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Breast cancer has now become the most commonly diagnosed cancer

worldwide. It is a highly complex and heterogeneous disease that comprises

distinct histological features and treatment response. With the development of

molecular biology and immunology, immunotherapy has become a new field

of breast cancer treatment. Identifying cell-type-specific genes critical to the

immune microenvironment contributes to breast cancer treatment. Single-cell

RNA sequencing (scRNA-seq) technology could serve as a powerful tool to

analyze cellular genetic information at single-cell resolution and to uncover the

gene expression status of each cell, thus allowing comprehensive assessment

of intercellular heterogeneity. Because of the influence of sample size and

sequencing depth, the specificity of genes in different cell types for breast

cancer cannot be fully revealed. Therefore, the present study integrated two

public breast cancer scRNA-seq datasets aiming to investigate the functions of

different type of immune cells in tumor microenvironment. We identified total

five significant differential expressed genes of B cells, T cells and macrophage

and explored their functions and immunemechanisms in breast cancer. Finally,

we performed functional annotation analyses using the top fifteen differentially

expressed genes in each immune cell type to discover the immune-related

pathways and gene ontology (GO) terms.
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Introduction

Breast cancer is the leading cause of cancer death among

women worldwide. According to cancer statistics, the number of

new cases of breast cancer reached 2.26 million in 2020 (1), and

breast cancer has now become the most commonly diagnosed

cancer worldwide. The most relevant risk factors for breast

cancer include the density of breast tissue, estrogen levels,

genetic mutations, and lifestyle factors (2). It is a highly

complex and heterogeneous disease that comprises distinct

histological features, pathologies, and clinical outcomes (3, 4).

Due to the vastly different disease manifestations in patients with

breast cancer, uniform treatment strategies for patients could

fail, resulting in a poor prognosis. With the rapid development of

early detection and therapeutic modalities, the survival rates of

breast cancer have improved in recent years, but patients still

suffer multiple physical and psychological symptoms, which

impose a huge burden on families and society (5).

Currently, breast cancer is classified into different molecular

subtypes based on molecular markers for estrogen receptor (ER),

progesterone receptor (PR), and human epidermal growth factor

receptor 2 (HER2) (6). In clinical practice, different breast cancer

subtypes have distinct phenotypes, risk profiles, and prognoses.

Triple-negative breast cancer (TNBC) is a specific subtype of

breast cancer characterized as HER2-negative, PR-negative, and

ER-negative (7). Compared to other subtypes of breast cancer,

TNBC tends to grow and metastasize faster, resulting in a worse

prognosis (8). Given that there are different subtypes of breast

cancer, rationalized therapy is required to be conducted

according to the characterization of the disease and the clinical

behavior of individual patients (9). However, a major challenge

in implementing precision therapies is our lack of insights into

breast cancer ecosystems. Thus, it is essential to conduct a

comprehensive analysis of cellular compositions to reveal the

microenvironmental characteristics of breast cancer.

During the progression of breast cancer, breast tumors show

multiple genetic changes in spatial and temporal dimensions,

such as clonal evolution and mutational diversification, leading

to genotypic and phenotypic heterogeneities (10). Single-cell

RNA sequencing technology could serve as a powerful tool to

analyze cellular genetic information at single-cell resolution and

to uncover the gene expression status, thus allowing a

comprehensive assessment of tumor heterogeneity (11).

Furthermore, it can also monitor rare cellular mutations

during tumorigenesis, such as the acquisition of invasive and

metastatic capabilities, as well as the infiltration of immune cells

(12). Though breast cancer has been generally considered non-

immunogenic for a long time, the accumulation of evidence

has indicated that immune components in the tumor

microenvironment played a vital role in various aspects of

breast cancer (13–15). For instance, the degree of infiltration

of follicular helper CD4 T cells can be used as an indicator to

reflect and predict overall survival for HER2-positive breast
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cancer and TNBC (16). Tumor-educated B cells enable the

production of IgG to selectively promote the metastasis of

breast cancer in lymph nodes (17). Therefore, investigating the

functions of different types of cells in the immune ecosystem can

add more dimensions to the understanding of breast cancer.

With the rapid rise of high-throughput sequencing

technology, numerous studies based on single-cell RNA

sequencing (scRNA-seq) have emerged for revealing the

functions and mechanisms of immune cells in breast cancer.

