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Controversies and expectations
for the prevention of GVHD:
A biological and
clinical perspective

Benjamin Watkins* and Kirsten M. Williams

Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University,
Atlanta, GA, United States
Severe acute and chronic graft versus host disease (GVHD) remains a major

cause of morbidity and mortality after allogeneic hematopoietic cell

transplantation. Historically, cord blood and matched sibling transplantation

has been associated with the lowest rates of GVHD. Newer methods have

modified the lymphocyte components to minimize alloimmunity, including:

anti-thymocyte globulin, post-transplant cyclophosphamide, alpha/beta T cell

depletion, and abatacept. These agents have shown promise in reducing severe

GVHD, however, can be associated with increased risks of relapse, graft failure,

infections, and delayed immune reconstitution. Nonetheless, these GVHD

prophylaxis strategies have permitted expansion of donor sources, especially

critical for those of non-Caucasian decent who previously lacked transplant

options. This review will focus on the biologic mechanisms driving GVHD, the

method by which each agent impacts these activated pathways, and the clinical

consequences of these modern prophylaxis approaches. In addition, emerging

novel targeted strategies will be described. These GVHD prophylaxis

approaches have revolutionized our ability to increase access to transplant

and have provided important insights into the biology of GVHD and

immune reconstitution.

KEYWORDS

GVHD, GVHD prophylaxis, controversy, GVHD biology, GVHD therapies
Current understanding of the mechanism
underlying acute GVHD

While significant advances have beenmade in our knowledge of the pathogenesis of acute

graft versushost disease (aGVHD), ourunderstanding is incomplete.AcuteGVHDis thought

to primarily be caused by the recognition of self (or host) antigens by donor T cells. Tissue

damage is a key component to initiate aGVHD and often begins prior to the introduction of
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the graft. This tissue injury is due to inflammation associated with

theHCTpreparative regimenbutmay alsohave occurred as part the

underlyingdisease (e.g., hemophagocytic lymphohistiocytosis)or its

treatment (e.g., chemotherapy for hematologic malignancy).

Myeloablative and total body irradiation-based regimens

associated with greater tissue inflammation have been linked to

higher rates of aGVHD (1, 2). Notably, the sites most affected by

aGVHDare also the sitesof greatest tissue injuryafterHCT, the skin,

gastrointestinal tract, and liver. This tissue damage leads to the

activation of antigen presenting cells (APCs) through the release of

inflammatory cytokines (TNF, IL-1, and others), pathogen-

associated molecular patterns (PAMPs), danger-associated

molecular patterns (DAMPs), and the increased expression of

MHC antigens and costimulatory pathways (3–6). This initiates

donor T cell activation that target host antigens via host or donor

antigen presentation (via MHC) to donor T cells, followed by T cell

receptor (TCR) engagement and costimulation in the established

proinflammatory milieu (7). This process is augmented in the

setting of antigen mismatch and increased T cell dose but can

occur even inmatched transplantsdue to the absenceof host thymus

selection by donor incoming T cells and recognition of minor

antigen differences (8, 9). These activated T cells will undergo

proliferation and differentiation and produce more pro-

inflammatory cytokines, PAMPs, and DAMPs, leading to an

inflammatory cascade that results in the end-organ damage
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known as aGVHD (3). aGVHD has traditionally been thought to

be a donor CD4+T cellmediated disease, specifically Th1 andTh17

driven. However, donor CD8+ T cells alone can be sufficient to

induce aGVHD (10) andTh2 andTh22 cellsmay play an important

role as well (11, 12). Additionally, host tissue-resident T cells have

also been implicated in the development of aGVHD (13). Murine

studieshave suggested thatnaïveTcells are theprimarymediators of

aGVHD (14–16), though this has yet to be confirmed clinically.

