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Modulating the tumor immune
microenvironment with
nanoparticles: A sword for
improving the efficiency of
ovarian cancer immunotherapy

Tianyue Xu †, Zhihui Liu †, Liwen Huang, Jing Jing*

and Xiaowei Liu*

Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of
Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
With encouraging antitumor effects, immunotherapy represented by immune

checkpoint blockade has developed into a mainstream cancer therapeutic

modality. However, only a minority of ovarian cancer (OC) patients could

benefit from immunotherapy. The main reason is that most OC harbor a

suppressive tumor immune microenvironment (TIME). Emerging studies

suggest that M2 tumor-associated macrophages (TAMs), T regulatory cells

(Tregs), myeloid-derived suppressor cells (MDSCs), and cancer-associated

fibroblasts (CAFs) are enriched in OC. Thus, reversing the suppressive TIME is

considered an ideal candidate for improving the efficiency of immunotherapy.

Nanoparticles encapsulating immunoregulatory agents can regulate

immunocytes and improve the TIME to boost the antitumor immune

response. In addition, some nanoparticle-mediated photodynamic and

photothermal therapy can directly kill tumor cells and induce tumor

immunogenic cell death to activate antigen-presenting cells and promote T

cell infiltration. These advantages make nanoparticles promising candidates for

modulating the TIME and improving OC immunotherapy. In this review, we

analyzed the composition and function of the TIME in OC and summarized the

current clinical progress of OC immunotherapy. Then, we expounded on the

promising advances in nanomaterial-mediated immunotherapy for modulating

the TIME in OC. Finally, we discussed the obstacles and challenges in the

clinical translation of this novel combination treatment regimen. We believe

this resourceful strategy will open the door to effective immunotherapy of OC

and benefit numerous patients.
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Introduction

Ovarian cancer (OC) has a high lethality rate and is the

second primary cause of death from gynecologic cancer

worldwide (1). Currently, the major treatments for OC are

surgery, chemotherapy, and radiotherapy (2, 3). Although

patients can achieve short-term remission with these

approaches, five-year survival rates are only approximately

30% (4). Recently, immunotherapy has received increasing

attention, especially immune checkpoint blockade (ICB),

which has emerged as an effective strategy for OC therapy.

The anti-PD-1 antibody pembrolizumab has received regulatory

approval to treat OC (5).

Although ICB holds tremendous potential for cancer

therapy, the current clinical data on OC immunotherapy is

not ideal. In general, the limited efficacy of ICB is mainly due

to four reasons (1): tumor antigen deficiency (2), insufficient T

lymphocyte infiltration, (3) defective tumor antigen processing

and presentation mechanisms, and (4) the suppressive tumor

immune microenvironment (TIME). Notably, the suppressive

TIME is a significant barrier to the immunotherapy of OC.

Ovarian tumors contain a large number of immunosuppressive

cells, such as M2 tumor-associated macrophages (TAMs), CD4+

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and cancer-associated fibroblasts (CAFs), which

inhibit the immune response.

In recent years, nanoparticles have been expected to play a

significant role in regulating the TIME and improving the

efficacy of OC immunotherapy. On the one hand,

nanotechnology-mediated photothermal therapy (PTT) and

photodynamic therapy (PDT) can induce immunogenic cell

death (ICD) of tumor cells, promote antigen presentation, and

enhance tumor T cell infiltration (6). For instance, copper sulfide

nanoparticles remodeled the TIME by inducing ICD, thus

improving the efficiency of immune checkpoint inhibitors

(ICIs) in OC. On the other hand, nanoparticles can be used as

excellent drug carriers, which can load immunomodulators,

such as adjuvants, cytokines, and siRNA, to regulate

immunosuppressive cells and inhibit immune checkpoints. For

example, Kang Yanan et al. prepared liposomes containing toll-

like receptor (TLR) agonists and successfully repolarized M2

TAMs in OC (7).

Above all, nanoparticle-mediated immunotherapy holds

great promise in modulating the TIME of OC and improving

the treatment outcome. Here, we summarized the composition

and function of the TIME in OC and discussed recent advances

in immunotherapy to treat OC in preclinical and clinical

settings. Moreover, the advantages and progress of

nanoparticle-mediated immunotherapy in regulating the TIME

and boosting the antitumor immunity of OC are also

summarized. Finally, the current limitations and future

development strategies in clinical translation of this
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nanopar t i c l e -med ia t ed immunotherapy have a l so

been discussed.
The tumor immune
microenvironment of ovarian cancer

Overview of ovarian cancer

Approximately 90% of ovarian tumors originate in epithelial

cells and are called epithelial ovarian cancer (EOC). EOC has

been categorized into different subtypes according to histology.

The prevalent histologic subtype is high-grade serous ovarian

cancer (HGSOC), which accounts for about 80% of cases. Other

rarer subtypes include low-grade serous, mucinous, clear cell,

and endometrioid tumors. With the development of genomics

and single-cell technology, the understanding of the TIME in

OC has been deepened (8–12). It has been found that different

OC subtypes have distinct macrophage polarization (13). The

results of single-cell RNA sequencing revealed that ascites cells

in different HGSOC patients differ in composition and

functional program including diverse fibroblasts and

macrophages (10). In addition, CD8+ and CD4+ T cells have

distinct infiltration levels in differentially growing metastases

within a single individual (9). Therefore, the TIME of OC is very

complex and heterogeneous, which is primarily made up of

CD8+ T cells, CD4+ T cells, NK cells, macrophages, MDSCs, etc.

Based on their function, these cells can be categorized as

activated and suppressive immune cells. Activated immune

cells mainly include CD8+ T cells and NK cells. Suppressive

immune cells mainly include Tregs, M2 macrophages, MDSCs,

etc. In the TIME, activated immune cells play a role in tumor

growth inhibition and tumor immunosurveillance. In contrast,

suppressive immune cells dampen the function of activated

immune cells and promote the growth of tumors (Figure 1).
T lymphocytes

T lymphocytes are the main component of the TIME and are

central to adaptive immunity. Mature T cells are classified as

CD3+ CD8+ T cells and CD3+ CD4+ T cells, according to their

marker gene (14). CD8+ T cells are the prime activated immune

cells and are also known as cytotoxic T cells (CTLs). The T cell

receptor (TCR) on CD8+ T cells binds to the MHC-I compound

on tumor cells, resulting in the production of cytolytic factors

(e.g., perforin and granzyme) and inflammatory cytokines (e.g.,

IL-2 and IL-12) that directly kill tumor cells (15). The

mechanism of ICB and adoptive cell therapy (ACT) is to

activate CD8+ T cells. An essential prerequisite for the PD-L1

blockade response in OC patients is sufficient T-cell infiltration.

Higher infiltrating levels of CD8+ T cells in the TIME indicate a
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better prognosis in OC patients (16). However, high levels of

TGFb in OC inhibit the function of CTLs (17). Recently, it has

been found that the infiltration level of CD8+ T cells in OC is

regulated by CXCL9 expressed in antigen presentation cells

(APCs) and CCL5 expressed in tumor cells (18).

