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Human Endogenous Retroviruses (HERVs) are derived from ancient exogenous

retroviral infections that have infected our ancestors’ germline cells, underwent

endogenization process, and were passed throughout the generations by

retrotransposition and hereditary transmission. HERVs comprise 8% of the

human genome and are critical for several physiological activities. Yet, HERVs

reactivation is involved in pathological process as cancer and autoimmune

diseases. In this review, we summarize the multiple aspects of HERVs’ role

within the human genome, as well as virological and molecular aspects, and

their fusogenic property. We also discuss possibilities of how the HERVs are

possibly transactivated and participate in modulating the inflammatory

response in health conditions. An update on their role in several

autoimmune, inflammatory, and aging-related diseases is also presented.
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Background on human
endogenous retroviruses

Endogenous retroviruses (ERVs) were originated through

ancestral retroviral infections of all vertebrates (1), by infecting

their germ line cells millions of years ago. By infecting the germ

line cells they were able to fix in the host genomes and be passed

on through the generations by Mendelian inheritance (2–4). Due

to their high transcriptional activity and replication, some time

after integration they spread through reinfections, horizontal

transmission, and retrotransposition (5) (Figure 1). More than

30 families of ERVs have been described, and several

independent events of integration have occurred through

human evolution (6–9). As an example, members of the family

HERV-W integrated and fixed in the ancestral genomes around

40 million years ago (10–12), after the divergence between the

primates of the New and Old World. Human ERVs were first

described in 1970 and following human genome sequencing it

was described that they make up 8% of the human genome and

are therefore called Human Endogenous Retroviruses (HERV)

(2–4, 13).

In terms of genomic organization, HERVs are simple

retroviruses, as they present only the main genes: gag,

polymerase, and envelope, flanked by two promoter regions,

known as Long Terminal Repeats (LTRs) (3, 14). Briefly, the gag

protein (group-specific-antigen) is genetically preserved and less

immunogenic than the envelope and is responsible for the

production of the viral capsid (14). The polymerase (pol) gene

codes the non-structural viral enzymes, including reverse

transcriptase and integrase. The envelope (env) gene

synthetizes the envelope glycoproteins, and is under stronger
Frontiers in Immunology 02
selective pressures due to higher exposure to the host immune

system (14). Finally, the LTRs are located at each end of the

provirus and comprise the U3, R, and U5 regions. The U3 region

contains the viral promoter and enhancer elements. The R

region includes the mRNA initiation site (+1) and ends at a

polyadenylation termination site (15, 16). The name of each

ERV family considers the primer binding site where the reverse

transcription begins (17); as an example, the HERV that presents

a tryptophan as the starting site is named HERV-W (13).

Despite the high proportion of the inserted elements, there

are few complete proviral sequences in the human genome.

Many HERVs were purged from the host genome through

evolution due to recombination, deletion, and constant

mutational events. Therefore, most elements are incomplete or

have deleterious mutations (e.g. isolated genes or solo LTRs

throughout the genome, the presence of stop codons within

proviral genes, substantial deletions, and insertions within the

proviral genome). These events have led them to be unable to

replicate (18). Importantly, these events have led to a widely

variant distribution of HERVs within the genome. A previous

study revealed that the proportion of HERV sequences within

the chromosomes and population varies considerably, and also

the provirus that may be expressed and to be translated into

proteins (19). These findings revealed that HERVs, specially

HERV-K may be widely polymorphic in human population.

And in fact, HERV virions can still be found in very particular

conditions, which have been extensively described for HERV-K

and W (5, 20–22). Unlikely exogenous retroviruses, HERVs

genes alone were distributed within the genome due to

retrotransposition. Therefore, complete provirus can barely be

found in human genome, culminating in the distribution of
FIGURE 1

Human endogenous retroviral integration and transmission throughout host evolution of primates and humans. HERVs families were integrated
into the hominid ancestral genomes in several distinct times throughout the human evolution. Draw lines between primates and human
demonstrate the time between the integration moment and the present day.
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several proviral genes that still may transcribed and translated.

In fact, this phenomenon can only occur by the transcription

and complementation of proteins from different proviruses

allocated in distinct regions of the human genome (Figure 2).

The acquisition and maintenance of ERVs can also have

contributed to the host evolutionary processes, both at structural

and regulatory levels. For instance, although most HERVs

entered the host genome early in the evolution of primates,

the majority of HERV families (HERV-HI, HERV-HII, ERV-9)

underwent major amplification only in Old World monkeys and

hominids. From a regulatory point of view, several genes are

differentially expressed in humans and primates due to the

presence of an LTR in the vicinity. Madstrand and Mager (23)

showed the specie-specific promoter activity of a HERV-E LTR

for the apoC1 gene in humans and baboons but not in

other primates.

