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Clostridioides difficile is endemic in the intestinal tract of healthy people.

However, it is responsible for many healthcare-associated infections, such as

nosocomial diarrhea following antibiotic treatment. Importantly, there have

been cases of unsuccessful treatment and relapse related to the emergence of

highly virulent strains of C. difficile and resistance to antimicrobial agents. Fecal

microbiota transplantation (FMT) is considered an effective therapy for

recurrent C. difficile infection. However, its safety is of concern because

deaths caused by antibiotic-resistant bacterial infections after FMT were

reported. Therefore, the development of effective C. difficile-specific

treatments is urgently needed. In this review, we summarize the importance

of phage therapy against C. difficile, and describe a novel next-generation

phage therapy developed using metagenomic data.
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Introduction

The intestinal tract is constantly exposed to commensal microbiota and food antigens.

Recently, great advances in intestinal microbial analyses have identified disease-associated

alterations of the intestinal environment, such as dysbiosis, and research on the intestinal

microbiome is progressing rapidly worldwide. Under dysbiosis, some symbiotic commensal

bacteria acquire virulence traits, proliferate, and become directly involved in the

development and progression of disease (1). These bacteria are referred to as

‘‘pathobionts,’’ which are distinct from opportunistic pathogens.

Clostridioides difficile (formally Clostridium difficile), a Gram-positive, spore-

forming anaerobic bacterium, was first reported as a pathogen in 1978 (2), and is

the representative pathobiont of nosocomial diarrhea following antibiotic treatment.

C. difficile has three well-characterized toxins (toxin A, toxin B, and binary toxin) at two

distinct loci. Whereas toxin A and toxin B are associated with primary virulence factors

for C. difficile infection (CDI), binary toxin is involved in the increased severity of CDI.

The production of the three toxins was shown to be strain-specific. Interestingly,
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C. difficile is frequently encountered in the gut microbiota of

healthy individuals without any symptoms of disease (3).

However, dysbiosis induced by antibiotic usage or

malnutrition can initiate CDI with increasing C. difficile toxin

concentrations, and C. difficile colonization and biofilm

formation in the gut, resulting in severe disease status (4). C.

difficile spores are highly resistant to environmental stresses such

as high temperature, antibiotics, and disinfectants, which allows

C. difficile to spread easily between residents of elderly care

facilities (5).

In cases of mild CDI, withdrawing broad spectrum

antibiotics such as ampicillin, clindamycin, and third

generation cephalosporins is a standard therapy. Also, for

cases of severe and recurrent CDI, use of the antibiotics

vancomycin and fidaxomicin is an effective treatment (6).

Recently, however, FMT has become an alternative therapy (7)

and was reported to be successful with a cure rate of

approximately 93% in patients with recurrent CDI. This is

now accepted as a valid alternative for those failing antibiotic

treatment (8). However, two deaths caused by antibiotic-

resistant bacterial infections after FMT have been reported (9,

10), suggesting that a modification of FMT or alternative

treatments are required to resolve safety concerns about FMT.

Although we are currently facing an unprecedented

pandemic caused by severe acute respiratory syndrome-

coronavirus-2, we must not forget that the threat of drug-

resistant bacteria, including in C. difficile, remains a significant

problem. If this trend continues, it is predicted that infections

caused by drug-resistant bacteria will be the leading cause of

death by 2050 (11, 12). Phage therapy is considered an

important development against drug-resistant bacteria, and

expectations for phage therapy are growing worldwide (13).

This review summarizes recent findings in our understanding of

CDI, with a particular focus on phage therapy for C. difficile.
Phage therapy

Bacteriophages are viruses that infect bacteria and exhibit

bactericidal effects against Gram-positive and Gram-negative

bacteria. In 1896, Ernest Hankin discovered “an antiseptic

substance” in the water of the Ganges River that killed certain

bacteria. Later, in 1915, Frederick Twort discovered “a

transparent material” that changed the properties of

Staphylococcus aureus, and in 1917 (14), Félix d’Hérelle named

an “invisible microbe” that dissolved dysentery bacteria as a

“bacteriophage”. Furthermore, d’Hérelle advocated “phage

therapy” to treat bacterial infections, and practiced this in

humans and animals, including those with dysentery and

Vibrio cholerae. d’Hérelle met Giorgi Eliava at the Pasteur

Institute, which led to the establishment of several institutes in

Tbilisi, Georgia, between 1923 and 1936 with the support of the

Soviet Union. One of these, the Eliava Institute, became an
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important focus for phage research and therapy, and remains the

core research institute for phage research today. However, after

the discovery of antibiotics, especially penicillin, in 1928 (15)

and its subsequent clinical application, phage therapy was

abandoned in Western countries. However, during the Cold

War, phage therapy was developed as an alternative treatment

for infectious diseases in the Soviet Union because of the lack of

newly developed antibiotic drugs. Even today, phage cocktails

are prescribed and used as an effective treatment for infectious

diseases in Russia, Georgia, Poland, and other countries (16).