Many risk factors for aGVHD have been identified and include

increased HLA disparity, increased intensity of the conditioning

regimen, female donors for male recipients, and decreased gut

bacterial diversity (17–22). In summary, aGVHD likely stems

from tissue injury, inciting a proinflammatory milieu with host

antigen presentation, T cell activation that includes many CD4+

subsets, and a vicious cycle of T cell produced proinflammatory

cytokines that induce ongoing tissue damage (Figure 1).
Current understanding of
the mechanism underlying
chronic GVHD

The mechanisms underlying chronic GVHD remain

incompletely understood. Since acute GVHD is a major risk
FIGURE 1

Mechanisms of aGVHD Schema of the contributions to acute GVHD after hematopoietic cell transplantation The pink donor and blue recipient
represent the gender mismatch (female to male); <8/8 match= not fully HLA matched donor/recipient pair, PBSC, peripheral blood stem cell
source; T cell dose, higher T cell doses are linked to more disease. For the host, chemo/XRT, chemotherapy/radiation with increased
preparative regimen intensity linked to increased risk of aGVHD and the microbiome potentially playing a role. The key contributing T cell
populations are shown (T Eff-Th, T effector helper cell; DAMPS, danger-associated molecular patterns; PAMPS, pathogen-associated molecular
patterns. The figures were generated by the authors using BioRender.com.
frontiersin.org
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factor for the development of cGVHD, there is overlap in these

drivers. These include tissue injury, T cell dose, and age of the

donor and recipient, and withdrawal of immunosuppression

(Figure 2). Tissue injury may be pre-existing, due to pre-

transplant preparative regimens such as in aGVHD, or due to

second insults, induced by later infections and the impact on the

microbiome, or local injury e.g. sun-exposure (23). Similar to

aGVHD, tissue injury leads to the production of DAMPS,

exposing previously dormant host antigens that can engender

alloimmunity (24). Higher T cell dose, HLA mismatch, and use

of peripheral blood mobilized stem cells rather than marrow are

risk factors for both acute and chronic GVHD (17, 25, 26). This

is likely due to presence of higher numbers of alloreactive T cells

in the product, and a greater likelihood of alloreactivity due to

mismatch. Increasing age of the donor and recipient also

increase the likelihood of acute and chronic GVHD, which

may be due to greater exposure to host antigens through

increased age-related tissue impairment and a more

oligoclonal donor T cell populations, linked to decreased

tolerance. Advancing age is also linked to impaired

thymopoiesis post-HCT, which may explain part of the

increased risk of cGVHD, as T cell recovery is then reliant

upon peripheral expansion rather than recovery of thymus
Frontiers in Immunology 03
activity leading to increased diversity and tolerant T cells (27–

30). However, strategies to reduce aGVHD have not always

decreased cGVHD, and vice versa, suggesting that there are

unique biologic pathways that can incite cGVHD. Cord blood T

cells with a predominance of recent thymic emigrants, and male

donors for male recipients have both been associated with less

cGVHD, likely due to increased tolerance of the infused

lymphoid populations (31–34). Dysregulated T subpopulations

have been specifically linked to cGVHD including a

preponderance of Teff and Th17s, or low Treg/Teff and NKT/

Teff ratios (35–39). Miscreant B cells and a paucity of

plasmacytic dendritic cells have similarly been linked to

cGVHD propagation (40–46). Alternatively activated

macrophages have also been linked to some cGVHD processes

(47). Finally, the role of host stromal cells in damaged secondary

lymphoid organs may set up pathologic immune responses

driving cGVHD, through aberrant interactions with CD4 T

cells and B cells (40, 48–50). Collectively, these data support

that cGVHD is a dysregulated immunity, often established early

in the transplant process, through tissue destruction, alloantigen

recognition, and a predominance of activating lymphocytes with

few regulator cells to curb the maelstrom that culminates in

chronic GVHD.
FIGURE 2

Mechanisms of cGVHD Schema of the contributions to chronic GVHD after hematopoietic cell transplantation The pink donor and blue
recipient represent the gender mismatch (female to male); <8/8 match= not fully HLA matched donor/recipient pair, PBSCT= peripheral blood
stem cell source, dec. if cord= decreased if cord blood source used, T cell dose= higher T cell doses and B cells are linked to more cGVHD. For
the host, the microbiome may potentially play a role in addition to pre-HCT organ injury. The key contributing T cell populations are shown (T
Eff-Th, T effector helper cell), Treg, T regulatory cell; RTE, recent thymic emigrants; DAMPS, danger-associated molecular patterns; alt. act.
Macrophages, alternatively activated macrophages. The figures were generated by the authors using BioRender.com.
frontiersin.org
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Strategies to reduce acute and/or
chronic GVHD

One of the most important factors in the prevention of

GVHD is the selection of a donor. HLA identical matched

siblings remains the gold standard for transplantation and is

associated with the lowest rates of acute and chronic GVHD.

