune-associated genes
specifically upregulated on day 7 after challenge in the PBS and inactivated vaccine groups at three time points (E). The color shades in the heat
map represent the gene expression levels. Closer to red indicates greater expression and closer to blue less expression.
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inflammatory cytokines such as IL-1b, IFN-g, and IL-2R are

upregulated to activate the innate immune response and, more

importantly, to trigger a specific immune response (52). In study

of IL-1b, IL-8, TNF-a and G-CSF as adjuvants for OmpV of E.

tarda subunit vaccine, IL-1b and IL-8 were reported to

significantly enhance serum antibodies and sIg+B lymphocytes,

and the expression of genes (CD4-1, CD4-2, MHCIIa and IgM)

related to cellular and humoral immunity (53, 54). Similarly, in

this study, inflammatory and chemotaxis-related genes such as

IL21R, IL1b, CCL25, and CCL20 were significantly upregulated

at day 7 after immunization, activating cell recruitment and

laying the foundation for triggering adaptive immunity.

Phagocytosis is the process of host defense against pathogens.
Frontiers in Immunology 15
In innate immunity, macrophages, dendritic cells and

neutrophils take up antigens through endocytosis. The antigen

is then digested by lysosomes and the antigen signal is presented

to the specific immune system (55). In adaptive immunity, B

lymphocytes have been demonstrated to have phagocytic effect

in fish. A previous study showed that B lymphocytes of dental

flounder could phagocytose inactivated Lactococcus lactis (L.

lactis). Transcriptome sequencing analysis of B lymphocytes

after L. lactis stimulation showed that many DEGs were

enriched to the phagocytic pathway. Further studies revealed

the key role of Fc receptor (FcR) in regulating phagocytosis and

bactericidal activity of B lymphocytes (56, 57). After 2 and 4

weeks of turbot (Scophthalmus maximus) inoculation with the

bivalent inactivated bacteria vaccine Aeromonas salmonicida

and Vibrio scophthalmi, Phage-associated genes such as

Calreticulin (CALR), Antigen peptide transporter 1 (TAP1),

and Integrin beta-3 (aVb3) C-type mannose receptor 2

(MRC2) were upregulated in the kidney (33). Integrin beta-5-

like (ITGB5), cyptoplasmic dynein 1 intermediate chain 1

(DYNCLI1), and thrombospondin-4-B-like (THBS4B) of the

Phagosome pathway were also significantly enriched in this

study, indicating that the early immune response underwent

antigen processing. Cell adhesion molecules are involved in

recognition between cells by means of ligand and receptor

binding. In addition, in the immune response, it transmits

signals for the antigen delivery process (58). In muscles

around the injection site of flounder (Paralichthys olivaceus)

vaccinated with VAA DNA vaccine, cell adhesion molecules

enhance the local immune response by mediating the

recruitment of immune cells to the site of inflammation (59).

In addition, the PI3K-Akt signaling pathway is important node

for signaling. It promotes cell proliferation, differentiation and

anti-apoptosis after receiving extracellular signals (60). PIK3CD

and PIK3R2 were identified as hub genes involved in the

immune response in flounder gill infected with E. tarda. It was

found that the expression of PIK3CD decreased continuously,

while the expression of PIK3R2 increased and then decreased
FIGURE 9

Protein interaction network analysis of immune-related
upregulated genes on the first day after challenge.
TABLE 9 Description and degree of connectivity of the 11 immune-associated upregulated hub genes on the first day after challenge.

Hub Gene ID Description Degree

TLR7 ncbi_109631070 toll-like receptor 7 12

TLR3 ncbi_109641908 toll-like receptor 3 10

IFIH1 ncbi_109631067 interferon-induced helicase C domain-containing protein 1 8

MAPK8 ncbi_109633007 mitogen-activated protein kinase 8-like isoform X1 8

TLR8 ncbi_109631071 toll-like receptor 8 7

CXCR4 ncbi_109647982 C-X-C chemokine receptor type 4-like 6

GRIN2B ncbi_109627266 glutamate receptor ionotropic, NMDA 2B-like isoform X1 6

TRIM25 ncbi_109627517 E3 ubiquitin/ISG15 ligase TRIM25-like 6

DHX58 ncbi_109634039 probable ATP-dependent RNA helicase DHX58 5

NCAM1 ncbi_109632006 neural cell adhesion molecule 1-like isoform X1 5

NRXN1A ncbi_109627041 neurexin-1a-like isoform X1 5
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FIGURE 10

Protein interaction network analysis of immune-related upregulated genes on day 7 after challenge.
TABLE 10 Description and degree of connectivity of the 30 immune-associated upregulated hub genes on day 7 after challenge.