In the suppressive TIME of OC, dysfunction of CD8+ T cells

is another significant cause of immune dysfunction. T-cell

dysfunction is caused by inhibiting T-cell mitochondrial

biogenesis and the inability to produce sufficient energy

intermediates (19). Activation of the IRE1a-XBP1 pathway

regulates the T-cell mitochondrial activity and reduces T-cell

infiltration and IFN-g expression. Cytokine IFN-g levels are

linked to TIL infiltration, and increased IFN-g levels can

improve OC patient survival. Downregulation of XBP1 or

control of endoplasmic reticulum stress enhances T-cell

activity and metabolic adaptation (20). T-cell proliferation is

also disturbed by lipid metabolites secreted by tumor cells,

including 9-HODE, 5-HETE, and PGD2, which bind to T-cell

PPAR and inhibit cell cycle protein E (21).
Natural killer cells

NK cells are innate lymphoid-like cells with potent natural

cytotoxicity against tumor cells. NK cells participate in immune

regulation via a variety of mechanisms, including (1) the

expression of CD16 to exert antibody-dependent cytotoxicity

(ADCC) and detect target cells encapsulated in antibodies; (2)

the production of perforin and granzyme to induce apoptosis in

tumor cells directly; and (3) the release of antitumor cytokines

such as TNF-a and IFN-g (22). Various studies have

demonstrated the effectiveness of NK cell therapy in patients

with OC. Poznanski et al. found that expansion of patient-
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derived CD56superbright CD16+ NK cells could exert potent

cytotoxicity against autologous tumors in an autologous-

derived xenograft mouse model of OC patients (23). Recently,

Sun et al. showed that intravenous injection of NK cells isolated

from the peripheral blood of OC patients inhibited the systemic

metastasis of OC and increased the survival rate (24).

The most critical cytotoxic receptors for NK cells involved in

immune surveillance are the NKG2D receptor, the CD16

receptor, and natural cytotoxic receptors for NKG receptors,

such as NKp30 (25). In contrast, the proinflammatory cytokine

MIF transcriptionally downregulates the NK cytotoxicity

receptor NKG2D and decreases the cytotoxicity of NK cells

(26). Furthermore, chronic receptor-ligand interactions reduce

the expression of NK-cell surface receptors, impairing NK-cell

cytolytic function and IFN-g secretion ability (27). Greppi et al.

found that OC cells released B7-H6 suppressed the expression of

NKp30 on NK cells (28). TGF-b also inhibits NKp30 expression

and dampens NK-cell-induced dendritic cell (DC) killing (27).

In addition, OC ascites contain high levels of IL-18 and TGF-b,
which can suppress the expression of CD16 and ADCC in NK

cells (22). In OC, NK cells can also affect T cells to interfere with

tumor progression. NK cells promote CD8+ T-cell recruitment

in OC by upregulating CCL5, CXCL9, and CXCL10 via the

CCR5 mechanism (29).
T regulatory cells

Tregs are a heterogeneous subpopulation of CD4+ T cells

that express CD25, CTL antigen 4 (CTLA-4), and the

transcription factor FoxP3 (30). Tregs are classical

immunosuppressive cells that exert immunosuppressive effects

and maintain immune self-tolerance in vivo. Treg to CD8+ T cell

ratios in tumors negatively correlate with survival in OC patients

(31) . Blocking Treg di fferent iat ion, migrat ion, or

immunosuppressive functions can reinforce the antitumor

immune responses. Moreover, macrophage-secreted CCL22 in

the peritoneal cavity can promote Treg migration (32). The

hypoxic tumor microenvironment (TME) also favors the

metabolic reprogramming of Tregs leading to Treg

proliferation. Accumulated Tregs upregulate the secretion

levels of IL-10 and promote angiogenesis and immune

tolerance of tumors (33).

Tregs can establish a suppressive TIME through multiple

mechanisms. On the one hand, Tregs can release

immunosuppressive cytokines, such as IL-35, IL-10, and

transforming growth factor b (TGF-b), which inhibit the

function of CD8+ T cells and promote tumor cell growth (34).

On the other hand, Tregs inhibit the TCR signaling pathway of

CD4+ CD25- conventional T cells (Tcons), suppress calcium

(Ca2+) signaling in Tcons, and reduce the activation of NFAT

and NF-kB in Tcons (34). Moreover, the perforin and granzyme
FIGURE 1

Immune cell functions and their interactions in the ovarian
cancer tumor microenvironment. M2 TAMs, Tregs, MDSCs, and
CAFs suppress the immune response and promote the
proliferation, growth, and metastasis of OC. CD8+ T cells, NK
cells, mature DCs, and M1 TAMs enhanced the immune
response and suppressed tumor growth.
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released from Tregs directly kill other immune cells, such as

DCs, monocytes, and CD8+ T cells (34). Multiple receptors

expressed on Tregs isolated from OC are associated with TCR

involvement, including PD-1, ICOS, and 4-1BB. These receptors

make Tregs more sensitive to anti-CD3/anti-CD28 stimuli and

have a more potent inhibitory capacity (35). Treg-expressed

CD73 and CD39 convert pro-inflammatory ATP to adenosine to

mediate immunosuppression (36). CD4+ Tregs can differentiate

into CD4+ effector T cells upon the activation of glucocorticoid-

induced tumor necrosis factor receptor family-related receptor

(GITR). Therefore, stimulation of GITR is expected to eliminate

Treg-mediated suppression (37).

The secretion of high levels of proinflammatory cytokines

(e.g., TNF and IL-6) in OC malignant ascites promoted high

expression of tumor necrosis factor receptor 2 (TNFR2) in

Tregs . TNFR2+ Tregs enhanced the express ion of

immunosuppressive molecules, including TGF-b, CD39,

CD73, GARP PD-L1, and CTLA-4 (38, 39). The upregulated

CTLA-4 in Tregs inhibits the activation and proliferation of

effector T cells (40). Tregs in OC induce B7-H4 expression,

deliver inhibitory activity to APCs, and blunt the antitumor

immune response (41). Abnormal hyperactivation of signal

transducer and activator of transcription-3 (STAT3) in tumor-

infiltrating immune cells positively regulates the number of

Tregs and MDSCs. Therefore, targeting the IL6/JAK/STAT3

signaling pathway is a feasible strategy to alleviate the

immunosuppressive TME (42).
Tumor-associated macrophages

TAMs are the largest immune cell population in the TIME of

OC, accounting for 39% of the immune cellular repertoire. There

are two main types of TAMs based on phenotype:

proinflammatory M1-like and anti-inflammatory M2-like (43).

M2 macrophages are associated with tumor immunosuppression

in OC. In a study of 140 OC patients, Macciò and his colleagues

found that a high density of M2 macrophages led to poor overall

survival (OS) and prognosis. OS and the M1/M2 ratio were

positively associated (13). Polarization and recruitment of M2

macrophages are key factors in OC progression and metastasis.

The TIME can shift macrophages from the M1 to the M2

phenotype, creating a suppressive TIME. Ying et al. found that

MiR-222-3p in the exosomes of EOC cells induces M2 phenotypic

polarization through activation of the STAT3 pathway (44).

Collagen triple helix repeat containing 1 (CTHRC1) is an OC

secretory protein that induces M2-like polarization in TAMs by

activating the STAT6 signaling pathway (45). Another reason for

the poor survival and prognosis of OC is the recruitment of M2

macrophages. OC overexpressed UBR5, an E3 ligase, can recruit

and activate TAMs by regulating multiple cytokines and

chemokines, such as CCL2 and colony-stimulating factor 1

(CSF-1) (46). CSF-1 is a major macrophage survival factor.
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Targeting TAMs with anti-CSF-1R antibodies is a new

therapeutic strategy for OC (47–49). Multiple cell signaling

pathways can induce protumor and immunosuppressive

properties in M2 TAMs, such as JNK, IL-13, IL-4, AMPK,

PPARg, IRF-3, IRF-4, and C/EBPb (50).