There is ongoing debate over the next best option (unrelated,

cord blood, or haploidentical donor) which will be discussed.

High resolution HLA typing for unrelated donors is

recommended to include HLA-A, HLA-B, HLA-C, HLA-

DRB1, and HLA-DPB1 loci with HLA-DQB1 and DRB3/4/5

optional (51). Some studies have shown that mismatches at

HLA-DQB1 (52), HDRB3/4/5 (53), and others may increase

AGVHD however this has not been validated in larger studies

and has not been shown to impact survival. Matching at HLA-A,

HLA-B, HLA-C, and HLA-DRB1 should be prioritized and

nonpermissive HLA-DPB1 mismatches should be avoided due

to its association with increased mortality (52). HLA

mismatching at HLA-A, HLA-B, HLA-C, and HLA-DRB1 is

associated with increased rates of GVHD and decreased survival

but there is no agreed open preference for mismatched loci or

allele combination other than prioritizing HLA-C*03:03 over

C*03:04 (51). More recently evidence has also suggested that

certain HLA-B leader dimorphisms may impact outcomes, with

better rates of GVHD and nonrelapse mortality for those
Frontiers in Immunology 04
mismatched at the threonine leader (TT genotype) compared

to either the methionine genotypes (MM or MT) (54).

Other strategies to reduce acute and/or chronic GVHD have

focused on preparative regimens and graftmanipulation. In addition

to the use of immature thymus-derived T cells in cord blood, these

have largely included either prioritizing genetically HLA-matched

donors and/or graft engineering via ex vivo and in vivo lymphocyte

selection, depleting functional malevolent lymphocytes to achieve

long termdurable tolerance. The potential risks of this approach that

curtails the infused lymphocyte activity are increased relapse rates,

graft failure, or infections (Figure 3). The application of the GVHD-

free, relapse free, survival proportion has enhanced our ability to

compare these GVHD-reduction approaches, including these key

risks in a single outcome measure, and thus included in the

discussions below where possible. However, it is important to note,

that the risks ofGVHDand relapsemaybe different in termsof long-

term outcomes, so there remains value in reporting rates of relapse

and acute and chronic GVHD separately. Herein, we describe the

publisheddata foreachmethodofGVHDreductionand thendiscuss

the controversies in the field between the disparate donor and

prophylaxis regimen options.

Anti-thymocyte globulin

Anti-thymocyte globulin (ATG) is composed of antibodies

to T cells generated in a horse or rabbit and thus work by
FIGURE 3

Personalized approach to GVHD prophylaxis. Variables to consider for the personalized approach to GVHD prophylaxis. The figures were
generated by the authors using BioRender.com.
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antibody mediated clearance of T cells. ATG is typically added to

a standard backbone of methotrexate and calcineurin inhibitor

though rare studies include other agents (e.g., sirolimus). The

equine preparation was generated against human thymus cells.

Rabbit ATG is generated by inoculating rabbits with either a

human T cell leukemia cell line (ATG-F) or human thymocytes

(ATG-T). Because these antibodies are developed in response to

different T cell populations, it is not surprising that the

polyclonal antibody composition differs. While ATG-F and

ATG-T both react to CD2, CD8, CD11a, CD107a, ATG-F has

a higher response to CD28 and ATG-T has greater activity

against CD3 and CD4 (55). Data have suggested that rabbit ATG

may preserve Tregs better than equine ATG, a potential benefit

to avert GVHD (56, 57). While equine ATG is still utilized in

some preparative regimens, most current practice utilizes rabbit

ATG as some larger studies have shown that the rabbit

preparation was associated with less acute and chronic GVHD,

likely due to better T cell depletion (58, 59). While the effect of

rabbit ATG on T cell subpopulations is not fully understood in

humans in vivo, one study linked reduced cGVHD to lower

naïve helper T cells after ATG exposure, and suggested that this

was a primary mechanism of action (60). The impact of ATG on

immunity is also influenced by the total dose, timing of

administration in relation to transplantation, and peri-

transplant host lymphocyte count. Higher doses of ATG,

timing close to transplantation, and lower host total

lymphocyte count can all lead to persistent ATG exposure

after the infusion of donor T cells and subsequently to the

downstream effects of donor T cell depletion, increasing the

potential for relapse, infections, and post-transplant

lymphoproliferative disorders (61–66). Thus, these factors

must be considered when evaluating outcomes after ATG.