Savas et al. (18) found that CD8+ T cells were characterized by

tissue-resident memory T-cell differentiation, which contributed

to high levels of immune checkpoint molecules by performing

scRNA-seq of 6,311 T cells from patients with breast cancer. Hu

et al. (19) revealed that tumor-infiltrated B cells were more

similar to mature and memory B cells and that subgroups of B

cells in the microenvironment of breast cancer were related to

immunosurveillance. Additionally, other types of immune cells

such as neutrophils and macrophages have the ability to

influence biological processes associated with breast cancer by

inducing the expression of transcription factors.

In the present study, we integrated and analyzed the single-

cell RNA sequencing datasets through bioinformatics methods

to explore the tumor immune microenvironment of breast

cancer. We focused on the composition of the immune cells in

breast cancer and the functions of cell type-specific genes.

Furthermore, we applied functional enrichment to discover the

pathways in all types of immune cells. Overall, our study may

add a new dimension for further research on the immune

ecosystem and immunotherapy for breast cancer.
Material and methods

Dataset

Two public datasets of single-cell RNA sequencing data were

downloaded from the Gene Expression Omnibus (GEO)

database (GSE75688 and GSE118389) (20, 21). For the

GSE75688 dataset, Chung et al. (20) obtained 515 cells from

11 patients with four subtypes of breast cancer: HER2, luminal

A, luminal B, and TNBC. The single-cell RNA sequencing data

were collected from two metastatic lymph nodes (BC03LN and

BC07LN) and 11 primary tumor specimens (BC01–BC11). For

the GSE118389 dataset, Karaayvaz et al. (21) collected 1,534 cells

in six fresh tumors (PT039, PT058, PT081, PT084, PT089, and

PT0126) from patients with primary, non-metastatic triple-

negative breast cancer.
Quality control

We already performed quality control on the expression

matrix in the public GSE118389 dataset, and we only
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considered the GSE75688 dataset. For the GSE75688 dataset,

we implemented quality control to filter out the low-quality

cells. We first detected the gene expression of each cell and

excluded cells or cell doublets with the following criteria: cells

with few genes per cell or many molecules per cell and cells

that had >5% mitochondrial counts or >10% ribosomal

counts. Then, we normalized and log-transformed the

filtered gene expression matrix. In addition, we also log-

transformed the expression data of the GSE118389 dataset

after the filtration.
Dimension reduction, cell clustering
and identification

First, the FindVariableFeatures function was applied to

discover a subset of features that exhibit high variation in the

dataset. A total of 3,000 variably expressed genes were returned,

and these features will be used in the dimensionality reduction

process. Then, a linear transformation was performed to scale

the expression of each gene. The ScaleData was used to shift and

scale the expression data so that the mean expression across cells

is 0, and the variance across cells is 1. Next, principal component

analysis (PCA) was performed on the scaled data with the

previously determined variable features as input. PCA is a

linear dimensionality reduction method, and the top principal

components could serve as important metafeatures to essentially

represent the compression of the dataset (22). After the

implementation of dimensionality reduction, the data

integration on two datasets of breast cancer was presented.

The Seurat objects of each dataset were first merged in order

to obtain a list of Seurat objects. This list of Seurat objects was

taken as input to identify and score anchors by using the

FindIntegrationAnchors function. Anchors are cross-dataset

pairs of cells that are in a matched biological state to correct

batch effect between datasets (referred to as “reference” and

“query” datasets). Their batch vectors could be calculated, and

then these vectors were used to correct the gene expression

values of the subset of cells being anchored. Then, the Seurat

function IntegrateData was applied to integrate the two datasets

together based on the anchors. For the integrated data after

batch effect correction, the top principal components of the PCA

were taken as input for the function FindNeighbors, and the

function FindClusters was used to cluster cells together. To

intuitively observe the cell clustering, uniform manifold

approximation and projection (UMAP) and t-distributed

stochastic neighbor embedding (t-SNE) were applied to

present different cell clusters in a two-dimensional panel (22,

23). For the purpose of annotation for canonical cell clusters, the

FindAllMarkers function was used to identify the marker genes

of each cellular cluster.
Frontiers in Immunology 03
Differentially expressed analysis of
immune cells