The most common metastatic route for OC cells is the body

cavity route, forming spheroids for metastasis. M2 macrophages

are enriched in the omentum, which is the primary site of choice

for OC metastasis. M2 macrophages secrete EGF to activate

tumor cell EGFR and upregulate the VEGF/VEGFR signaling

pathway to promote tumor cell proliferation and migration. In

addition, EGF upregulates the expression of ICAM-1 and ɑMb2
integrin in TAMs and facilitates the interaction between TAMs

and tumor cells to form spheroids (51, 52). TAMs also secrete

multiple cytokines and chemokines to reshape the suppressive

TIME of OC and promote OC progression. El-Arabey et al.

reported that TAMs promote the growth, migration,

chemoresistance, and epithelial-mesenchymal transition

(EMT) of TP53-mutated HGSOC cell lines by exosomes

releasing GATA3 (43). Macrophage secretion of TNF-a
induces MIF and EMMPRIN into tumor cells in an NF-kB-
and JNK-dependent manner. Subsequently, macrophages

release various MMPs to enhance tumor invasion, migration,

and vascularization (53). TAMs also secrete IL-6 and IL-10,

which activate the STAT3 pathway and promote tumor

proliferation (54). TAMs secrete several chemokines, including

CCL17, CCL22, and CCL18. These chemokines recruit Tregs

and Th2 subsets and promote T-cell differentiation toward a Th2

phenotype (55).
Myeloid-derived suppressor cells

MDSCs are a heterogeneous group of nonterminally

differentiated myeloid cells with immunosuppressive

properties. Consistent with other immunosuppressive cells, the

infiltration of MDSCs is related to shorter OS in OC patients

(56). High concentrations of several cytokines (e.g., IL-6, IL-10,

IL-1b, VEGF, PGE2, and TNF-a) in the ascites of OC patients

induce the accumulation of MDSCs (57). Growth factors G-CSF

and GM-CSF promote the production of MDSCs by activating

STAT3 and STAT5 signaling pathways and downregulating IRF-

8 (58). Multiple chemokines (e. g, CCL1, CCL5, CCL7, CXCL8,

and CXCL12) drive the recruitment of MDSCs to OC tumor

sites via the CCR2, CXCR4, and CCR5 axes. Triggering of the

CXCL12-CXCR4 pathway is controlled by the tumor-associated

inflammatory mediator PGE2, and targeting PGE2 has the

potential to block the migration of MDSCs into ascites (59).

Notably, MDSCs can increase the stem cell-like properties of

OC cells. Li et al. found that induction of the CSF2/p-STAT3

signaling pathway by MDSCs could enhance the stemness of

EOC cells (60). Cui et al. demonstrated that MDSCs induced

microRNA101 expression and suppressed CtBP2, thereby
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enhancing the stem cell-like properties of OC (61). The

immunosuppressive properties of MDSCs are dependent on

PGE2-induced DNA methyltransferase 3 alpha (DNMT3A)

upregulation and hypermethylation of myeloid genes (62).

MDSCs have re-editable properties similar to those of

macrophages. STAT3 inhibit ion and TLR signaling

modulation can repolarize MDSCs and activate their immune

function (63).

MDSCs generate a suppressive TIME by inhibiting the

activities of activated immune cells. Previous studies found

that MDSCs inhibit the activity and proliferation of NK cells

and block the antigenic expression of DCs (56). In addition,

MDSCs produce TGF-b, IDO, IL-10, and nitric oxide (NO) to

reduce the proliferation and cytotoxicity of NK cells and exert

immunosuppressive functions (64). The effects of MDSCs on

NK cells were manifested by downregulating the expression of

surface natural cytotoxicity receptors (NCRs), NKG2D, and

DNAM-1 (65). Meanwhile, MDSCs can polarize M1

macrophages to the M2 phenotype and induce Treg

amplification. MDSCs induce the activation and accumulation

of M2 macrophages and stimulate the production of more IL-10.

In turn, IL-10 can upregulate immunosuppressive factors, such

as PD-L1 and Arg-1, inducing the activation and amplification

of MDSCs (66). HIF-1 in the hypoxic environment of OC

redifferentiates MDSCs into TAMs and promotes tumor

progression (67). In addition, MDSCs secreted TGF-b and IL-

10 can stimulate Treg migration and differentiation through

CD40-CD40 L interactions (68).

MDSCs suppress the T-cell-mediated antitumor immune

responses in the TIME of OC by multiple mechanisms (1):

Depleting nutrients required by lymphocytes: MDSCs inhibit T-

cell proliferation by upregulating ARG-1 to consume arginine

and isolate 1-cysteine (69); (2) Restricting T-cell recruitment and

inducing T-cell apoptosis by expressing Galectin9, AMPKa-1,
and ADAM17 (70); (3) Regulating NO and ROS production and

stimulate oxidative stress; (4) Production of peroxynitrite (PNT)

inhibits the TCR signaling pathway: MDSCs produce

peroxynitrite, which nitrates complexes in the TCR-CD8

complex when direct contact with T cells. Meanwhile, MDSCs

disrupt the binding of CD8+ T cells to specific peptide-major

histocompatibility complex (pMHC) dimers and inhibit T cell

antigen recognition (71). (5) Secreting TGF-b enhances T-cell

immunosuppressive phenotypic differentiation, such as

promoting the differentiation of Th17, Th2, and Tregs (72).

(6) Enhancing the expression of PD-L1 on tumor cells by the

AKT/mTOR signaling pathway in a PGE2-dependent

manner (73).
Cancer-associated fibroblasts

CAFs are another major cell subpopulation in OC masses

and play a crucial role in OC progression (74). Tumor cells are
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protected from immune surveillance by an extracellular layer of

dense extracellular matrix (ECM) rich in fibronectin. However,

this protective shell is produced by abnormal remodeling of the

ECM and excessive deposition offibroblasts. OC cells construct a

strong protective barrier by reprogramming fibroblasts with

miRNAs, mainly downregulating miR-214 and miR-31 and

upregulating miR-155 (75). Overexpression of STAT4 in EOC

cells depends on tumor-derived Wnt7a to induce the production

of CAFs (76). NNMT regulates CAF differentiation, reduces

histone methylation and s-adenosylmethionine, and supports

OC proliferation, growth, and metastasis (77).

Fibroblasts are a key component of the basement membrane

and peritoneum of the greater omentum in OC. CAFs recruit

ascites tumor cells expressing high levels of alpha5-integrin

(ITGA5) to form heterogeneous spheroids called MUs.

Additionally, CAFs secrete EGF to maintain the MU structure

by maintaining ITGA5 expression, which aids in the trans-

somatic metastasis and OC peritoneal dissemination of

HGSOC (78). Many markers activate CAFs, such as the

extremely heterogeneous aSMA and FAP, and these markers

help us develop new therapeutic targets for cancer (79, 80).

CAFs can remodel the ECM by secreting various cytokines

as well as produce multiple paracrine signals with OC cells to

induce OC cell growth, migration, and invasion. CAFs secrete

DKK3 and activate YAP/TAZ and b-linked protein, the former

inducing CAF tumorigenesis and the latter promoting OC

invasion (81). CAF-derived POSTN promotes EMT by

activating the PI3K/AKT pathway. It also promoted TGF-b1-
induced activation of fibroblasts and invasion and migration of

OC cells (82). TGF-b receptor type II and SMAD signaling

upregulate VCAN and activate the NF-kB signaling pathway in

CAFs. Alterations in these signaling pathways increase matrix

metalloproteinase 9, CD44, and hyaluronic acid-mediated motor

receptor expression in CAFs and promote the progression of

advanced OC (83). The hepatocyte growth factor (HGF) is a key

growth factor derived from CAFs. HGF stimulates OC cell

growth and drug resistance by activating the c-Met/PI3K/Akt

and GRP78 pathways (84). Fibroblast growth factor-1 (FGF-1) is

another crucial factor in CAFs. FGF-1 regulates tumor

progression by phosphorylating FGF-4, increasing the

expression of Snail1 and MMP3, and activating the MAPK/

ERK pathway (85). In addition, CAFs promote OC metastasis by

secreting VEGF-A and tenascin-c (86).