At the structural level, some studies have demonstrated

genomic rearrangements involving – and possibly driven by –

different loci of HERV-K (24). The impact of the HERV-K 14C

on host genomic diversity is probably among the most elegant

examples. By analyzing the multiple-copy element K14C in

human and primate Y chromosome, the authors demonstrated

that despite the integration being present in more ancient

primate hosts, the duplication event happened no longer than

10 million years ago, indicating that this retroelement

contributed to the genomic diversification of this chromosome

during speciation of particular primate lineages (25).

As viruses make up a considerable part of our genome and

some of them are active, it is clear that these viruses may

interplay within human physiology.

In this review, we will focus on discussing the main findings

regarding the role of HERVs in human physiology, the
Frontiers in Immunology 03
mechanism that drives the inflammation, the HERV

expression, and their interplay in modulating inflammatory

response in both health and disease.
Human physiology and HERVs

Regardless of how the majority of HERVs are silenced and

not supposed to be expressed, many elements were fixed in the

human genome and interplay with physiological activities. For

instance, HERV LTRs regulate the expression of several genes

(e.g. amylase, endothelin-b, pleiotrophin, apolipoprotein-C1)

(23), and HERV-E LTRs serve as an enhancer for the human

amylase gene (26). Syncytin-1 is one of the best-known examples

of recent acquisition and domestication of a gene from an

endogenous retrovirus in the human genome. This protein is

encoded by an HERV-W env gene located in chromosome

7q21.2, and plays a fundamental role in the human

embryogenes is . Syncytin-1 mediates the fusion of

cytotrophoblasts, resulting in the formation of the placental

syncytiotrophoblast (27, 28). Later in this review, we will also

discuss other fusogenic roles of Syncytin-1 (29).

Similarly to Syncitin-1, Syncytin-2 is encoded by a HERV, the

HERV-FRD and also participates in the placentation processes

(30). The critical role of retroviral genes for many physiological

activities suggests that the endogenization and fixation of

retroelements was fundamental to the human evolution.

Besides the well-documented physiological roles of the

HERVs, several studies point to their participation in host

defense against external agents such as exogenous viruses.

HIV-1 transactivates HERV-K via the HIV-1 tat protein,

which can be expressed in TCD4+ lymphocyte and therefore

TCD8+ lymphocytes may specifically respond to HERV-K

antigens, selectively eliminating HIV-Infected cells (31–33).

Similarly, distinct HERV families are overexpressed in tumoral

tissues. For instance, the HERV-E env gene is over expressed

exclusively in some types of tumors and might, through immune

responses directed against retroviral proteins, eliminate tumor

cells specifically. It was seen that HERV-E env peptides

expressed in renal carcinoma cells are able to stimulate the

TCD8+ lymphocyte response, contributing to the regression of

these tumors (34, 35).
Factors that contribute for
HERVs expression

HERV fusogenic activity in healthy and
pathological conditions

Myogenesis is characterized by the growth, differentiation,

and repair of cell muscle when cell fusion occurs. Cell fusion is

an energy-dependent process, and the fusogens are a crucial type
FIGURE 2

HERV assembly determined by the combination of distinct
retroviral genes (solo or from complete proviruses) from
different genomic locations within the genome.
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of membrane-bound proteins, which are mandatory for

overcoming plasma membrane hybridization with associated

energetic barriers (36). HERVs may act as fusogens, which was

formerly described in placental tissue (27). This fusion property

of Syncytin does not seem to be linked exclusively to the

placentation, but also to the myogenesis and osteoclast

formation. Previous findings revealed that mice that were

knocked out for HERV-W (Syncytin-1) had lower muscle

mass than mice that were expressing Syncytin-1, and was also

related to sexual dimorphism in mice (29). In fact, Syncytin-1

may promote the fusion of myoblast (37) and ultimately the

myogenesis, and may also interact with caveolin-3, which is a

member of the caveolin protein that is exclusively expressed in

the sarcolemma of the myocytes, and is one of the main

structural proteins of the caveolae membrane in the muscle

(37, 38). Importantly, strength physical exercise induces

microlesions in the muscle fiber, which may result in an acute

inflammatory process. Interestingly, it has been reported that

inflammatory and stress conditions facilitate HERV expression

(39, 40) two remarkable associations that will be discussed in the

following topic. In fact, higher levels of HERV expression in situ

were observed in high performance athletes (41). Therefore, we

might envisage a scenario where the fusogenic property of

HERVs, in special by HERV-W, might contribute to muscle

tissue repair after strength physical exercises.

Indeed, the fusogenic property of Syncytin-1 is widely

observed in the human physiology. Another noteworthy

example is related to osteoclasts. These are multinucleated

cells that are derived from the fusion of monocytes, and as

described previously, Syncytin-1 is necessary for the fusion of

these monocytes and the formation of osteoclasts. The level of

expression of this endogenous retrovirus protein is higher in the

plasma membrane than in other sites, and it acts in this site to

induce their fusion and culminates in the formation of

osteoclasts. Interestingly, Syncytin-1 also interacts with the

actin filaments of the osteoclasts, which are other cytoskeletal

proteins necessary to this process (42).