To identify cluster-specific differentially expressed genes for

immune cells, the FindMarkers function was applied to calculate

the value of the log2 fold change. The significance of the

difference was determined by using the Wilcoxon rank-sum

test with the Bonferroni correction.
Pathway and functional annotation
analyses

Gene Ontology (GO) (24) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (25) pathways were discussed in

this study. GO terms were used for describing the functions of

the genes and their product properties. The Gene Ontology

knowledgebase provides three aspects of functional annotation:

biological process, cellular component, and molecular function

classifications. KEGG is a widely used database resource that

stores information on high-level functions for systematic

analysis of genes. The DAVID (https://david.ncifcrf.gov/)

functional annotation tool was used to explore the GO terms

and KEGG pathways related to differentially expressed genes in

specific cell types. Pathways and GO terms were considered to

have significance at the level of corrected p-value <0.05. The

flowchart of this study is shown in Figure 1.
Results

Processing of single-cell RNA
sequencing data

Quality control of single-cell transcriptome data from four

breast cancer patients from the GSE75688 dataset was

performed in this study. For the matrix data, the threshold for

quality control was measured by observing the amount of gene

expression. The total count of genes measured in the data was

focused on, the total count of transcript molecules was

measured, and the proportion of reads was localized to

mitochondrial and ribosomal genomic genes. It was observed

that the percentage of mitochondrial gene reads was <5%, which

was within the normal range, so they were not processed. In

addition, there were data with the ribosomal gene reads

percentage above 10%, which needed to be filtered out. The

total number of genes measured in the cells and the total number

of transcript molecules measured had several smaller values,

which could be seen that the cells express fewer genes and that

there may be invalid reverse transcription (low-quality cells or

empty droplets) during sequencing. In order to filter out the
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invalid data, the quality control parameters were set as

nFeature_RNA values >2,800 and nCount_RNA values >9,000.

As shown in Figure 2, the FeatureScatter function in the Seurat

package was used to visualize feature–feature relationships in the

GSE75688 dataset. For the expression data of the GSE75688

dataset after the filtration, the normalization was completed by

the NormalizeData function. In addition, the expression data of

the GSE75688 and GSE118389 datasets were also log-

transformed. Log-transformation could attenuate mean–

variance relationships in single-cell transcriptome sequencing

data and reduce the dispersion of gene expression.
Frontiers in Immunology 04
Principal component analysis and batch
effect correction

Subsequently, principal component analysis was used to

perform linear dimensionality reduction, and a set of linearly

independent variables, i.e., principal component (PC), was

constructed by orthogonal transformation, so as to retain most

of the feature dimensions and ignore the less influential ones. In

this study, the Elbowplot function was used to determine the

number of principal components (Figure 3). The elbow plot

showed the contribution of each principal component, which
FIGURE 2

The Scatter plot of the feature–feature relationships in GSE75688 dataset after quality control.
FIGURE 1

The flowchart of the overall analysis.
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was ranked according to the percentage of variance. It can be

seen that an “inflection point” around PC10 indicates that most

of the true signal was captured in the first dozen principal

components, and 13 principal components were finally selected

for subsequent analysis. The PCA was performed on the

expression data for dimensionality reduction analysis.

Furthermore, the phenomenon of batch effect existed in these

two sets of cross-platform scRNA-seq data, and the correction of

batch effect was essential before data integration. The result of

the integration after batch effect correction is shown in Figure 4.
Cell clustering and identification

The clustering of cells is the basis for cell type identification

and is a key step in single-cell RNA sequencing to reveal

heterogeneity. A graph-based clustering algorithm was used

to cluster breast tissue cells so that similar cells were clustered

together. The k-nearest neighbors of each cell were found in the

feature space after principal component analysis, and their

edge weights were refined for the shared overlap of any two

cells in the neighborhood to divide the cells into highly

interconnected communities, and then the clustering of cells

was completed using the Louvain community discovery

algorithm based on modularity. In our experiments, the

resolution parameter was set to 0.4, and all cells were divided
Frontiers in Immunology 05
into 11 cell clusters. The clustered cells were visualized in a

two-dimensional panel by using non-linear dimensionality

reduction t-SNE, as shown in Figure 5. Subsequently, the

marker genes for each cell type were identified, and cell type

identity was assigned to clusters by comparing marker gene

sets with other databases.
Differential expression analysis and
enrichment analysis

We focused on the differential expression analysis of

immune cell populations by first extracting immune cells in all

cell types (Figure 6). Immune cells include three types of cells: B

cells, T cells, and macrophages. We compared log-transformed

and normalized expression values of genes that were expressed

in at least 25% of cells between the three types of immune cell

clusters to identify differentially expressed genes in each cell

type. TNFRSF13B was the most specifically expressed gene in

cluster B cells. For T cells, UBASH3A, TRAT1, and GZMA could

serve as the significantly differentially expressed genes.