Moreover, CAFs recruit immune cells and remodel the

TIME via several cytokines and chemokines. Taki et al. found

that CAFs produce the chemokines CXCL1 and CXCL2, which

recruit MDSCs in OC (59). In addition, CXCL12b expression in

CAF cells promotes the migration and differentiation of Tregs

(87). CAFs interact with multiple immune components to

regulate the immune activity of innate and adaptive cells and

suppress antitumor immunity. Interleukin (IL)-1b is a major

immunosuppressant in the TME and is significantly associated

with CAF-expressed PS1. PS1 positively correlates with IL-1b
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levels under the regulation of the WNT/b-linked protein

pathway. Inhibition of PS1 expression increases the

proliferation and migration of CTLs and DCs (88). Browning

et al. found that CAFs produce IL-6, a cytokine with

protumorigenic function, which leads to severely poor

prognosis and chemoresistance in OC patients (54).
Current progress of immunotherapy
in ovarian cancer

During the past years, various immunotherapies, including

ICB, cancer vaccines, ACT, and cytokines, have been approved

for OC treatment (Table 1). In this section, we will expatiate the

progress of these treatments in OC.
Immune checkpoint blockade

Effective immunotherapy relies on antigen presentation,

inhibition of immunosuppressive cells, and activation of

effector T cells. Among them, T-cell-mediated immune

responses are crucial and modulated by inhibitory and

stimulatory signals. Immune checkpoints regulate T cell

activities and are closely related to tumor immunity.

Currently, ICIs targeting CTLA-4 and programmed cell death

protein 1 (PD-1) or PD-1 ligand (PD-L1) have achieved

breakthrough results in clinical trials (89). Anti-PD-L1

antibodies (avelumab, durvalumab, and atezolizumab), anti-

PD-1 antibodies (nivolumab and pembrolizumab), and anti-

CTLA-4 antibodies (ipilimumab) have received FDA approval

for the treatment of several malignancies represented by

melanoma and non-small cell lung cancer (5, 90). However,

the objective response rates (ORR) for single-agent ICIs in OC

are only 6-15% (91). For example, in a phase II study of

ipilimumab for patients with platinum-sensitive OC, the best

overall response rate (BOR) was just 15% (NCT01611558). In

addition, the BOR for platinum-resistant OC patients treated

with nivolumab was 15%. In this clinical trial, 40% of the

patients had grade 3 or 4 treatment-related side events (92).

Besides, in a phase II clinical study of pembrolizumab in

advanced recurrent OC (NCT02674061), the ORR was also

less than 10% (93).

Due to the unsatisfactory efficacy of single-agent ICIs in OC,

combination therapy has recently received much attention.

Several studies have combined ICB with polyadenosine

diphosphate ribose polymerase (PARP) inhibit ion,

chemotherapy, and antiangiogenic therapy to improve the

efficacy of OC immunotherapy (91). For example,

pembrolizumab was combined with the PARP inhibitor

niraparib for recurrent OC treatment. In this clinical trial, the

ORR was 18%, and the illness control rate was 65% (94). Besides,

the ORR for OC patients treated with durvalumab plus the
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anticancer drug trabectedin was 21.4% (95). In addition, patients

with platinum-resistant OC responded well to pembrolizumab

plus pegylated liposomal doxorubicin. In a clinical trial, 52.2% of

the patients achieved a clinical benefit, and 26.1% experienced an

overall response (96). Moreover, a phase II trial of nivolumab

plus bevacizumab in recurrent OC patients was conducted. The

results showed that platinum-sensitive patients had an ORR of

40.0% and platinum-resistant patients had an ORR of 16.7%

(97). However, although combination therapy represents an

approach to improving the efficacy of ICB, ICIs still

demonstrated limited clinical activity for OC patients. The

core reason is the suppressive TIME in OC, which leads to

insufficient CTL activity. According to Grzywa TM et al., TAMs

can decrease the amount of L-arginine in the TME and decrease

T cell activation (98).
Cancer vaccines

Cancer vaccines can promote antigen presentation by APCs

and enhance the anti-tumor activities of antigen-specific CTLs.

They have additional advantages in establishing immune

memory and preventing tumor recurrence (99). At present,

cancer vaccines, represented by DC vaccines, have achieved

successful clinical results in the immunotherapy of various

malignancies, including OC, melanoma, and prostatic cancer

(100). DC vaccines that target MUC1 and NY-ESO-1 have been

used to treat patients with OC. In a phase II clinical study of the

MUC1-targeted DC vaccine for EOC patients, MUC1 T-cell-

specific responses were observed but did not result in

substantially increased progression-free survival (PFS) (101).

Multiple antigens have been incorporated into cancer vaccines

considering the negative effects of immune escape. However, this

strategy still does not improve clinical outcomes for OC. For

example, combining a multivalent conjugate vaccine (MUC1-

TN, GLO-H, GM2, TF) with an adjuvant for patients with OC in

the second or third clinical complete remission following

chemotherapy did not prolong OS or PFS compared to

adjuvant alone (102).

Taken together, although cancer vaccines can induce strong

immune responses, their current clinical outcomes in OC have

not been satisfactory. The main reason is the weak

immunogenicity and suppressive TIME in OC. According to

Schumacher et al., neoantigen recognition is uncertain in OCs,

because of the inadequate mutational load and tumor

heterogeneity (89, 103). At present, some strategies have been

proposed to solve this dilemma. On the one hand, cancer

vaccines can be combined with other treatment strategies, such

as ICB. For example, patients with advanced platinum-resistant

OC treated with the multiepitope FRa vaccine plus durvalumab

achieved durable survival, with partial response rates of 3.7%

and stable disease (SD) rates of 33.3% (104). On the other hand,

incorporating as many tumor antigens as possible into cancer
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TABLE 1 Clinical trials of immunotherapy for ovarian cancer.

Interventions Number Phase Status Efficacy

Immune
Checkpoint
Blockade

Ipilimumab NCT01611558 Phase
2

Completed BOR: 15%

Nivolumab UMIN000005714 Phase
2

Completed BOR: 15%
ORR: 10% (1 mg/kg), 20% (3 mg/kg)
PFS: 3.5 months
OS: 20.0 months

Pembrolizumab NCT02674061 Phase
2

Completed ORR: 7.4% (received 1-3 prior lines), 9.9%
(received 4-6 prior lines)
DCR: 37.2% (received 1-3 prior lines), 37.4%
(received 4-6 prior lines)

Pembrolizumab + Niraparib (PARP inhibitor) NCT02657889 Phase
1/2

Completed ORR: 18%
DCR: 65%

Durvalumab + Trabectedin NCT03085225 Phase
1

Active, not
recruiting

tumor shrinkage rate: 43%
ORR: 21.4%
6-month PFR: 42.9%

Pembrolizumab + Pegylated liposomal doxorubicin NCT02865811 Phase
2

Active, not
recruiting

CBR: 52.2%
ORR: 26.1%

Nivolumab + Bevacizumab (antiangiogenic agent) NCT02873962 Phase
2

Recruiting ORR: 40.0% (platinum-sensitive
participants), 16.7% (platinum-resistant
participants)
PFS: 8.1 months

Cancer Vaccines MUC1-targeted DC vaccine NCT01068509 Phase
2

Completed PFS:13 months (first clinical remission), >42
months (second clinical remission)

Multivalent conjugate vaccine (MUC1-TN, GLO-H, GM2,
TF) + OPT-821 (saponin-based immunoadjuvant)

NCT00857545 Phase
2

Completed HR of PFS: 0.98
OS: 47 months

Multiepitope FRa vaccine + durvalumab NCT02764333 Phase
2

Completed SD: 33.3%
PR: 3.7%

Oxidized whole-tumor lysate DC vaccine NCT01132014 Early
phase 1

Completed SD: 52.0%
PR: 8.0%
2-year OS: 100% (responders), 25%
(nonresponders)