On the other hand, the fusogenic properties of retroviral

elements may cause bi or multinucleation of cancer cells. In fact,

it was reported that viruses and fusogens of human endogenous

retroviral elements are a natural reservoir of fusogenic particles

and proteins that could cause bi- and multinucleation of cancer

cells (43). Likewise, multinucleated giant cancer cells have been

found in several cancers caused by oncogenic viruses, suggesting

a possible correlation between viruses and fusogens of human

endogenous retroviral origin in cancer cell fusion (44).
Oxidative stress and HERVs

Oxidative stress is physiologically described as the

“imbalance between oxidants and antioxidants, in favor of

oxidants, leading to disruption of the redox signaling and
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redox homeostasis and/or molecular damage” (45). Reactive

oxygen and nitrogen species (ROS/RNS) are a group of

molecules that play a role in defense and signaling, but also in

damaging biological systems, depending on their rate of

formation, compartmentalization (intracellular fluids,

membranes, specific organelles, or extracellular space),

diffusion in hydrophobic or aqueous milieu, local antioxidant

defenses, etc. Spatiotemporal control of redox signaling is

achieved by compartmentalized generation and removal of

oxidants, which, therefore, are strongly dependent on the

physicochemical and metabolic/biochemical conditions at

different subcellular sites. This aspect has been conceptualized

as an integrated net of (micro) redox switches that sustain

cellular redox homeostasis in living cells (46) Among several

ROS/RNS (and also sulfur-centered free radicals), the

superoxide (O2•
-) and nitric oxide radicals (NO•), together

with hydrogen peroxide (H2O2) and peroxynitrite (ONOO)

are the most studied signaling molecules responsible for redox

homeostasis (47).

Strong evidence has shown that incorporation of a fragment

or complete primal virus into the human genome, specifically an

endogenous retrovirus, would have been capable of mutating the

ascorbate-producing gene. The viral enzyme reverse

transcriptase (RT) has been a mediator of genetic change for

more than three billion years, and retroviruses have influenced

the evolution of Old World monkeys and hominids (48)

Interestingly, free radical-induced mutations appear to also be

involved in the etiology of some cancers (49) and degenerative

diseases (50). It is well-accepted that the incidence of these

diseases may be a marker of the evolutionary diversification of

H. sapiens as a species, with a greater incidence of cancer –

discarding identified modern life causes, such as pollution,

sedentary habits, emotional stress, anxiety, etc. – indicative of

more mutations, some of which would be inheritable (51)

In agreement with the close relationship between oxidative

stress and HERV expression, recent findings have associated

several neurodegenerative diseases with HERV insertions into

the human genome (52). The aberrant expression of HERVs is

associated with neurological diseases, such as multiple sclerosis

(MS) or amyotrophic lateral sclerosis (ALS), inflammatory

processes, and neurodegeneration (53). HERVs are highly

defective, but few complete proviruses have retained the

classical genome organization of ancient retroviruses. Recent

studies on multiple sclerosis (MS) demonstrated that robust

oxidative stress on specific brain regions, as well as along neuro-

motor circuits, were associated with upregulation of the

transcription factors HERV-W/HERV-H. Moreover, HERV-W

has been directly correlated with CD14 and TLR4 proteins to

activate the production of proinflammatory cytokines IL-1b, IL-
6, and TNF-a in affected tissues (54). The activation of TLR4

also induces NO• production, aggravating the nitrosative/

oxidative stress condition mediated by peroxynitrite (ONOO-)

and other ROS/RNS, and thus, promoting injury to
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oligodendrocytes and demyelination of motor neurons (55).

HERVs can also be related to amyotrophic lateral sclerosis

(ALS). If HERV-K expression is forced in neurons, it causes

cellular degeneration mediated by its Env protein. Transgenic

mice expressing HERV-K Env in neurons developed a clinical

and pathological phenotype that resembles ALS, with typical

upper and lower motor neuron degeneration (56). However,

what triggers the expression of HERV-K in adult neurons of

patients with ALS remains unknown. In vitro studies showed

that neuronal injury due to oxidative stress or excitotoxicity is

apparently insufficient to cause activation of HERV-K genes, but

there is still huge controversy about this feature (57, 58).
Inflammatory responses and HERVs

It is broadly known that oxidative stress is closely associated

with inflammation (59) and, as previously mentioned, these

factors are pivotal players in the development of

neurodegenerative diseases, particularly in the context of

aberrant expression of HERVs (53).