Studies have consistently shown reduction of acute and

chronic GVHD after ATG exposure. Most studies are

performed using peripheral blood, many randomized to

controls, and most include matched related and unrelated

donors (67–76). These studies represent over 1600 adult

patients with hematologic malignancies treated with ATG,

with the majority receiving ATG-F, with few receiving ATG-T.

The median rates of grade II-IV aGVHD were 18% across the

studies (ranging from 7-34%), and 28% cGVHD (16-28%) with

12% extensive cGVHD (6-13%), lower than controls in

randomized studies (67–76). The relapse rates were not

significantly increased in most studies, ranging from 16-37%,

with higher rates of relapse often linked to higher exposure of

ATG (67–76). In most studies, infections were comparable

between ATG treated patients and other GVHD prophylaxis

strategies, with severe bacterial infections in 42-45% of patients

reported (2 studies), invasive fungal disease in 14% (2 studies),

and deaths to due to infections ranging from 15-17% of the total

(67–76). Notably, the incidence of viral reactivations varied

widely, from 7.5-62% of CMV reactivation, with the higher

incidence exceeding the controls of this study (68, 70, 71, 75, 76).
Frontiers in Immunology 05
In two studies, EBV reactivation was higher than controls, again

ranging widely among studies, from 4-71% with the lower

incidence possibly linked to the addition of CD20 blockade in

the regimens (70–73, 76). Deaths due to infection ranged from

15-17% overall (67, 74). Collectively, these data suggest that

infectious immunity was relatively comparable, with the possible

exception of CMV and EBV viral reactivations. The rates of graft

failure were low (1-3%) with the exception of a single study

(21%) (67–75). Overall survival was comparable in most studies,

with a median of 64% (55-74%) and GRFS ranging from 38-50%

(67–75). Collectively, these data support the use of rabbit ATG

for the prevention of acute and chronic GVHD in adults

undergoing HCT for hematologic malignancies, especially with

peripheral blood donor source, with modest or no impact on

GVL, engraftment, and most infections with the exception of

viral reactivations.
Post-transplant cyclophosphamide

Cyclophosphamide is an alkylating agent that causes DNA

strand breakage and replication stress in dividing cells. Its use in

the post-transplant setting to prevent GVHD was pioneered at

Johns Hopkins University. It has been posited that post-

transplant cyclophosphamide (PTCy) works through the

preferential killing of alloreactive donor T cells followed by

peripheral tolerance induction through clonal deletion and

Treg suppression and lastly by central deletion of alloreactive

T cell precursors in the thymus (77). However, our

understanding of the mechanisms of action of PTCy is

evolving and new evidence suggests that alloreactive T cells

may not be eliminated but rather have reduced proliferation and

impaired function (78). PTCy is typically paired with MMF and

tacrol imus that begins fol lowing the last dose of

cyclophosphamide. Waiting to start tacrolimus and MMF until

after cyclophosphamide allows for unchecked alloreactive T cell

proliferation in the absence of immunosuppression that is

eliminated by the cyclophosphamide.

PTCy was first evaluated in non-myeloablative conditioning

regimens for haploidentical transplants utilizing bone marrow

grafts (79, 80). A dose of 50mg/kg of cyclophosphamide was

given on days 3 and 4 post-transplant followed by MMF and

tacrolimus on day +5 (79). The results of the Phase I/II trial revealed

grade II-IV and grade III-IV aGVHD rates of 34% and 6% and

extensive cGVHDof 5%. Graft rejection occurred in 13% of patients

and the relapse rate at 2 years was 58% with a 2-year EFS of 26%.