The overuse of antibiotics has led to the emergence of various

multidrug-resistant bacteria, which has become a serious

medical problem worldwide. Therefore, phage therapy against

multidrug-resistant bacteria is beginning to attract attention as a

next-generation treatment method.
Phages against Clostridioides difficile

C. difficile-specific phages have been investigated for the

regulation of C. difficile pathogenesis and development of new

therapies for CDI. Many C. difficile-specific phages have been

identified to date [phiC2 (17, 18), phiC5 (17), phiC6 (17), phiC8

(17), phiCD119 (19), phiCD24-1 (20), phiCD27 (21),

phiCD6356 (22), phiCD6365 (22), phiCD38-2 (23),

phiMMP01 (24, 25), phiMMP02 (24, 25), phiMMP03 (24, 25),

phiMMP04 (24, 25), phiCD24-2 (25), phiCD146 (25),

phiCD111 (25), phiCD526 (25), phiCD52 (25), phiCD481-1

(25), phiCD481-2 (25), phiCD505 (25), phiCD506 (25),

phiCD508 (25), phiCDHM1 (26), phiCDHM2 (26),

phiCDHM3 (26), phiCDHM4 (26), phiCDHM5 (26),

phiCDHM6 (26), phiCDHS1 (26), CDKM9 (27), CDKM15

(27), phiSemix9P1 (28), phiCD5763 (29), phiCD5774 (29),

phiCD2955 (29), phiCD211/phiCDIF1296T (30), phiHN10

(31), phiHN16-1 (31), phiHN16-2 (31), phiHN50 (31), JD032

(32), and phiCDKH01 (33)] (Supplementary Table S1). The host

for all of these phages is C. difficile; however, some were shown to

infect multiple C. difficile strains. In addition, the C. difficile-

specific phages described above are lysogenic, not lytic, and they

are classified in the Myoviridae or Siphoviridae subfamilies of

Caudovirales. Because lytic phages against C. difficile should

exist, the fact that C. difficile is anaerobic and forms spores

makes it difficult to isolate lytic phages experimentally.

The application of phage targeting C. difficile should be

considered. Indeed, the efficacy of phage monotherapy against

C. difficile has been studied for the past decade (26, 34–37).

Unfortunately, none of these studies have led to the development

of effective treatments for CDI. Simply identifying and isolating

C. difficile-specific phages by conventional methods using

ultraviolet or mitomycin C has not led to successful phage

therapy against C. difficile (17–23, 31). Therefore, it was

considered necessary to develop a new lysis method that takes

advantage of the unique properties of phages.
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Phage-derived endolysins against
Clostridioides difficile

Endolysin, an enzyme encoded by phages, is used by mature

phage virions to hydrolyze the bacterial cell wall from the inside.

The worldwide increase in antibiotic-resistant bacteria has

stimulated research on endolysins as an alternative therapeutic

agent. Endolysins can degrade peptidoglycans from the outside,

and also have the potential to lyse bacterial biofilms (38).

Therefore, the medical applications of endolysin may provide

new treatment options for Gram-positive bacterial infections.

Most endolysins derived from phages that infect Gram-

positive hosts are modular (39). Their molecular weight is

typically 15–40 kDa. They are characterized by one or two

(multi-domain) N-terminal enzyme active domains (EAD) often

linked to a C-terminal cell wall-binding domain (CBD) by a short

flexible linker region. The N-terminal EAD of modular endolysins

cleaves various specific peptidoglycan bonds in the host bacterial

murein layer, whereas the C-terminal CBD recognizes and binds

to different structures in the cell wall to properly anchor the

catalytic effect of the EAD (Figure 1) (40). The endolysins of

phages that infects Gram-positive host are structurally similar to

those of fungal cellulases (41).

There are four types of EAD including amidases,

acetylmuramidases, endopeptidases, and glucosaminidases.

Amidases break the amide bond between peptide and sugar

chains. Acetylmuramidases break the N-acetylmuramoyl b1,4
N-acetylgulcosamine bond of sugar strands. Endopeptidases

break the peptide crosslinking in the stem structure of

peptidoglycans and glucosaminidases break the N-

acetylmuramoyl b1,4 N-acetylmuramine glycosidic bond.
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Among endolysins, amidases and muramidases are the most

common endolysins that target the highly conserved binding

of peptidoglycans.