Of interest, the chronic co-existence of systemic

inflammation and oxidative stress (60) can also indubitably

influence the activation of HERVs (52).

In terms of the inflammatory process and HERVs, there

seems to be a mutual influence, in which each one can act,

fueling a vicious circle between them, since it was reported that

inflammation can remove the necessary blocks to limit the

expression and regulation of the several genes mediated by

HERV, which causes a new imbalance of gene expression,

favoring an increase in instability and exacerbating the

inflammatory condition (61).

In fact, it is reasonable to suggest that HERV transactivation

can converge in fueling the inflammation, especially by the

capacity of the HERV-W family to interact with TLRs, as

formerly cited for TLR4 and CD14, leading to the induction of

a prominent pro-inflammatory response, which includes the

release of several cytokines, such as IL-1b, IL-6, and TNF-a (62,

63). Furthermore, it was also demonstrated that HERV can

induce NF-kB activation, leading to a cytokine response

involving T-helper 1 (Th1) and Th17 in a TLR2-dependent

manner (64). Activation of the immune response, mainly innate

immunity, by HERVs, can elicit an uncontrolled inflammation

that drives the occurrence of chronic inflammation, and

contributes to the development of autoimmune diseases (61),

as suggested by the studies of Barrat and cols (65). and

Yoshinobu and cols (66). in which self-nucleic acids, including

HERVs, after detection by pattern recognition receptors (PRRs),

such as TLRs, can be involved in autoantibody production in

systemic lupus erythematosus.

At this point, it is paramount to highlight that, according to

the results obtained in an in silico study, several transcription

factors can bind within the LTR sites of HERV-K, especially
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those associated with NF-kB and also the interferon (IFN)-

stimulated regulatory element, which increases the expression of

pro-inflammatory cytokines, such as type I IFNs (61, 67).

Therefore, very interesting findings demonstrate a remarkable

link between the initial innate immune response, in which

HERVs are pivotal elements, followed by a cellular immune

response, since type 1 IFNs have essential actions in these two

immune responses (61, 68)

In agreement with a previous study, TNF-a was able to

increase the RNA expression of HERV-H, HERV-K, and HERV-

W (69), through the TNF-a receptor signaling, that induces the

activation and translocation of NF-kB for the nucleus and binds

to sites presenting HERV LTRs. As specifically demonstrated for

HERV-W, after TNF-a signaling, the NF-kB binds to the

promoter and induces the expression of this type of HERV,

mainly associated with the Env protein Syncytin-1 (70).

In a different way, it is of utmost importance to point out

that in certain contexts the expression of some HERV Env

proteins, such as HERV-H and HERV-FRD (Syncytin-2),

could be related to an immunosuppressive action. In this

respect, it is known that Syncytin-2, a HERV-FRD Env

protein, presents a corollary immunosuppressive action in

preventing the activation of a maternal immune response

against the fetus alloantigens. Furthermore, it was reported

that the immunosuppressive action of Env protein from

HERV-H on the immune response in an experimental model

of cancer negatively impacted the tumor cell rejection (71).

Interestingly, it has been also reported that some Env proteins

fromHIV-1 and HERV-K can elicit the expression and release of

anti-inflammatory cytokines by immune cells, mainly IL-10,

through an immunosuppressive domain (isu) (72, 73), even

though this modulation is variable (73) and needs to be

better understood.

More recently, it was demonstrated that ERVs are also

involved in both homeostatic and inflammatory responses to

the microbiota (74) in a two-way relation, since exposure to

microbial products was able to control the expression of ERV

proteins and these proteins also drive the expression of certain

microbe-derived products, particularly TLR ligands in the gut

environment (75–77). As presented by Lima-Junior and

collaborators (74), the level of ERV expression was crucial to

control the tissue inflammatory responses to the microbiota in

murine model of psoriasis, which involved exacerbated

inflammation caused by Staphylococcus epidermidis in mice fed

a high-fat diet, and also in human psoriatic lesions.

In addition to these characteristics, it also has been

demonstrated that the endogenous retroelements HERV-derived

can be potentially recognized by T cell receptors (TCRs) and BCRs

as ‘self-peptides` and leads to immunological tolerance for them.

So, the presentation of HERV `self-antigens` can favor the T and

B cells to become immunologically aware of the existence of

endogenous retroelements, and maybe avoid the development of

some diseases, mainly autoimmune diseases. However, it was also
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reported that the host responses to several types of infectious

agents, by increasing the transcriptional induction of endogenous

retroelements, can rise the responses of T cells and B cells for these

retroelements (78, 79).