With the encouragingly low rates of GVHD in the initial trial, there

have been numerous subsequent trials evaluating PTCy in the

haploidentical setting with nonmyeloablative and reduced

intensity conditioning. The median rates of grade II-IV aGVHD

were 32% across the studies (ranging from 19-34%), 6% grade III-

IV aGVHD (0-10%) and 26% cGVHD (13-34%) (79, 81–85).

Relapse rates ranged from 31-58% with EFS of 26-55%. There
frontiersin.org
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was one randomized phase 3 study comparing double umbilical

cord blood (dUCB) transplant to haploidentical with PTCy with

reduced intensity conditioning which showed improved OS with

haploidentical transplant but with higher rates of relapse. There was

no difference in EFS, aGVHD, or CGVHD (83). With relapse being

a concern in reduced intensity and nonmyeloablative haploidentical

transplant with PTCy, more intensive conditioning has been

evaluated (86–90). The median rates of grade II-IV aGVHD were

24% across the studies (ranging from 16-43%), 7% grade III-IV

aGVHD (7-23%) and 30% cGVHD (15-56%). There appeared to be

an improvement in relapse (22-44%), EFS (50-79%), and OS (67-

85%) with the more intensive conditioning.

PTCy has also been evaluated in the matched related and

matched and mismatched unrelated donor setting (81, 91–93). The

median rates of grade II-IV aGVHD were 51% across the studies

(ranging from 27-77%), 11% grade III-IV aGVHD (0-15%) and

16% cGVHD (9-28%) with the range of relapse, EFS, and OS being

17-28%, 60-69%, and 69-73%. The ACCESS study (NCT04904588)

is an ongoing prospective Phase II study evaluating PTCy in HLA-

mismatched unrelated donor transplant.

With the success of PTCy in the haploidentical and unrelated

donor setting, there has been an increasing debate over whether a

matched unrelated or haploidentical donor would be preferred

given the lower cost and increased accessibilitywitha relateddonor.

A recent CIBMTR analysis compared haploidentical and matched

unrelated donor (MUD) transplants inwhich both groups received

PTCy GVHD prophylaxis (84). In the reduced intensity setting,

lower rates of grade II-IV aGVHD, grade III-IV aGVHD, and non-

relapse mortality, while higher DFS and OS were observed in the

matched unrelated donor (MUD) setting.Nodifference in cGVHD

was seen. BMT CTN 1703, is a randomized, multicenter, phase III

trial comparing PTCy, tacrolimus, and MMF to standard

tacrolimus and methotrexate GVHD prophylaxis in patients

receiving reduced intensity conditioning with a PBSC graft with

hematologic malignancies. Donors will include matched siblings,

matched and mismatched unrelated donors. The trial has

completed enrollment however, data is not yet available.

The majority of the initial trials evaluating PTCy utilized

bone marrow grafts but more recently PBSC grafts have been

used. There have been no randomized prospective studies

comparing graft sources however multiple retrospective studies

have been performed with mixed results (94–97). While most

studies have shown higher rates of aGVHD and/or cGVHD with

PBSC grafts (95, 96, 98), survival differences have not

been observed.

Delayed immune reconstitution and associated increased risk

of infections has been observed with haploidentical transplant

with PTCy (99–101). A recent CIBMTR analysis found higher

rates of CMV reactivation with PTCy in the haploidentical and

matched related setting compared to matched related with CNI

based immunoprophylaxis (42%, 37%, and 23%, respectively)

(99). In multivariate analysis, haploidentical patients receiving

PTCy that were CMV-seropositive prior to transplant had
Frontiers in Immunology 06
significantly lower OS and higher NRM. Higher rates of non-

CMV viral infections have also been reported with PTCy in

haploidentical transplants (101).

PTCy has been less extensively studied in non-malignant

disease and mostly limited to smaller studies. Low rates of

GVHD and NRM have been observed however graft failure

rates have been high with nonmyeloablative regimens (102–

108). Improved engraftment rates have been seen with increased

intensity of the conditioning (102). Larger studies evaluating

PTCy in nonmalignant diseases are needed.