CBD binds to murein ligands and secondary cell wall

polymers, which are cell wall components that include teichoic

acid and natural polysaccharides of bacteria (42). The main

function of CBD is to provide endolysins with host specificity for

non-covalent binding to cell membrane ligands. For example,

LysM, the most widely reported endolysin, binds to N-

acetylglucosamine in the peptidoglycan glycan backbone (43,

44). The CBD motif in the endolysin of many phages that infects

Gram-positive host might allow this domain to bind to ligands

in the peptidoglycan layer, preventing endolysin diffusion and

destroying the nearby host after cell lysis (39). Because EAD do

not have specificity for bacterial cell walls, CBD are considered

important in defining their specificity for target cells. Although

many endolysins retain or increase bacteriolytic activity in the

absence of CBD, host specificity is very important when

endolysins are used as a treatment for multidrug-resistant

bacteria, for example.

As well as other pathogens, the application of phage-derived

endolysins targeting C. difficile has been explored [CD27L (21),

phyCD (45), CDG (46), CD11 (46), LCD (47), and CWH (48)].

Among these, CD27L derived from phiCD27 was first identified

as a C. difficile-specific endolysin. CD27L lyses 30 C. difficile

strains, including two strains of the hypervirulent ribotype 027

(21). Importantly, a range of commensal species that inhabited

the gastrointestinal tract was insensitive to the endolysin (21,

49), indicating that CD27L is not expected to induce gut

dysbiosis. This endolysin might provide a platform for the

generation of novel therapeutic agents to overcome C. difficile.
A

B

C

FIGURE 1

General schematic models of endolysins derived from phages that infects Gram-positive host. (A) Model with one N-terminal EAD and one C-
terminal CBD. (B) Multi-domain model with two EAD and one C-terminal CBD. (C) Multi-domain model with one CBD located between two EAD.
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Metagenome data-based next-
generation phage therapy for CDI

The future practice of phage therapy for CDI is promising.

However, it is difficult to identify phages that have C. difficile as a

host. Given the versatility of phage therapy for CDI, there is a

need for a high-throughput system that can identify phages that

infect C. difficile.

Recently, to develop phage therapies to control pathobionts,

which are directly involved in the pathogenesis of disease, we

established an effective method for obtaining genomic

information on host bacteria–phage associations (50, 51).

Metagenomic data obtained from the fecal samples of healthy

subjects and clinical isolates of C. difficile strains were used to

develop a phage therapy specific for C. difficile. The obtained

sequencing data were used to search for novel phage-derived

endolysins specific for C. difficile. Using the phage genome

analysis pipeline, we identified several novel endolysin

sequences from the prophage sequence of C. difficile. These

endolysins were synthesized and shown to exhibit bacteriolytic

activity in vitro and to be effective in a mouse model of CDI (50).

This is a practical example of a next-generation phage therapy

based on metagenomic information. To isolate phages used in

phage therapy, it has been necessary to isolate and culture target

bacteria. Phages could not be isolated for non-culturable bacteria

in the intestine. Thus, this strategy is not limited to C. difficile
Frontiers in Immunology 04
and might be applied to various targeted bacteria in the

future (Figure 2).
Conclusion

Scientific research on bacteriophages has become a hot topic

because of the impending problem of multidrug-resistant

bacteria. Because the development of antibiotics is not

expected to progress as far as expected, it is hoped that phage

therapy will become commercially available.

With improvements in genome analysis technology using

next-generation sequencing, the analysis of intestinal microbiota

has progressed dramatically, and its relationship to disease has

gradually become clearer. It is now possible to analyze intestinal

phages, which has been difficult in the past, and this is expected

to become an extremely powerful analytical tool for the future

practice of phage therapy, as well as leading to various industrial

applications of phages. Recently, Federici et al. have

demonstrated the feasibility of combination phage therapy for

pathobionts associated with inflammatory bowel disease (52). It

would be an interesting direction to further phage therapies for

other intestinal bacteria-mediated diseases including CDI. In the

near future, phage science will be developed further by

integration with a wide range of fields including medicine,

microbiology, bioinformatics, and synthetic biology.
FIGURE 2

Conventional phage therapy and next-generation phage therapy based on metagenomic information. To isolate phages that can specifically
control pathobionts, host bacteria is isolated from human fecal samples and plaque assay is performed. Isolated phages are used for phage
therapy (conventional phage therapy). To detect phage-derived antibacterial enzymes that can specifically regulate pathobionts, intestinal
bacterial and viral metagenomic information is acquired from human fecal samples. Phage-derived bactericidal enzymes can kill host bacteria
specifically (next-generation phage therapy).
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