Beyond these characteristics, it has been suggested that the

Env protein from HERVs can act as a superantigen, able to drive

polyclonal activation of lymphocytes (80), and directly

impacting immune and inflammatory responses, as well as the

pathogenesis of autoinflammatory diseases (81, 82). Of interest,

by using quantitative PCR, it was demonstrated that the high

incidence of some aging-related diseases was putatively

associated with the elevation of the expression of several

HERV families (83). Hence, whilst it was shown that the RNA

levels of HERV-K (HML-2) and HERV-W families, in

peripheral blood mononuclear cells (PBMC), can gradually

increase from young to older adult individuals, it is

noteworthy that due to the fact that modulation in HERV

expression is under strict control, including the epigenetic

aspects, such as DNA methylation, HERV expression levels

between young and old individuals cannot be strikingly

different. Importantly, infection by exogenous viruses,

especially those whose present chronic/latent infection such as

Hepatitis C virus (HCV), Herpes simplex virus type 1 (HSV-1),

Human T-cell Lymphotropic Virus type 1 (HTLV-1), HIV,

Esptein Barr virus (EBV), Kaposi’s Sarcoma-associated

herpesvirus (KSHV), cytomegalovirus (CMV), may interfere

with many of these silencing strategies and play a key role as

epigenetic factors that may contributes to the HERVs activation

throughout the individuals lifetime (84–90).

These pieces of information are very important and suggest

that the profile of aging-dependent HERV expression can be

regulated by transcriptional relaxation or restriction (82), which

can impact the development of aging-related diseases,

preferentially autoimmune diseases.
HERVs and aging

Aging is a gradual process of changes that begins in early

adulthood. These changes can involve some alterations, such as

metabolic alterations, muscle changes, and neurocognitive

decline (91).

Regardless of all the mutation accumulations, it is well-known

that HERVs interact with the human genome in a positive and

negative way, as discussed when considering the role of HERVs and

human physiology. Importantly, with the aging-process, loss of

heterochromatin and then abnormal activation retrotransposons

can occur (92). The heterochromatin loss model is a fundamental

genetic mechanism underlying most of the changes in gene

expression observed with senescence (92). Importantly, HERV

expression level in babies is low (93), but increases considerably

in older adults and older people (83). Importantly, most

neurodegenerative and autoimmune diseases also occur in older
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people (94). These results show that, although the pathogenic

mechanisms are still not fully understood, the reactivation of

HERVs might be associated with an increased risk of

development of human aging-related diseases (95).
HERVs expression in diseases

HERVs and multiple sclerosis

Multiple Sclerosis (MS) is a neurological autoimmune

disease that presents a progressive pattern, followed by a

degenerative profile caused by continuous damage to myelin

and axons (94). The disease presents a complex profile of gene

expression that varies according to the clinical condition of the

affected patients (96). The possible etiological role of HERVs in

MS pathogenesis has been extensively studied. The first evidence

dates to the late 80s, when a virus with reverse transcriptase

activity was isolated from the circulating leptomeninges cells in

cerebrospinal fluid (CSF) in a patient with MS. Back then, the

ascension of Retrovirology was ongoing, and the researchers

hypothesized that this could represent an infection event either

by HIV or HTLV. However these cells tested negative for anti-

p24 (HIV) and anti-p19 (HTLV) monoclonal antibodies (97,

98). Later on, the virus was cloned and characterized, its genes

were identified and this new retrovirus was named Multiple

Sclerosis-associated Retrovirus (MSRV), which was later found

to belong to the HERV-W family (99). Since then, many studies

have focused on understanding the dynamics of HERV-W

transcriptional activity in MS, and it is a consensus that

HERV-W expression is increased from 1.5 to 3 fold in MS

patients compared with healthy controls (100–108).

Increased HERV-W activity has been repeatedly described in

sclerotic plaques (106, 107), in peripheral blood mononuclear

cells (100–105, 109), and in LCR (108). Regardless of the distinct

clinical presentation of MS, HERV-W transcriptional activity is

high (102). Many hypotheses for this increase have been raised.

One feasible explanation comes from the data that MS patients

present a greater HERV proviral load when compared to healthy

individuals (110), and more proviruses means more mRNA.

Alternatively, the generalized inflammation that MS patients are

prone to present interferes with the chromatin, unsilencing the

dormant HERVs. Once active, an HERV may retro-insert within

other positions in the human genome, contributing to a higher

HERV-W sequence load within the genome (111).

Further analysis on the HERV-W env protein, which is

commonly detected in demyelinating MS brain lesions (102, 106,

112, 113), revealed that the HERV-W env protein is immunogenic,

since it induces the release of inflammatory cytokines by initial

agonistic effects through toll like receptor 4. This process may lead

to a complex inflammatory response cascade (63, 114).