Adoptive cell
therapy

TIL + lymphodepleting chemotherapy (cyclophosphamide
and fludarabine) + IL-2

NCT02482090 Phase
1

Completed 3-month SD: 66.7%
5-month SD: 33.3%
decrease in target lesions: 33.3%

TIL + cyclophosphamide / CR: 14.3%
PR: 57.1%

TIL + lymphodepleting chemotherapy (cyclophosphamide
and fludarabine) + IL-2 + Ipilimumab + Nivolumab

NCT03287674 Phase
1/2

Completed 12-month SD: 83.3%
PR: 16.7%

CAR-T targeting mesothelin NCT02159716 Phase
1

Completed BOR: 73.3%

Cytokines Recombinant IL-2 / Phase
2

Completed ORR: 25.0%

a-Recombinant interferon / Phase
3

Completed CR: 36%
PR: 9%
PD: 55%

IFN-g + cisplatin + cyclophosphamide / Phase
3

Completed CR: 68%
3-year PFR: 51%
3-year OS: 74%

IL-2 + OK-432 + platinum- and Taxol-based chemotherapy Case report / Completed recurrence rate: 53.8%
(immunochemotherapy), 88% (traditional
chemotherapy)

IL-18 + pegylated liposomal doxorubicin NCT00659178 Phase
1

Completed SD: 38%
PR: 6%

IL-2 + 13-cis-retinoic acid / Phase
2

Completed 5-year PFS: 29%
OS: 38%
Frontiers in Imm
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BOR, Best Overall Response Rate; ORR, Objective Response Rate; PFS, Progression-Free Survival; OS, Overall Survival; DCR, Disease Control Rate; PFR, Progression-free Rate; CBR,
Clinical Benefit Rate; HR, Hazard Ratio; SD, Stable Disease; PR, Partial Response; CR, Complete Response.
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vaccines is a promising strategy to solve the heterogeneity of OC

and improve treatment effectiveness (105). Tanyi JL et al.

constructed an oxidized whole-tumor lysate DC vaccine for

treating patients with platinum-treated recurrent OC. After

administration, the vaccine stimulates T-cell responses and

patients experience prolonged survival (106).
Adoptive cell therapy

ACT is an immunotherapeutic regimen that harnesses

autologous or allogeneic anticancer lymphocytes to promote

tumor regression (105). ACT is mainly divided into three types:

expanded natural TILs, chimeric antigen receptor T cells (CAR-

T), and T-cell receptor engineered T cells (TCR-T) (107). ACT

has achieved striking clinical success in various cancers, such as

B-cell leukemias and melanoma. For example, patients with

advanced melanoma responded favorably to ACT, with

complete tumor shrinkage (108). However, despite several

attempts, ACT has not achieved the desired effect for OC

patients. Patients with recurrent or advanced EOC were

treated with TILs following a single intravenous injection of

cyclophosphamide. The results show that only 14.3% of the

patients experienced a complete response, and 57.1%

experienced a partial response (109). Besides, in a phase I

clinical study of CAR-T targeting mesothelin (CAR-T-meso)

for patients with OC, the CAR-T-meso cells showed limited

clinical activity and short persistence (110).

The poor antitumor activity of ACT in OC is largely

associated with the suppressive TIME. At present, several

immunotherapies, such as ICB and cytokines, which can

regulate the TIME, have been combined with ACT for OC to

improve therapeutic activity. The combination of IL-2 with TILs

was used to treat six patients with progressive platinum-resistant

metastatic OC. There were 4 patients with SD for 3 months and

2 patients for 5 months (111). In another clinical trial, 83.3% of

patients with late-stage metastatic HGSOC who received TILs,

IL-2, ipilimumab, and nivolumab had SD for up to 12 months.

The addition of ipilimumab improved T-cell proliferation

positively impacted the T-cell phenotype and boosted CD8 T-

cell tumor reactivity (112).

In conclusion, ACT has shown excellent potential in OC

treatment, but its successful clinical application still faces

obstacles. The physical barriers in OC limit the accessibility of

CAR-T cells to tumor cells. Local CAR-T cell administration will

offer solutions to this problem and improve antitumor efficiency

(113). In addition, the small number of targeted antigens and

their heterogeneous expression in ovarian tumors predispose

them to antigen escape. Novel CAR-T cells simultaneously
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targeting multiple TAAs may increase the effectiveness of ACT

in OC patients (114).
Cytokines

A large class of tiny biomolecules known as cytokines plays a

crucial role in cell signaling. Among them, IFNs, ILs, and

chemokines have a l l been ex tens ive ly ut i l ized as

immunomodulators to treat cancer (115). For instance, IFN-a
has achieved FDA approval and is used to treat leukemia in

clinical settings (115). In addition, IL-2 can cause complete and

long-lasting tumor regression in patients with metastatic

melanoma and renal cancer (116). Recently, cytokine-mediated

immunotherapy has been evaluated in OC clinical studies but

has not yet achieved excellent outcomes. A clinical study found

that OC patients had a low response rate to a single intravenous

injection of recombinant IL-12 (117). Besides, the overall

response rate for platinum-resistant OC patients receiving

intraperitoneal administration of IL-2 was 25% (118).

Moreover, intraperitoneal injection of a-recombinant

interferon (rIFN-a2) resulted in complete remission in 36% of

patients with EOC but also induced significant toxic side effects

(119). In addition, an adenoviral vector expressing IFN-b was

used to treat two OC patients. One of the patients with distant

metastasis and malignant pleural effusion achieved a complete

response (120).

At present, cytokine-based immunotherapy has been

combined with various antitumor therapies such as

chemotherapy and antiangiogenic therapy to improve clinical

efficacy. In OC patients, combining IFN-g with first-line

chemotherapy improved PFS while causing acceptable toxicity

(121). IL-2 was combined with picibanil (OK-432) and

traditional chemotherapy drugs for patients with advanced

OC. These patients had a lower recurrence rate than patients

receiving chemotherapy alone (122). In a clinical trial, patients

with OC were treated with IL-18 plus pegylated doxorubicin

liposomes. The results show that 6% of patients had a partial

objective response, and 38% had an SD (123). In addition, the

combination of 13-cis retinoic acid, which has antiangiogenic

activity, with low-dose IL-2 was used to treat advanced OC

patients. The patients had a 5-year PFS rate of 29% and an OS

rate of 38%, with an increased number of lymphocytes and NK

cells (124).

Above all, cytokines as excellent immunomodulators have

shown exciting potential in combination therapy of OC.

However, their low stability and short half-life essentially limit

their application in the clinic. These issues are considered to be

overcome by utilizing nanoparticle-based drug delivery systems.
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Nanomaterials for remodeling the
immune microenvironment to
enhance cancer immunotherapy

During the past decades, multiple nanoparticles have been

applied in OC treatment or synergized immunotherapy, such as

liposomes, polymeric micelles, silica-based nanoparticles

(SNPs), and metal-based nanomateria ls (Table 2) .

Nanoparticles not only serve as a vehicle to carry anticancer

drugs but also as a regulator to modulate the TIME (Figure 2). In

this section, we will discuss the role of nanoparticles in
Frontiers in Immunology 09
remodeling the TIME of OC and improving the efficacy

of immunotherapy.
Application of liposomes in enhancing
cancer immunotherapy

Liposomes are spherical bilayer nanoparticles composed of

cholesterol and phospholipids, which have been used as drug

vehicles due to their excellent encapsulation efficiency, targeting

ability, biosafety, and biocompatibility (137). The remarkable

properties of liposomes result in their FDA approval for use in
TABLE 2 Nanoparticles for regulating TIME and improving immunotherapy.