An additional consideration when using PTCy is the

toxicities associated with cyclophosphamide. Cardiotoxicity is

a known side effect of cyclophosphamide and tends to occur

within the first few weeks following administration (109, 110). A

recent study found a significantly higher incidence of early

cardiac events with PTCy compared to other GVHD

prophylactic regimens (109). Cardiotoxicity may also be

exacerbated when using cyclophosphamide in the preparative

regimen as higher cumulative doses have been associated with

increased frequency of cardiac events (109, 110). Additional

studies are needed to evaluate the frequency of cardiac toxicity in

patients receiving PTCy.

In summary, PTCy has been evaluated in the haploidentical,

matched-related, and the matched and mismatched unrelated

donor setting and is associated with low rates of aGVHD and

cGVHD. While PTCy has been associated with delayed immune

reconstitution and increased risk of viral infections, the

nonrelapse mortality rates are low. The impact on relapse and

EFS is variable among studies but is improved in myeloablative

and more HLA-matched transplants.
Abatacept

For T cells to become activated they require both antigen

presentation through T cell Receptor (TCR) engagement of the

MHC on APCs and costimulation through multiple different

costimulatory pathways (7). The best characterized

costimulatory signal occurs between CD28 on T cells and

CD80/86 on APCs (7). Abatacept is a fusion protein

containing the extracellular domain of human CTLA4 and a

modified Fc portion of IgG1. Abatacept can bind to CD80/86

and block T-cell costimulatory signaling and inhibit T cell

activation (111). Abatacept was originally developed for use in

rheumatoid arthritis and recently received FDA approval for the

prevention of GVHD after allogeneic transplantation.

Based on encouraging data from an initial pilot study, one

large prospective, multi-center, phase II, randomized, placebo-

controlled, consortium study has been conducted to use

abatacept to prevent aGVHD (112). Abatacept was added to a

standard backbone of calcineurin inhibitor and methotrexate

(on days -1, +5, +14, and +28) randomizing patients with

hematologic malignancies with 8/8 HLA-matched unrelated
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donors to abatacept or placebo, with a singled-armed open label

stratum of 7/8-HLA-mismated unrelated donors compared to a

retrospective registry matched cohort (113). Abatacept exposure

was associated with significantly lower grade II-IV aGVHD

(43% for 8/8 cohort and 40% for the 7/8 cohort) and grade

III-IV in the 7/8 cohort (2%). This reduction translated to

improved severe aGVHD-free survival at day 180 (93% for the

8/8 cohort) and (100% for the 7/8 cohort compared to a registry

cohort). Notably, this registry cohort of 7/8 patients had not

received additional GVHD prophylaxis on the methotrexate and

calcineurin inhibitor backbone. When ATG was added to the

preparative regimen in an intention to treat analysis, the rate of

II-IV aGVHD (40% with abatacept and 42% with ATG) was

similar but grade III-IV aGVHD remained significantly higher

(3% with abatacept and 22% with ATG) for the 7/8 cohorts.