The immunopathogenic role of the HERV-W env protein

has also been described in vivo. Perron et al., described that mice
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immunized with Myelin Oligodendrocyte Glycoprotein (MOG)

later exposed to the HERV-W env protein developed

Experimental Allergic Encephalomyelitis (EAE), one of the

animal model diseases of MS. The authors also described that

the clinical findings worsened according to the HERV-W-env

administered doses (115). However, how this protein induces

autoimmune pathological responses is still unclear. It is

suggested that HERV-W might drive immune responses

through molecular mimicry. In fact, HERV-W and myelin

proteins, such as MOG and Myelin Basic Protein-1 (MBP-1)

share at least six epitopes that could potentially cross-react (100,

116, 117).

If this can occur in vivo, therapeutic solutions focused on

HERVs could be a possibility. In fact, Natalizumab, one of the

main therapeutic strategies for MS patients, was able to reduce

the levels of HERV-W expression and also the humoral response

against HERV-W peptides after a few months of treatment (118,

119). Additionally, a monoclonal antibody against the HERV-W

env protein was developed and shown to be safe for use in MS

patients (120–124). Although the monoclonal antibody failed to

reduce the acute inflammatory response, it was able prevent the

neurodegenerative signs (125).

The explanation for these findings might come from the

actual role of HERV-W in MS pathogenesis: Are these HERVs

sufficient to trigger the immune response? or, which loci are key

for triggering the immune response?

HERV transcriptional activity is heterogeneous and is

critical to determine which proviruses are the most active in

MS. Unfortunately, few studies have focused on the diversity of

active proviruses. The first study devoted to understanding

precisely the origin of transcripts described Xq22.3, 7q21.2,

and 17q12 as the most active HERV-W loci (126). Some years

later, using next generation sequencing, the previous data on the

most active loci were confirmed, although no significant

difference in HERV-W expression was found between MS

patients and healthy individuals (127). Recently, a

transcriptome analysis supported that these loci were

overexpressed in MS patients, and besides HERV-W, the

upregulation of other 18 HERV members was also described

(109), shedding light on the broad decontrol of the HERV

silencing during MS.

Although several decades have been dedicated to

understanding the role of HERVs in Multiple Sclerosis

pathogenesis, there are still many unanswered questions that

should be considered in further studies.
Rheumatoid arthritis and HERVs

Rheumatoid arthritis (RA) is an inflammatory disease that

involves small and large joints. RA is one of the most common of

autoimmune diseases and, like Multiple Sclerosis, RA is more

frequently described in women than man (128). This disease is
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characterized by inflammation of the synovium and is linked to

the destruction of articular cartilage and bone, which indicates a

local immune response (129). HERVs from distinct families

seem to be overexpressed in RA patients, such as HERV-K,

HERV-L, HERV-W, and ERV-9 (130, 131). Although less

explored than in Multiple Sclerosis, some studies point to a

relation between HERV expression and RA.

Importantly, both the number of RA patients who present

antibodies against the HERV-W env protein and antibody titer

levels are higher than in healthy subjects (132), indicating that

the humoral response against HERV is upregulated in the

disease. Contrasting results, however, reported that the protein

HERV-K rec, analog to HIV rev protein, was detected in the

synovial tissue of both healthy and RA patients, and it was

actually down regulated in RA. Interestingly, HERV-K rec

proteins derived from an alternatively spliced gene were

detected in the synovia of RA patients (133).

A genetic association between RA patients and HERV LTR

has also been postulated, since polymorphisms were detected in

HLA-DBQ81 alleles, where HERV LTRs are present.

Importantly, these genetic alterations are related to deletions

or the presence of distinct LTRs within these alleles and reveal a

diversity of LTR profiles that might be linked to RA (134).
HERVs and COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) emerged in late 2019 in China, causing a global pandemic of a

disease later named Coronavirus Disease 2019, or COVID-19.

Most patients with COVID-19 will experience mild or moderate

respiratory symptoms, while severe COVID-19 is characterized by

intensive inflammatory responses, and high viral loads, and affects

mostly older adults and individuals with comorbidities. Better

understanding of viral immunopathogenesis is needed to identify

new avenues for treatments (135).

Research relating HERVs to COVID-19 is ongoing and until

now, accumulated data indicate differential expression of some

HERV families during the acute phase of the disease, generally

associated with enhancement of inflammatory processes (136,

137). It was initially described that the envelope genes from

HERV-W and HERV-K were highly expressed in peripheral

blood mononuclear cells (PBMC) from healthy individuals

exposed to SARS-CoV-2 in vitro, but only the HERV-W-env

protein was synthesized. Subsequently, in vivo analysis

confirmed an increased level of HERV-W-env in COVID-19

patients. The authors pointed out that HERV overexpression

was apparently a consequence of direct transactivation by the

presence of SARS-CoV-2 and not a consequence of the

inflammatory process experienced by the cytokines and

chemokines released during the infection (136, 137).