Nanoparticles Immunotherapy Targeting Payload Mechanism Advantages Ref

Liposome PDT + ICB PD-L1 IR775,
metformin

PDT induces ICD; metformin
downregulates PD-L1

Codelivery of hydrophilic and
hydrophobic drugs

(125)

Liposome Cytokines TAMs Resiquimod TLR7/8 agonists repolarize TAMs Administered
intraperitoneally selective
accumulation in TAMs

(7)

Liposome ICB Tregs Indoximod
prodrug,
mitoxantrone

Indoximod inhibits the IDO-1 pathway
and Treg expansion; mitoxantrone
induces ICD

Codelivery of hydrophilic and
hydrophobic drugs

(126)

Acid-sensitive polymeric
nanoparticles

ICB + PDT PD-L1 siPD-L1,
carboplatin
prodrug,
digitoxin

Carboplatin prodrug initiates the caspase
cascade; digitoxin elicits ICD; PD-L1
silencing overcome immune suppression

Environmentally responsive
release and escape from the
endocytic pathway

(127)

Biodegradable polymeric
nanoparticles

Cytokines TAMs IRF5/IKKb
encoding
mRNAs

IRF5 induces macrophage polarization;
IKKb activates IRF5

Reprogramming TAMs and
safety for repeated dosing

(128)

PLG-g-mPEG nanoparticles Cytokines TAMs Cisplatin,
Resiquimod

TLR7/8 agonists repolarize TAMs Passive targeting and drugs
codelivery

(129)

Fusogenic lipid-coated MSNP Repolarize TAMs TAMs, PI3k siRNA
against
PI3kg,
peptide LyP-
1

Peptide LyP-1 targets TAMs; PI3kg
downregulation reprograms TAMs

Extremely high gene load and
transfection efficiency,
selective homing and
transfection, avoidance of the
endocytic pathway

(130)

Folic acid modified MSNP Cytokines T cells and
DCs

CCL2 CCL2 recruits immune cells into the
tumor tissue

Selective target-localizing
ability and safety

(131)

SNPs Repolarize TAMs TAMs / Relatively large (>100 nm) anionic
nanoparticles administered
intraperitoneally selectively accumulate
TAMs

Administered
intraperitoneally selective
accumulation in TAMs

(132)

Ferumoxytol capped ultra-large
pore MSNP

ICB PD-1 Anti-PD-1
antibody

Immune checkpoint inhibition Sustained release and
improved tumor specificity of
ICIs

(133)

Copper chalcogenide
nanoparticles

ICB + PTT PD-1 Anti-PD-1
antibody,
TLR9 agonist
CpG

PTT induces ICD; TLR9 agonist CpG
elicits activation of innate immune cells
and adaptive immunity

Photothermal therapy with
high penetration depth

(134)

Fe3O4 nanoparticles coated
with a hybrid membrane
consisting of ID8 ovarian
cancer cell membrane and red
blood cell membrane

PTT + PDT / Indocyanine
green (ICG)

PTT induces ICD; red blood cell
membrane coating improves the
circulation time and stability; ID8 OC
cell membrane coating support
homologous homing properties

Prolonged circulation lifetime
and high tumor specificity

(135)

Targeting peptide-modified gold
nanoparticles

Inhibit TAMs TAMs siRNA
against
VEGF

siRNA inhibits the VEGF pathway in
M2 TAMs and tumor cells, stimulating a
host immune response

Selective gene silencing (136)
frontiersi
n.org

https://doi.org/10.3389/fimmu.2022.1057850
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2022.1057850
c l in ica l cancer t rea tment (138) . In recent years ,

immunomodulators, such as adjuvants, photosensitizers, and

tumor antigens, have been encapsulated in liposomes to regulate

the TIME. For example, Xiong W et al. encapsulated the

photosensitizer IR775 and metformin into liposomes. Under

laser irradiation, the photosensitizer IR775 generates reactive

oxygen species, which induce ICD in bladder and colon cancer

cells and enhance antigen presentation (139). After PDT, the

upregulation of IFN-g amplifies the expression of PD-L1 on

tumor cells (140, 141). The coencapsulation component
Frontiers in Immunology 10
metformin mediates the downregulation of PD-L1, which

alleviates T cell exhaustion, synergistically enhancing the

antitumor effect of PDT.

Since TAMs are the main immune cell population in OC,

remodeling TAMs is a prospective strategy to improve the poor

clinical outcomes of OC immunotherapy. TLR 7 and TLR 8

agonists, such as liquimod and resiquimod, serve as strong

immunostimulatory molecules and have the ability to remodel

TAMs (142). However, these small molecule drugs have serious

toxicities when administered systemically. As an excellent target
FIGURE 2

Schematic of nanoparticle-mediated immunotherapy regulating the TIME. Nanoparticles are mainly classified as liposomes, micelles, SNPs, and
metallic nanoparticles. These nanoparticles have the functions of delivering drugs, delivering nucleic acids, and mediating combination therapy.
Based on these functions, nanoparticles can regulate TIME in four ways: (1) mediating PTT and PDT to induce ICD in tumor cells; (2) improving
drug targeting to immunosuppressive molecules; (3) targeting Tregs; and (4) targeting TAMs. By reversing the immunosuppressive state of TIME,
nanoparticles can enhance the efficacy of immunotherapy such as ICB, ACT, tumor vaccines, and cytokines.
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drug-delivery system, liposomes provide a way to deliver drugs

into TAMs and remodel the TIME. For example, by loading

resiquimod into liposomes, the drugs are efficiently delivered

into TAMs and transformed M2 macrophages to the M1-type.

Under treatment, the levels of tumor-infiltrating T cells were

upregulated, while the percentage of Tregs in the TIME was

reduced. When combined with PD-1 blockade, resiquimod-

loaded liposomes significantly improve the antitumor

efficiency of anti-PD-1 antibodies in OC (7).

Reducing the number of Tregs in the TIME is beneficial for

promoting antigen presentation as well as T-cell recruitment and

proliferation. Indoleamine 2,3-dioxygenase (IDO) is a metabolic

immune regulator that can induce the expansion of Tregs (143).

Kuo-Ching Mei et al. co-deliver cholesterol-conjugated

indoximod prodrug, an inhibitor of the IDO-1 pathway, and

chemotherapeutic agent mitoxantrone by liposomes into

tumors. As a result, the number of Foxp3+ Tregs was

obv ious ly decrea sed , wh i ch in con junc t ion wi th

chemotherapeutic drug-induced ICD, significantly boosted the

immunotherapy response in multiple solid tumors (144).

Therefore, liposomes encapsulating IDO pathway inhibitors

can effectively reprogram the TIME by reducing the number

of Tregs. This strategy is also expected to be successful in OC

immunotherapy. Because a study has shown that IDO is widely

expressed in 56% of ovarian tumors and is associated with

decreased TIL numbers (125).
Application of polymeric micelles in
enhancing cancer immunotherapy

Polymeric micelles generally consist of a lipophilic core and

a hydrophilic outer shell. Micelles have become widely used as

drug carriers due to their biosafety, biocompatibility, surface

modificat ion, tumor target ing, and environmenta l

responsiveness (145). These excellent biological properties

have enabled micelles to be FDA-approved for the delivery of

anticancer drugs (146). Recently, polymeric micelles have been

used for drug delivery, bioimaging, and immunomodulation.

Various immunomodulators, such as immunostimulants,

immunoadjuvants, photosensitizers, and nucleic acids, have

been entrapped into micelles to modulate the TIME (147). For

e x amp l e , FA -mod ifi e d p o l y ( e t h y l e n e g l y c o l ) -

chitooligosaccharide lactate (COL) micelles were used as HIF-

1a siRNA carriers. The micelles are efficiently taken up by cells

via receptor-mediated endocytosis and significantly induce the

transfection and gene knockout of HIF-1a in vitro, which

effectively inhibits the proliferation of OC (148).