Despite the reduction in aGVHD, rates of cGVHD were similar

with abatacept to controls, 62% overall for the 8/8 cohort and

similar between abatacept and ATG for the 7/8 62%. The rates of

moderate to severe cGVHD were also comparable for abatacept

vs controls, 45% and 36% for the 8/8, not available for the 7/8

cohort. Abatacept did not increase relapse rates; 22% of

abatacept-treated patients relapsed in the 8/8 cohort and 9%

for the 7/8 cohort. The overall survival and event-free survival

were similar in all groups, (74% 8/8+ abatacept vs. 80% 7/8

+abatacept, and 66% 8/8+abatacept vs. 80% 7/8+abatacept

respectively). The addition of abatacept appeared safe with

similar engraftment (100% 7/8) and leukocyte reconstitution

compared to controls. No significant increase in CMV or EBV

reactivation or end-organ disease was observed, however there

was trend towards increased CMV reactivation with abatacept

compared to placebo (47% vs 33%). Abatacept has also been

evaluated in smaller studies of patients with non-malignant

diseases (114) with encouraging results. Larger studies are

currently ongoing and include extended dosing of abatacept,

(NCT03924401, NCT02867800, NCT04380740). In summary,

abatacept effectively reduced rates of acute GVHD, tested in 7/8

and 8/8 HLA-matched donors for children and adults with

hematologic malignancies, without impairing leukemia control

nor engraftment, not seeming to increase infectious risk, with

comparable rates of cGVHD in a large prospective randomized

study with more in progress at this time.
CD34+ selection

In contrast to in vivo approaches to reduce GVHD, ex vivo

approaches utilize graft engineering to modify the product prior

to infusion. CD34+ positive selection was one of the first such

approaches, which the goal of a product highly enriched for

CD34+ stem cells with minimal CD3+ lymphocytes,

administered on a backbone of ATG (usually rabbit though

some studies included equine) without subsequent

pharmacologic immunosuppression. The CD34+ selection
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strategy has largely been used in adult recipients of matched

related or unrelated donors for the treatment of hematologic

malignancy. CD34+ cell doses are a median of 6-8e6/kg with T

cell doses infused of 2-6e6/kg (115–117). Rates of acute GVHD

were low, median 16% (range 11-23), with 19% chronic GVHD

(3-19%) (74, 115–117). Relapse rates were comparable to other

approaches ranging from 22-29% (74, 115–117). While graft

failure was only reported in 1 study in 1 patient (of 712 patients)

(74, 115–117). Overall survival ranged from 57-70% and only

one study reported a GRFS of 59% (74, 115–117). Not

surprisingly, infections were commonly reported, observed in

73%-77% of patients, with 57-61% bacterial, 11% invasive

fungal, and one study reporting 43% and 18% CMV and EBV

reactivations respectively (116, 117). Infections complicated 42-

57% of deaths (74, 115). Two small studies have been conducted

in pediatrics, totaling 28 patients, approximately half of whom

were treated for hematologic malignancies, and all received

haploidentical donors (118, 119). While these studies included

higher stem cell dose (19 and 21.5 x10e6) and higher T cell doses

(1.4 and 4.7 x10e4), the rates of graft failure were high at 21 and

25%, with few patients eligible for relapse (1/10) but low rates of

aGVHD and cGVHD, ~16% and 0 and 24% respectively (118,

119). Collectively, these data supported the benefit of CD34+

selection for reduction of acute and chronic GVHD, albeit with

high rates of infection for adults with hematological

malignancies and graft failure in pediatrics, with no data for

alternative donors, minimal for pediatric recipients, and other

transplant indications.
CD45RA depletion

Murine data initially demonstrated that the alloreactive T

cells that engender GVHD are found within the naïve T cell

populations (15, 120–122). This led to a graft engineering

approach that selectively depleted CD45RA naïve T cells,

preserving the CD34+ fraction critical for engraftment and

CD45RO memory cells that could maintain T cell activity

against infections and tumors (123). Studies in human cells

validated that CD8+ T cells reactive to minor H antigens were 5-

20 fold higher in the naïve rather than memory fraction (124).

Three studies have utilized this approach. In two, which include

an initial phase II and then a larger follow-on study (n=138), the

preparative regimen for adult recipients of matched sibling

transplants for acute leukemia was modified to remove the

standard methotrexate and replace it with this targeted

approach of naïve T cell reduction. While the incidence of

cGVHD was only 7 and 9%, the incidence of grade II-IV

aGVHD was 66% and 75%, albeit largely steroid responsive

(125, 126). Rates of relapse (21 and 23%) and overall survival (77

and 78%) were similar to other approaches and without graft

failure (n=35) (125, 126). Another group employed this

approach in haplo-identical transplant for children with acute
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leukemia, using sirolimus and MMF for additional GVHD

control, CD20 depletion, and adoptive transfer of NK cells

post-HCT for disease control (127). In this platform, the rates

of grade II-IV aGVHD were modest (18%), but the rates of

cGVHD were already 35% with short follow-up (~100 days)

(127). Notably, while late outcomes have not been reported in

full, a follow-on paper did report a high incidence of HHV6

reactivations with this approach (128). In summary, this is an

intriguing approach to selectively modify the T cell fraction of

the graft with data to support low rates of cGVHD in the

matched donor setting, though with higher rates of aGVHD,

largely tested in the pediatric setting.
Alpha/beta T cell/B cell depletion
(aßTB depletion)