As COVID-19 has different manifestations, from

asymptomatic to the most severe form, which usually affects
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older adults and people with comorbidities, studies have been

carried out to understand whether the elevated expression of

HERV contributes to the worsening of the disease. In Balestrieri

et al. (2021) (136) a higher percentage of the HERV-W-env

protein was seen in leukocytes, especially in TCD3+

lymphocytes of COVID-19 patients, which was also correlated

with the expression of programmed cell death 1 (PD1), an

exhaustion marker, and in CD8+ T cells, with the expression

of CD57, a senescence marker. This correlation was also

associated with the COVID-19 severity and reflected the

respiratory outcome of the patients during hospitalization (136).

These data were later supported by another group that

evaluated HERV expression of the human bronchial epithelial

cell lineage (HBEC) with induced senescence. The authors

described overexpression of distinct HERV families, including

HERV-K, HERV-W, and HERV-FRD, this last one being the

most upregulated element among them, in comparison with the

noninduced HBEC (138). In this work, the authors also found

complete HERV dysregulation in bronchoalveolar lavage fluid

(BALF), but not in PBMC, strongly suggesting a role of HERVs

in the inflammatory process. Similarly, Marston et al. (2021)

demonstrated upregulation of retroelements in BALF but not in

PBMC. The authors claim that such a different profile of HERV

expression could be explained by differences in permissibility to

viral infection of blood cells with regard to the cells present in

BALF (138, 139).

The studies performed in COVID-19 patients are not limited

to mRNA detection. As already observed in autoimmune

diseases, Simula et al. (2022) described the presence of anti-

HERV-W-env and anti-INF I antibodies in ICU COVID-19

patients (140), suggesting that the inflammatory component of

severe COVID-19 may be related to the presence of

HERV antigens.

In agreement with the hypothesis that HERV overexpression

is related to disease severity, Temezoro et al. (2022) described the

upregulation of HERV-K genes in tracheal aspirates from COVID-

19 patients submitted to invasive mechanical ventilation (IMV)

and the overexpression of this retroelement was also associated

with early mortality (141). Guo et al. (2022) used real time PCR to

investigate if the expression of HERV-K (HML-2) could stimulate

the synthesis of IFN-1 in patients with COVID-19. The authors

found that gag, pol, and env HERV-K genes were highly expressed

in vivo and in vitro through SARS-COV-2 infection and were

positively correlated with IFN-related gene expression in moderate

and severe cases (142). The authors, however, associated the

HERV-K upregulation with a protective role, since as more

HERV mRNA was detected more INF genes were activated.

A study performed by Tovo et al. (2021) also investigated

HERV activity and the expression of genes related to the

antiviral responses in COVID-19 children, but described

slightly different results. The authors observed that proviral

genes from HERV-H, HERV-K, and SYN-1 and SYN-2 were

upregulated in mild and moderate cases of COVID-19, but not
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in severe cases. They also found positive correlations between

TRIM28/SETDB1 and HERV activity, suggesting that the

upregulation of HERVs in mild and moderate cases was able

to enhance the innate protective mechanisms. The distinct

HERV profile seen in children and adults supports the

hypothesis that increased expression of HERVs could be

associated with a more severe form of the disease in people

with advanced age, but not in children (143).

In summary, from the data accumulated to date from SARS-

COV-2 and HERVs, it is only possible to associate HERV

dysregulation with COVID-19 severity. The significance and

mechanisms involved in the HERVomics remain to be elucidated.
Systemic lupus erythematosus
and HERVs

Systemic lupus erythematosus (SLE) is a complex multisystem

and autoimmune disorder that affects predominantly women of

childbearing age (144). Lupus was initially described as a

dermatological condition but it is currently known that the

clinical features of SLE are much wider and any system can be

affected. Some of the most common symptoms may include

fatigue, thrombocytopenia, skin rash, arthritis and arthralgia, and

glomerulonephritis. Genetic and environmental factors appear to

contribute to the pathogenesis of SLE, although an inheritance

concordance rate is only moderate in both monozygotic and

dizygotic twins. Women comprise 90% of SLE cases, and

hormones are recognized as contributors to SLE development,

since estrogen and prolactin enhance immune responses through

diverse mechanisms (145). The production of anti-nuclear

antibodies (ANAs) is a hallmark of SLE, so their detection in

the blood of suspected patients is considered a confirming

diagnostic (146).

Infections have been implicated in SLE development either

as a causal or protective role for many years. While Epstein–Barr

virus and Cytomegalovirus are considered as putative triggers,

other infectious agents such as HBV are believed to play a

protective role (147, 148). Direct and indirect evidence of a link

between retroviral infections and SLE etiology has also been

demonstrated (149). The evidence ranges from the detection of

interferon production to the presence of antibodies anti- HIV-1

p24 and p17 gag proteins in SLE patients (150, 151). More

recently, however, PCR tests failed to demonstrate the presence

of HIV or any other exogenous retroviruses in these patients

(152). Coincidently, the discovery of HERVs has helped to solve

the puzzling findings.