ICB can sensitize T cell-mediated tumor killing and has

shown advantages in OC treatment. Genetic interventions, such

as PD-L1 siRNA, are emerging as an effective strategy to

suppress immune checkpoint signaling. However, the low
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transfection efficiency of gene therapy restrains its application

as promising immunotherapy (126, 149). Cationic polymer

micelles as excellent nucleic acid delivery vectors offer an

attractive approach to boost genetic immunotherapy and

improve the ICB response. Recently, Teo, P. Y. et al. loaded

PD-L1 siRNA into folate (FA) or FA-polyethylene glycol (PEG)-

modified PEI nanoparticles. The positively charged cationic

polymer micelles facilitate the uptake of PD-L1 siRNA by

interacting with negatively charged cell membranes. After

administration, PD-L1 siRNA successfully transfected OC

cells, effectively blocked PD-1/PD-L1 interaction, and

enhanced the efficiency of ICB for OC (150). Recently, Ling,

Xiang et al. constructed a pH-responsive nanocoordination

polymer to deliver siPD-L1. This micelle was endocytosed into

endocytic vesicles and ruptured when the endocytic vesicles

transform into acidic endolysosomal, disrupting the organelle

membrane and releasing siPD-L1 into the cytoplasm. Then PD-

L1 was successfully knocked out for immune checkpoint

inhibition, which remodeled the TIME and enhanced immune

activation in OC (151).

Repolarizing M2 TAMs to the M1 phenotype is an effective

strategy to remodel the TIME in OC and enhance antitumor

immunity. Although various immunomodulators have been

shown to repolarize TAMs, there are still many difficulties in

repolarizing TAMs, such as poor targeting and the instability of

immunomodulators. Due to the good surface modification, the

polymeric micelles can be chemically bonded with diversified

active targeting ligands to achieve specific targeting to TAMs.

For example, mannose-modified polymeric micelles were used

to deliver mRNA encoding IRF-5 and its activating kinase IKKb.
These polymeric micelles target mannose receptors

overexpressed in M2 TAMs, delivering their payload

exclusively to M2 TAMs. Following treatment, the

immunosuppressive and tumor-promoting effects of M2

TAMs were successfully reversed (152). In addition, Yin Wen

and his colleagues loaded the TLR7/8 agonist resiquimod and

cisplatin onto poly(l-glutamate)-graft-methoxy polyethylene

glycol (PLG-g-mPEG) nanoparticles. Benefiting from the

protective function of these micelles, TLR agonists were

successfully delivered and induced repolarization of

macrophages, resulting in a synergistic anticancer effect of

chemotherapy and macrophages in OC (153).
Application of silica-based nanoparticles
in enhancing cancer immunotherapy

SNPs are one of the most important nanomaterials applied

in biomedical applications because of their excellent

biocompatibility, biosafety, easy synthesis, and surface

modification (154, 155). SNPs are mainly divided into three

types: spheres, core-shells, and mesoporous SNPs (MSNPs)
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(156). Typically, MSNPs have many empty pores and large

surface areas, which endow them as good candidates for drug

d e l i v e r y , b i o ima g i n g , a nd immune r e g u l a t i o n .

Immunomodulators, such as adjuvants, photosensitizers,

cytokines, and siRNA, can be loaded into SNPs to regulate the

TIME. For example, LyP-1 peptide-modified SNP-loaded siRNA

against PI3K-g can target TAMs and significantly knock down

PI3K-g expression (the knockdown efficiency is 81%), which

leads to TAM polarization and remodels the TIME of OC (157).

In addition, the surface modifiability of SNPs endows them can

be wrapped with polymers and tumor-targeted peptides. These

modified SNPs can enhance the drug delivery ability and avoid

the toxicity of anticancer drugs. In our previous study, we

developed tumor cell-targeted MSNPs by conjugating the

indicated PAA and PEG on their surface (154). The MSNPs

can selectively deliver MEK inhibitors into tumor cells instead of

T-cells. MSNP encapsulation avoids the cytotoxicity of MEK

inhibition on T cells and improves the antitumor efficiency of

anti-PD-1 antibodies. The results suggest that MSNPs can avoid

small molecule drug-induced immune toxicity and coordinate

tumor-targeted therapy and immunotherapy.

Cytokines are classical immunoregulators that have been

applied to treat OC. However, their rapid biodegradation and

short half-life limit their clinical application. Uniform and large

pore diameters as well as the easy surface modification ability

endow MSNPs with high loading capacity, making them a

candidate vehicle for carrier cytokines. In addition, the

enhanced permeability and retention (EPR) effect of

nanoparticles causes the carried cytokines to accumulate in

TME and enhances their antitumor efficiency. Wimalachandra

DC et al. developed an FA-modified SNP to load CCL21. Upon

injection, CCL21-loaded SNPs accumulated at the TME of OC,

which further recruited immune cells into the tumor tissue (127).

Haber et al. found that negatively charged SNPs with a particle

size larger than 100 nm administered intraperitoneally selectively

accumulated in TAMs in mouse ovarian tumors (128). These

results demonstrated that SNPs could serve as a candidate drug

delivery system to remodel TAMs and enhance the anti-OC

immune response by loading immune regulation agents.

ICB has been demonstrated to be an effective immunotherapy

strategy and approved for the clinical treatment of OC. However,

systemic toxicity and low local concentrations still need to be

addressed. MSNPs have extremely high drug loading and can

achieve controlled drug release by surface modification, making

them ideal candidates for the delivery of ICIs. Bongseo Choi and

his colleagues loaded an anti-PD-1 antibody into the pores of

MSNPs and blocked the pores with iron oxide ferumoxytol, finally

realizing the sustained release of PD-1 at the tumor site. This

MSNP-mediated local ICB treatment after chemotherapy

effectively promotes T cell infiltration and reduces Treg

numbers in the TIME. This result indicates that MSNPs can
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achieve sustained release of ICIs and improve the duration of

action and tumor specificity of ICIs (129).
Application of metallic nanoparticles in
enhancing cancer immunotherapy

Metallic nanoparticles are a kind of novel nanomaterial

composed of pure metals (e.g., gold, silver, copper, iron,

platinum, etc.) or their compounds (e.g., hydroxides, oxides,

sulfides, etc.) (158). In recent years, metallic nanoparticles have

been widely used for bioimaging and cancer treatment because

of their excellent optical polarizability, electrical conductivity,

biocompatibility, chemical properties, and potent photothermal

properties induced by near-infrared (NIR) lasers (159). Metallic

nanoparticles can mediate tumor PTT and PDT. PTT/PDT is an

effective strategy to remodel the TIME and improve the

efficiency of immunotherapy (160, 161). The mechanism of

metallic nanoparticle-mediated PTT is that metal elements

absorb light energy and convert it into heat to destroy

malignant cells. Moreover, metallic nanoparticle-mediated

PTT and PDT induce ICD in tumor cells, releasing tumor

antigens and damage-associated molecular patterns (DAMPs)

to stimulate the tumor-specific immune response and enhance

immunotherapy (130). For example, gold nanoparticle-mediated

PTT has been widely used alone or in combination with

immunotherapy, chemotherapy, and targeted therapy to treat

malignant tumors. In our previous study, we constructed a

MAPK pathway inhibitor-loaded silica-modified gold

nanocage (AuNCs) for synergistic melanoma therapy with an

anti-PD-1 antibody. AuNC-mediated PTT along with MAPK-

targeted therapy effectively kills tumor cells and enhances T-cell

infiltration. This treatment regimen significantly improved the

antitumor efficiency of PD-1 immunotherapy in the immune

“cold” tumor and abscopal tumor models (131).