Additionally, we identified CD14 as the specifically expressed

gene for macrophages. The expression levels of these cell type-

specific genes may influence the functional regulation of

different types of immune cells in the development and

progression of breast cancer.
FIGURE 3

The elbow plot of the principal component analysis.
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FIGURE 4

t-SNE of the integration for datasets GSE75688 and GSE118389. t-SNE, t-distributed stochastic neighbor embedding.
FIGURE 5

t-SNE of cell clustering result. t-SNE, t-distributed stochastic neighbor embedding.
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Next, we performed functional enrichment analysis using

the top 15 differentially expressed genes for each immune cell

type (Supplementary Material). The pathways and GO terms

enriched by differentially expressed genes of each immune cell

type are shown in Figure 7. For the annotation for KEGG

pathway analysis, differentially expressed genes in T cells were

enriched in more pathways compared with B cells and

macrophages. The significantly differentially expressed gene

TNFRSF13B in B cells was enriched in the primary

immunodeficiency pathway. Differentially expressed genes

CSF1R, FCGR3A, IL1B, and TREM2 of macrophages were

enriched only in the osteoclast differentiation pathway. For T

cells, genes were preferentially enriched on the T-cell receptor

signaling pathway and primary immunodeficiency. In addition,

type-specific genes of T cells are also enriched in other types of

pathways, such as PD-L1 expression and PD-1 checkpoint

pathway in cancer and Th1 and Th2 cell differentiation. It

should be noted that Th1 or Th2 effector subsets are

differentiated from CD4 helper T (Th) cells after activation.

GO functional enrichment analysis results showed that the

differentially expressed genes (DEGs) in T cells were mainly

correlated with immune response and T-cell receptor, including

adaptive immune response and innate immune response, T-cell

receptor signaling pathway, and T-cell receptor complex. In

addition, the GO terms of B cells were mostly related to the

plasma membrane and the activities of B cells. The DEGs in B
Frontiers in Immunology 07
cells can play a role in the B-cell receptor signaling pathway and

B-cell activation. The inflammatory response was mainly

associated with macrophages.
Discussion

The immune microenvironment of cancer is relevant in

terms of cancer progression, immune escape, and treatment

resistance. Due to the high heterogeneity of immune cells in the

tumor microenvironment, single-cell RNA sequencing

technology has greatly facilitated the study of cancer

evolutionary processes and cell types associated with the

cancer microenvironment while enabling the discovery of

type-specific genes of different cell types at an extremely fine

scale, bringing new insights on cancer diagnosis and treatment

(26). In our study, we integrated and analyzed two scRNA-seq

datasets of breast cancer to characterize the gene expression of

immune cell types in the immune microenvironment of breast

cancer tissues and discover the pathways and potential functions

associated with type-specific genes.

ScRNA-seq can serve as a useful tool to identify variations

in gene expression in immune cell populations, which might

contribute to discovering the mechanisms of complex

immunological responses. In order to explore the key genes

for the prognosis and treatment of breast cancer, the gene
FIGURE 6

t-SNE visualization of the cluster of immune cells. t-SNE, t-distributed stochastic neighbor embedding.
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expression of cell types in the immune microenvironment of

breast cancer tissues was characterized, and the pathways and

potential functions associated with type-specific genes were

discovered (27). The result of the single-cell RNA-seq analysis

has shown that three types of immune cells in breast cancer

were identified, including B cells, T cells, and macrophages.

We analyzed the significant marker genes of each cell type by

performing differential expression analysis. TNFRSF13B is the

significant marker gene in B cells for breast cancer.