Several authors have described the increased detection of

HERV mRNA in SLE individuals, particularly he HERV-K102

(153), HRES (154), and HERV-E 4-1 (155, 156). A broader

analysis based on RNA sequencing found six families of HERVs

differentially expressed in SLE; the ERV-L, ERV3, MER4,

HERV-H, HERV-K, and HERV-L families. Interestingly, many
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of the overexpressed elements were located near genes related to

the immune system or the innate immune response to viruses,

consistent with the involvement of innate immunity in

SLE (157).

The belief in participation of retroviruses in the pathogenesis

of SLE also arose through a series of SLE mouse NZBxNZW/F1

models. Elevated serum levels of a retroviral glycoprotein gp70

were demonstrated as well as high levels of interferon, as seen in

patients with SLE (158).

Besides mRNA detection in humans, antibodies and cellular

responses directed to HERVs have also been described, although

the immune response against HERV-derived proteins is hard to

explain since, as self-antigens, they should not induce immune

responses. However, using recombinant proteins, Perl and

colleagues demonstrated that almost half of patients with some

autoimmune disease and 52% of those with SLE presented

antibodies against HRES-1 (159). A few years later, a Japanese

study also described that a significant proportion of SLE patients

presented antibodies against gag proteins from HRES-4-1, and

some of them against env proteins (160). Polymorphic

genotypes of HRES-1 are also correlated with SLE. Magistrelli

et al. (161) demonstrated that a polymorphic HindIII site,

identified as a G/C transition at position 653 of the long

terminal repeat region, defines two allelic forms of the HRES-1

genomic locus, which are differently found in SLE and non-SLE

individuals. To date, the weight of evidence put HRES-1 among

the best ERV candidates for participating in SLE etiopathology.

Although the HERVs overexpression in autoimmune

diseases is well recognized, the link between the retroelements

activation and autoimmunity is still controversial.

In fact, the reduced expression of epigenetic repressor genes

due to global genomic hypomethylation observed in SLE (153,

162) may well explain the overexpression of several originally

silenced endogenous retroviruses and retroelements. However,

despite the myriad of retroelements and ERV genomes scattered

through the human genome, only specific elements/families are

unsilenced during the epigenetic dysregulation that occurs in

SLE. For instance, although HERV-E clone 4–1 upregulation is

mostly due to the hypomethylation at LTR2C in lupus CD4+ T

cells, it is supposed to participate in disease pathogenesis via

miR-302d/MBD2/DNA hypomethylation and IL-17 signaling

through the 3’LTR (156).

Even if the overexpression of retroelements is not sufficient

to trigger the disease, this does not mean that it is not

detrimental, since their expression can somehow elicit

immunological responses. The simple accumulation of HERV-

derived nucleic acids can stimulate interferon and anti-DNA

antibody production in SLE. In fact, HERVs are believed to be

implicated in SLE pathogenesis in different ways, which include

structural or functional molecular mimicry, innate immune

activation through IFN production, promoting or enhancing

the transcription of neighbor genes, and by superantigen

production (116, 163, 164). The HERV expression itself is
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sufficient to activate cells of the immune system, especially

CD4 T lymphocytes, since they encode proteins that can act as

superantigens (165).

Molecular mimicry between endogenous and retroviral

proteins has long been suggested to explain atypical

immunological responses found in patients suffering from

distinct autoimmune disorders (161). Autoantibodies to

nuclear proteins are associated with immune complex

formation and tissue deposition, as observed in murine models

and in humans for HERV-K102. These complexes tend to recruit

and activate inflammatory cells (153, 158). In addition, the

autoantibodies that recognize snRNPs have been described in

some rheumatic diseases, including SLE, and this protein

contains a region that cross reacts with a conserved domain

within the Gag protein of mammalian-type C retroviruses (166),

such as the HRES. Talal and colleagues (150) described that anti-

Sm antibodies, a hallmark in SLE, also partially cross-react with

p24 gag. It was not difficult to conclude that the presence of anti-

HIV antibodies in SLE patients in the absence of HIV infection

can only be explained through cross-reactivity with endogenous

proteins/antigens, likely produced by retroelements (167, 168).

Although the true causative role of HERVs in autoimmune

diseases remains to be proved, their involvement in SLE

pathogenesis in different degrees is well demonstrated.

In summary, HERV expression in the host genome is

influenced by external (UV light, infectious agents, and chemical

elements), internal (hormones chemokines and cytokines), and

epigenetic factors (such as DNA methylation and histone

modification) (169). Although the overexpression of HERVs and

other retroelements in several pathological and autoimmune

diseases is recognized, there is little mechanistic understanding

of how HERVs contribute to local or systemic inflammation. It is

also a matter of debate whether the overexpression is a causative

agent of the autoimmunity or a simple bystander.
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