Although metallic nanoparticles mediated PTT/PDT has

achieved gratifying antitumor efficiency in shallow tumors

(e.g., melanoma), it has not reached the desired therapeutic

effect in OC. In an OC mouse model, PTT alone did not inhibit

tumor growth or prolong survival (132). The reason is that (1)

the complex suppressive TIME and (2) the OC tumors located in

a deep part of the human body prevent a laser from irradiating

the tumor. Recently, Qizhen Cao and his colleagues developed

copper monosulfide (CuS) nanoparticles to mediate a pulsed

wave (PW) laser that can treat OC. CuS nanoparticles mediate

photothermolysis, resulting in tumor cell death and improving

the antitumor efficiency of PD-1 immunotherapy by promoting

antigen presentation and T-cell infiltration (133). In addition,

Xiong J et al. developed Fe3O4 nanoparticles coated with hybrid

biomimetic membranes, which were formed by the fusion of red

blood cell membranes and mouse-derived ID8 OC cell
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membranes. These metallic nanoparticles can extend the

circulation half-life as well as homologous target ID8 OC cells

and show synergistic PTT. Under this treatment, the tumor-

specific antigens were released, which further improved the

efficiency of immunotherapy by activating CD8+ CTLs and

decreasing Foxp3+ Tregs (162).

Since the TIME in OC is also an important reason for

limiting the effectiveness of PTT, combining strategies to

modulate the TIME is a promising strategy to improve the

effectiveness of PTT. The surface modifiability of metallic

nanoparticles allows them to be coated with polymers and

serve as vehicles for immunomodulators, such as adjuvants,

cytokines, and siRNA, to regulate the TIME. For example, João

Conde et al. constructed targeting peptide-modified gold

nanoparticles encapsulated with siRNA against vascular

endothelial growth factor (VEGF). Gold nanoparticles can

selectively silence VEGF expression in tumor cells and TAMs,

inhibiting immunosuppressive M2 TAMs (163). This strategy to

remodel the TIME is expected to improve the antitumor

effectiveness of PTT in OC.
Application of other nanoparticles in
enhancing cancer immunotherapy

Besides the nanoparticles introduced above, many other

nanoparticles, such as carbon-based nanomaterials (CNMs)

and metal-organic frameworks (MOFs), have also been

reported to enhance cancer immunotherapy. CNMs, including

carbon nanotubes, carbon dots, and carbon nanohorns, have

gained attention in biological applications (164). Among them,

carbon nanotubes have been explored as photothermal

transduction agents and drug delivery carriers due to their

surface modification, enhanced cellular internalization,

electronic and optical properties, and biocompatibility (165).

Carbon nanotubes can mediate PTT and induce ICD in tumor

cells, and serve as delivery vehicles for tumor antigens and

immunoadjuvants (166). For example, Yong Li et al.

constructed annexin A5- modified single-walled carbon

nanotubes for synergistic metastatic breast cancer therapy with

an anti-CTLA-4 antibody. The nanoparticle-mediated PTT

enhanced the abscopal response of ICB and increased the 100-

day survival of tumor-bearing mice (167).

MOFs are novel nanoparticles composed of metal ions or

clusters and organic ligands (134). The properties of MOFs, such

as high porosity, large surface areas, surface modification, and

luminescence characteristics, endow them as good candidates

for drug delivery and diagnosis agents (135). Recently, various

immunomodulators, including immunoadjuvants, tumor

antigens, photothermal agents, and sonosensitizers, have been

encapsulated in MOFs to modulate the TIME and synergize with
Frontiers in Immunology 13
immunotherapy (136, 161, 168, 169). For instance, Jiali Luo et al.

developed cancer cell membrane-coated triphenylphosphonium

decorated MOFs. The MOF-loaded sonosensitizer facilitated

antigen presentation by mediating sonodynamic therapy. Co-

delivered TLR agonist R387 promoted DC maturation. When

combined with ICB, this nanoplatform finally reversed the

suppressive TIME and enhanced the antitumor efficacy of

immunotherapy (168).
Conclusion and prospects

With a more in-depth understanding of the TIME,

immunotherapy, especially ICB, tumor vaccines, ACT, and

cytokines, has gained extensive attention in the treatment of

OC. Although these immunotherapies have achieved excellent

results in a variety of tumors, they are not ideal for the treatment

of OC. This is mainly due to the suppressive TIME in OC,

including Tregs, TAMs, MDSCs, and CAFs, which inhibit the

antitumor immune response. Therefore, using smart strategies

to transform the suppressive TIME into an antitumor state is of

great significance for increasing the effectiveness of OC

immunotherapy and extending patient survival.

In recent years, with the development of nanomedicine,

immunotherapy combined with nanomaterials to modulate

immune stimulation has achieved excellent preclinical and

clinical efficacy. Mainstream nanoparticles include liposomes,

micelles, SNPs, and metallic nanoparticles. Based on the

excellent properties of nanoparticles in biocompatibility, drug

loading, targeting capability, surface modification, and

photothermal conversion, they have been widely used for

regulating immune response and immunotherapy. On the one

hand, nanoparticles can deliver immunomodulators that

regulate the TIME of OC. On the other hand, photosensitizer-

loaded nanoparticles or metallic nanoparticles can mediate

PDT/PTT to induce the ICD of tumor cells, promoting

antigen presentation and T-cell infiltration. These advantages

make nanoparticles promising candidates for modulating the

TIME and improving OC immunotherapy.

However, the toxicity, specific tumor targeting, and

effectiveness of nanoparticles also need to be considered in

clinical translation. In terms of toxicity, nanoparticles can not

only interact with organism’s cells or blood cells but also

produce toxic ions by the dissolution of nanomaterials.

Through these mechanisms, nanoparticles exert toxicity

leading to the damage of cells or vital enzymatic functions

(170). Several strategies hold promise for reducing these toxic

effects of nanoparticles. The nanoparticle can carrier negative

surface charges and attenuate nanoparticle-cell interaction

through modification with ligands, such as PEG (171).

Covering the shell material or minimizing the surface area can
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reduce the dissolution of toxic ions (170). For specific tumor

targeting, the poor manifestation of the EPR effect in the clinic

and the nanoparticle-protein complex formed in systemic

circulation cause off-target effects. Specifically, the differentials

between animal models and human tumors and the complex

TEM contribute to the failure of EPR-mediated targeting

delivery in clinical translation. Several strategies, including

enhancement of vascular permeability and depletion of tumor

extracellular matrix, provide a chance to minimize the gaps

between theoretical expectation and clinical outcome (172).

Otherwise, serum proteins and opsonins are easily adsorbed

on nanoparticle surfaces, which is probable to mask targeting

ligands. Based on a deeper understanding of the interactions

between nanoparticles and organisms, consideration of the

protein corona effect when designing nanoparticles could

improve the targeting efficiency (173). In terms of

effectiveness, inefficient and unstable drug loading results in

low drug concentrations in the TME and insufficient therapy.

The limited light penetration depth also restricts the anti-tumor

effects of photosensitive nanoparticle -mediated PTT. To

improve the antitumor efficiency, nanoparticles with high pore

volume and novel loading strategies have been developed that

are beneficial for the enrichment of drugs at tumor sites (174).

Some other approaches, including improving the photothermal

conversion efficiency and developing NIR-II window PTT, are

promising strategies to enhance the efficiency of PTT (175).

In this review, we discussed the impact of the TIME in OC

on immunotherapy and mentioned the role of nanoparticles in

modulating the TIME and improving the immunotherapeutic

efficacy of OC. Using multiple approaches to overcome current

shortcomings, we expect to leverage nanoparticle-based drug

delivery systems to provide opportunities for the clinical

application of OC immunotherapy.
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