Hub Gene ID Description Degree

IL6 ncbi_109631714 interleukin-6 57

EGFR ncbi_109646379 epidermal growth factor receptor 46

STAT1 ncbi_109640914 signal transducer and activator of transcription 1-alpha/beta-like isoform X1 38

FN1 ncbi_109624813 fibronectin-like 36

NFKBIA ncbi_109632273 NF-kappa-B inhibitor alpha-like 33

HSP90A.1 ncbi_109632540 heat shock protein HSP 90-alpha 29

HRAS ncbi_109641467 GTPase HRas-like 27

PTK2 ncbi_109638831 focal adhesion kinase 1 isoform X2 26

MAPK14 ncbi_109632714 mitogen-activated protein kinase 14-like 24

TLR7 ncbi_109631070 toll-like receptor 7 23

CASP1 ncbi_109630250 caspase-1-like isoform X1 22

SOCS3 ncbi_109633948 suppressor of cytokine signaling 3 21

MAPK11 ncbi_109632714 mitogen-activated protein kinase 14-like 18

FAS ncbi_109631170 tumor necrosis factor receptor superfamily member 6-like isoform X1 17

IRF3 ncbi_109642328 interferon regulatory factor 3-like 17

SOCS1 ncbi_109645254 suppressor of cytokine signaling 1 17

HSPA5 ncbi_109626157 78 kDa glucose-regulated protein 16

IFIH1 ncbi_109631067 interferon-induced helicase C domain-containing protein 1 16

CALR ncbi_109645752 calreticulin-like 15

EZR ncbi_109647436 ezrin-like 15

ITGA2 ncbi_109636955 integrin alpha-2 15

FCGR3 ncbi_109630247 low affinity immunoglobulin gamma Fc region receptor III-like 14

TNFSF10 ncbi_109645712 tumor necrosis factor ligand superfamily member 10-like 14

SELP ncbi_109648028 P-selectin-like 14

HMOX ncbi_109627701 heme oxygenase-like 13

HSC71 ncbi_109628432 heat shock cognate 71 kDa protein 13

HSPB1 ncbi_109628310 heat shock protein beta-1 13

IL12B ncbi_109636980 interleukin-12 subunit beta-like 13

MAPK9 ncbi_109626552 mitogen-activated protein kinase 9-like 13

SELL ncbi_109625903 L-selectin-like 13
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during infection. Combined with its transduction of antigenic

signals, it affects the specific immune response, which is

inhibited by E. tarda (61). In the present study, genes related

to CAM (CNTN1A, CLDN23, CLDN3, NLGN3, NLGN4X) and

PI3K family (PIK3R2, PIK3CA) were significantly upregulated

after immunization.

At 1st day post challenge, pattern recognition receptors

(PRRs), such as Toll-like receptors, elicit the body’s immune

response by binding to pathogen-associated molecular patterns

(PAMPs) (62). Eleven TLR family members were identified in

flounder (63). TLR3, TLR7, TLR8 and TIRAP were significantly

upregulated in this study. In mammals, TLR3, TLR7 and TLR8,

located in intracellular vesicles, are critical receptors for the

recognition of viral nucleic acids in the antiviral response (64).