TNFRSF13B is a member of the TNF receptor superfamily

existing in peripheral B-cell homeostasis, which could mediate

calcineurin-dependent activation of NF-AT and AP-1 to

stimulate B cells (28). In T cells, NF-AT proteins are

activated following T-cell receptor ligation, and the proteins

have the ability to regulate the activation, differentiation, and

development of T cells (29). Additionally, it has been

confirmed that s i lencing of the cytokine receptor

TNFRSF13B might serve as a new therapeutic target for

triple-negative breast cancer, as it could result in significant

death in breast cancer cell lines. Meanwhile, we identified the
Frontiers in Immunology 08
top three differentially expressed genes (UBASH3A, TRAT1,

and GZMA) in T cells. UBASH3A is a family member of the T-

cell ubiquitin ligand (TULA) family, which facilitates growth

factor withdrawal-induced apoptosis in T cells. It is obvious

that the apoptosis of immune cells enables tumor cells to

spread and metastasize more rapidly. TRAT1 is the T-cell

receptor-associated transmembrane adaptor, and it has been

confirmed to be upregulated in T cells of breast cancer in the

previous study (20). TRAT1 gene was found to be differentially

expressed in the lymph nodes in patients with metastatic

breast cancer. Additionally, higher levels of GZMA may

represent higher levels of cytotoxic T-cell infiltration,

leading to better survival rates of breast cancer (30). For

macrophages, the level of infiltration of CD14-positive

macrophages can serve as an indicator of early recurrence of

breast cancer (31). These results are in the initial analysis and

still need further experimental verification. However, these

results expand our understanding of the functions and

regulation mechanism of these DEGs in different immune

cell types.
FIGURE 7

GO and KEGG enrichment analysis of differentially expressed genes in immune cell types.
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Many signaling pathways are involved in the development

and evolution of cancer. Based on the top 15 differentially

expressed genes in each immune cell type, we further explored

the GO terms and KEGG pathways related to the specific cell-

type genes. We focused on the enrichment analysis of DEGs in T

cells. A total of seven KEGG pathways had been enriched,

including the T-cell receptor signaling pathway, primary

immunodeficiency, PD-L1 expression and PD-1 checkpoint

pathway in cancer, Th1 and Th2 cell differentiation, Th17 cell

differentiation, Yersinia infection, and cell adhesion molecules.

Some specific T-cell receptor signaling pathways might have an

impact on the progression and development of breast cancer.

For instance, a discrete mode of T-cell receptor (TCR) signaling

can regulate Treg cell differentiation to affect metabolism, cell

adhesion, and cell migration (32). A strong Th1 response is

essential for effective antitumor immunity, and higher levels of

Th1 cytokines are associated with ER-negative and triple-

negative breast cancers (33). For B cells, the DEGs were

enriched on the primary immunodeficiency pathway. The

common variable immunodeficiency may lead to breast cancer

(34). In addition, genes CSF1R, FCGR3A, IL1B, and TREM2 of

macrophages are enriched only in the osteoclast differentiation

pathway. Osteoclast displays a wide heterogeneity and plasticity

and is involved in phagocytosis and innate immune responses

(35). Osteoclasts and breast cancer cells can collaborate with

each other, which results in the formation of breast cancer

osteolytic bone metastasis (36). The GO terms of T cells were

mainly relevant to immunization, such as adaptive immune

response, innate immune response, and the immunological

synapse. T cells of the innate immune system are involved in

the response to the threat of breast tumor cells. Moreover,

infiltration of specific T-follicular helper cells in human breast

cancer may promote effective adaptive immunity (37). DEGs in

B cells are preferentially enriched in the B-cell receptor signaling

pathway in GO enrichment analysis, which is highly relevant to

B-cell development and adaptive immunity in cancer (38).

Furthermore, GO terms for macrophages are mainly related to

the inflammatory response. Some signaling molecule triggers

such as Biglycan can regulate inflammation through CD14 to

influence tumor progression (39). Thus, functional analysis of

differentially expressed genes for immune cell types can add a

new dimension to the diagnosis and prognosis of breast cancer.

It also provides a theoretical basis for the potential clinical

translation of breast cancer.

In conclusion, we uncovered and dissected significantly

differentially expressed genes in different immune cell types

and their function annotation by integrating and analyzing

single-cell transcriptome sequencing data of breast cancer.

However, more research is still required to investigate the

genes and their potential functions in the breast tumor
Frontiers in Immunology 09
immune microenvironment for further elucidating the key

messages behind the subtype-specific differences of

immune cells.
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