TLR7 was upregulated in both head kidney and spleen within 48

h after tongue sole infection with Pseudomonas fluorescence, and

knockdown of TLR7 resulted in significantly higher bacterial

load in tissues than in control (65). In the intestine of black

rockfish Sebastes schlegelii infected with E. tarda, TLR3 showed

upregulation at 2h, 6h, 12h and 24h (66). The TLR family of

bony fish has a more complex immune response to pathogens

such as viruses and bacteria than that of mammals. In the

protective response of vaccines, antigen delivery is the

initiation of adaptive immunity. Antigen signals are presented

to T cells, which can specifically bind and kill target cells or

release cytokines to stimulate B cell proliferation and

differentiation (67). Among them, MHC molecules expressed

on antigen-presenting cells such as dendritic cells and B cells are

the markers of presentation (68). MHC class I presents antigenic

fragments to CD8+ T cells for killing of target cells by releasing

cytotoxic particles (perforin and granzyme) (69, 70). MHC class

II presents antigenic fragments to CD4+ T cells to achieve

expanded and increased immune effector functions through

synthesis and release of cytokines (71). The expression of

MHC Ia, MHC IIa, CD4-1 and CD8a was significantly

upregulated in immunized tissues when flounder was

immunized with inactivated E. tarda vaccine. In addition,
Frontiers in Immunology 17
these genes were also significantly elevated in the spleen and

head kidney after five weeks of immunization with E. tarda

infection. This indicates that immunization activates both

cellular and humoral immune responses (13, 47). Vaccinated

Arctic Charr showed significant expression of TLR7 after

infection with Aeromonas salmonicida, activating B cells and

DC to produce IFN-a and triggering Th1 and CD8+ T cell

responses to demonstrate the effect of vaccination (72). Antigen

processing and presentation-related genes (TAP1, TAP2,

ABCB9 and PSME2) were identified in flounder spleen

erythrocytes infected with E. tarda for 24h (32). Full-length

transcriptome sequencing was performed on several tissues

(liver, kidney, intestine, skin, gill) involved in immune and

metabolic processes in black rockfish (Sebastes schlegelii). Four

immune-re la ted genes annota ted as H-2 c las s I I

histocompatibility antigens were mined (73). In the present

study, RT1-B and RT1-Ba were identified. In addition,

Cytokine-cytokine receptor interaction as well as adhesion

molecules (CAMs) remained functional after E. tarda

infection. Toll-like receptors form the initial barrier against

pathogens by specifically recognizing pathogens. In addition,

TLR signaling induces DCs to produce IL-1b, IL-6, IL-12, and
chemotactic cytokines that regulate antigen-specific Th1 and

Th2 cell differentiation, linking innate and adaptive immunity

(74–77). Marbled sleepy goby vaccinated with inactivated

iridovirus and rhabdovirus bivalent vaccine showed consistent

upregulation of MHC I, CD8, TCR, MHC II, CD4 and IgM

expression after 2 days of Oxyeleotris marmoratus rhabdovirus

challenge, indicating rapid induction of cellular and humoral

immunity (52). At 7th day post challenge, TLR5, TLR7, il6, il1b,

and IL12B were still highly expressed, suggesting that TLR may

play a role in both early and late stages of infection. In mammals,

stimulated by different antigens, CD4+ T lymphocytes

differentiate into different cell subtypes (Th1, Th2, Th17 and

Treg cells). This mechanism has also been demonstrated in

teleost fish (78). Flounder were immunized with the NADP-

dependent isocitrate dehydrogenase (IDH) subunit vaccine of E.
A B C

FIGURE 11

Comparison of gene expression levels between quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptome sequencing at
7th post immunization day (A) and 1st (B) and 7th (C) post challenge day.
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tarda. The expression of Th1 and Th2 immune-related genes

(IL-1b, TNF-a, IL-8, IL-6, NKEF, IFN-g) was significantly

increased. After infection with E. tarda, the bacterial load in

the tissues was significantly reduced and the RPS reached 73.3%,

which provided good protection against edwardsiellosis (46). In

the present study, Th1 and Th2 cell differentiation, Th17 cell

differentiation were significantly enriched, indicating that

activation of cellular immunity plays an important role in

vaccine protection against bacterial infection.

According to previous experiments, the immune response

was initially activated at 7th day post immunization (36, 79). The

response of the organism to the pathogen is strong and rapid

after infection, with 24 h being important time point. 73

immune-related genes were activated on day 1 after E. tarda

challenge compared to day 7 after immunization. 11 hub gene

were identified, in which TLR family members were more

enriched. TLR7 acts in organelles such as endoplasmic

reticulum and lysosomes, which recognize viral single-stranded

RNA and induce IFN-a, cytokine and chemokine production

(80). In addition, the Toll-IL-1 receptor domain interacts with

the junctional protein MyD88 in the antimicrobial immune

response, activating the downstream NF-kB signaling pathway

and producing pro-inflammatory cytokines. The bacterial load

in the tissues of tongue sole (Cynoglossus semilaevis) infected

with Pseudomonas fluorescence TSS was significantly enhanced

after knockdown of CsTLR7. The results suggest that CsTLR7

has a positive role in the clearance of bacterial pathogens (65). In

mammals, TLR3 specifically recognizes viral double-stranded

RNA (dsRNA) and triggers toll interleukin-I receptor domain

(TIR) through the myeloid differentiation factor 88 (MyD88)

non-dependent pathway, activating downstream type I

interferon gene expression and the NF-kB signaling pathway

to induce an antiviral response in the organism (81). High

expression of TLR3 was detected in the spleen and head

kidney of channel catfish infected with virulent Edwardsiella

ictalurid (82). TLR3 showed upregulation in the intestine of

black rockfish Sebastes schlegelii for 24 h after Edwardsiella tarda

infection (66). In the present study, TLR3 expression was

upregulated on the first day after infection, suggesting that

TLR3 in fish also plays a role in resistance to bacterial

infection. TLR8, which is highly homologous to TLR7,

functions in the lysosome to recognize bacterial or viral single-

stranded RNA (83). TLR8 expression was detected in mucosal

tissues (skin, gill and intestine) of turbot after infection with

Vibrio anguillarum and Streptococcus iniae (84). Based on their

central position in the interaction network, TLRs may play the

important function in the anti-infection response of the

fish spleen.

141 immune-related genes were activated on day 7 after E.

tarda challenge compared to day 7 after immunization.

Inflammatory cytokines (IL6, IL12B, IL6R, IL12RB2, IL17D),

transcription factors (STAT1, IRF3) showed the strong
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interaction according to the functional classification. IL-12,

which is involved in Th1 differentiation, is produced by DCs.

IL12B (p40) and IL-12A (p35) together encode IL12, which

acts by inducing the production of IFN-g. IL-12Rb1 and IL-

12Rb2 form the IL-12R complex, which is mainly expressed by

activated T cells and natural killer cell. IL-12 and IL-12R

binding activates the JAK2/STAT4 pathway to increase IFN-g
production as well as induce shift of T cells to Th1 phenotype

(85). Th1 cells secrete IFN-g, TNF-b, IL-2, etc. to mediate

cellular immunity, which effectively defends against infection

by intracellular pathogens (86, 87). A previous study showed

that T-bet is a transcription factor involved in the immune

response of Th1 cells. The expression was significantly

increased after E. tarda infect ion, which lateral ly

corroborates the important role of Th1 cells in responding to

pathogenic infections. Moreover, IFN-g and IL-2 were able to

upregulate T-bet expression and contribute to the

differentiation of Th0 cells to Th1 cell type (88). On day 14

of immunization with inactivated iridovirus and rhabdovirus

bivalent vaccine and on day 7 of Oxyeleotris marmoratus

iridovirus infection, the expression of inflammatory cytokines

such as IL-12 and IL-1b was upregulated in the spleen of

marbled sleepy goby, realizing the inflammatory of the innate

immune response and leading to the development of adaptive

immunity (52). In the present study, IL-6 was the hub gene of

the protective immune network at 7th post challenge day.

Previous studies have shown that significant upregulation of

IL-6 was also detected after immunization of flounder with

rIDH vaccine (46). IL-6 is pro-inflammatory cytokine

produced mainly by macrophages and Th2 cells. IL-6 forms a

complex with IL-6R, which binds to the membrane protein

gp130, which activates intracellular signal transduction to

function. It can promote the proliferation activation of T

cells and the expression of IL-2 receptor on the surface of T

cells, which further assists the proliferation and differentiation

of B cells and the production of antibodies to participate in the

humoral immune response (89, 90). A previous study showed

that cyclosporine A (CsA) inhibited T lymphocyte expression

by blocking activation of the transcription factor NFAT, and

then inhibited B lymphocyte expression and antibody

production. This suggests that T lymphocytes have an

important regulatory role on B lymphocytes in the immune

response (91, 92). In response to cytokines (IL-6, IFNg) and
growth factors (epidermal growth factor), STAT1 forms dimers

that are transported to the nucleus to regulate apoptosis and

the cell cycle (93). After P. olivaceus was infected with E. tarda

for 8h and 48h, STAT1 was identified as hub gene in blood, gill,

and kidney expression profiling (35, 61, 94). In the present

study, IL21R was significantly upregulated at all three time

points, corroborating its protective role in immunity and

infection. IL21R is cytokine receptor for IL21. It is expressed

on activated NK cells and belongs to the type I cytokine
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receptor. The receptor binds to IL21, leading to the activation

of several downstream molecules (JAK1, JAK3, STAT1 and

STAT3), while inducing the proliferation and differentiation of

T cells, B cells and natural killer (NK) cells (95, 96).

The spleen, as an important lymphoid organ, is the main

site of the immune response. Previous studies have found

strong immune response in the spleen after flounder

immunization or infection (13, 47, 97, 98). In the study of

flounder immunized with inactivated E. tarda vaccine, the

uptake of antigen and antigen presentation-related immune

genes (MHC Ia, MHC IIa, CD4-1 and CD8a etc) were

significantly elevated in the spleen. The immunohistochemical

results of the spleen showed that CD4+ and CD8+ T lymphocyte

were distributed around the melanocyte macrophage center

(MMC). This fully demonstrates the important role of the

spleen in capturing antigens, aggregating macrophages and

lymphocyte populations, and presenting antigens to

lymphocytes to activate the adaptive immunity (47, 97). Also in

the study of immunized flounder infected with E. tarda, the

immune response in the spleen varied significantly at the tissue,

T/B lymphocyte and genetic levels and was the main tissue for

monitoring the protective effect (13, 98). Keeping in line with

previous studies, in this work, the spleen was sampled for

transcriptome sequencing analysis after immunization with

inactivated vaccine and infection with E. tarda. In terms of

immune and protective responses, the strong immune response

(cytokines, T- and B-cell related factors, etc.) in the spleen was also

confirmed. In addition, in the immune system of fish, there are

temporal differences in the production of cytokines, T/B

lymphocytes, and antibodies, which are closely related to

immune protection (12, 13). The overall immune response

requires a multitemporal analysis, which is important for a

comprehensive and detailed elucidation of vaccine immunization

mechanism (99, 100). For example, the humoral immune

response and the production of antibodies require a longer

response time to be effective. IgM was significantly

upregulated in marbled sleepy goby immunized with

inactivated iridovirus and rhabdovirus bivalent vaccine for

two weeks, indicating that the humoral immune response was

activated (52). In the vaccine evaluation, antibodies were

produced in fish during the immunization phase of two

weeks to four weeks (12, 101, 102). The study of multiple

time points of immune response is also worth doing to fully

reveal the mechanism of fish vaccines.
Conclusions

This study investigated the mechanism of immune

protection in flounder inoculated with inactivated E. tarda

vaccine. Transcriptome sequencing analysis of the flounder

spleen was performed on the seventh day after immunization
Frontiers in Immunology 19
and on the first and seventh day after five weeks of

immunization with E. tarda infection. 1422, 1210 and 1929

DEGs were identified, respectively, which were significantly

enriched in immune-related pathways such as Toll-like

receptor signal ing pathway and Th1 and Th2 cel l

differentiation. In addition, immune-related hub genes were

identified after E. tarda infection compared to after

immunization, in which TLR family members (TLR3, TLR5,

TLR7, TLR8), pro-inflammatory cytokines and their receptors

(IL6, IL6R, IL12B, IL12RB2, IL17D) were the main regulators

that exerted immune protection. These genes are closely

associated with the recognition and presentation of pathogens

and the activation of cellular immunity. This study analyzed the

transcriptional profiles of flounder spleen after immunization

and infection, providing basis for further elucidation of the

immune protection mechanisms in flounder immunized with

inactivated E. tarda vaccine.
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