Another ex-vivo graft engineering approach includes the

depletion of alpha/beta T cells and B cells targeting higher CD34

+ doses (~10-15x10e6 CD34+ cells/kg) obtained via peripheral

blood stem cell collection. Most of these protocols employ anti-

thymocyte globulin and rituximab (CD20+ B cell depletion) as

part of the transplant regimen, with the former aimed to

decrease the risks of graft rejection and GVHD and the latter

to decrease EBV reactivation. Most of these protocols do not

employ post-transplant pharmacologic GVHD prophylaxis,

testing whether the graft engineering approach is sufficient to

avert alloimmunity alone. This aßTB depletion approach was

developed to increase donor accessibility with haplo-identical

transplantation, removing the cells most likely to induce GVHD,

while preserving graft-vs-leukemia and anti-infectious

immunity through preservation of natural killer and gamma-

delta T cells. Thus, most but not all the studies use this graft

engineering approach with related HLA-mismatched donors.

This newer therapy has largely been studied in children,

comprising 95% of the nearly 700 total patients reported in

the literature, and a still small cohort compared to other

alternative donor approaches (129–141). More data is needed

to evaluate the success of this approach in adult HCT recipients

and would be beneficial in pediatric cohorts as well.

Because aßTB depletion removes the T cells most closely

linked to acute and chronic GVHD and depletes the B cells that

can contribute to chronic GVHD, the rates of these

complications were anticipated to be lower than that observed

after matched donor HCTs despite the increased HLA-

mismatch. Overall, this has been observed with median rates

of grade II-IV aGVHD of 18% (ranging from 11-28%), and

cGVHD of 8% (range 0-30%), with 0-21% experiencing

extensive cGVHD (129–144). Notably, most of these studies

utilized ATG, which has reduced aGVHD (see above), and not

surprisingly, in one study in which ATG was removed, the

observed rates of aGVHD were increased (136). The relapse

rates ranged from 18-30% for those utilizing aßTB depletedHCT
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for the treatment of hematologic malignancies, comparable

overall to other approaches (129, 135–137, 141, 143, 144).

These data are confounded by a difference in the conditioning

regimen; most have included myeloablative total body

irradiation for all hematologic malignancies, a difference from

other regimens that could potentially diminish relapse through

greater leukemia clearance (129, 136, 137, 141). One study of

aßTB depleted HCT included matched unrelated donors and

removed ATG from this preparative regimen due to increased

relapsed rates with subsequent associated higher rates of

aGVHD, suggesting that this preparative regimen may be best

used in the haplo-identical setting (136). This approach has been

used for the treatment of relapsed refractory acute myeloid

leukemias, without ATG, substituting tocilizumab therapy

(anti-IL6), and scheduled CD45ra immature T cell depleted

infusions with or without hypomethylating therapy. While

small numbers (n=25), an initial complete remission was

observed in 95%, and while 42% relapsed, the 3 year event-free

survival was 49%,with only 18% aGHVD and 23% cGVHD,

suggesting that this approach might have good anti-leukemia

control as these numbers exceed historical controls (145). Two

studies incorporated zoledronic acid to enhance gamma/delta T

cell activity with a trend toward improvement in event-free

survival (129, 146). Collectively, these data support that the

aßTB depleted haplo-HCT approach may have potent anti-

leukemia potential though the optimal additional agents

(Tocilizumab vs. ATG or zoledronic acid) have yet to be

established. As expected with aßTB cell depletion, the rates of

viral reactivation were higher than matched transplant

approaches. Those reporting viral reactivations reported

consistent rates of 40-65% of patients experiencing

reactivations, with 20-65% reactivating CMV, 0-44% EBV, up

to 57% adenovirus, 21% HHV6, and 23% BK virus (129–134,

136–142). A large retrospective review showed the incidence of

CMV and EBV reactivation were 53% and 33% respectively after

aßTB cell depletion and associated with aGVHD (147). While

rituximab use pre-transplant does appear to reduce the risk of

EBV reactivation, these data show that it can still occur (as most

of these group did use rituximab), though the rates of EBV post-

transplant lymphoproliferative disease were quite low, at 0.5%,

suggesting that this is a treatable problem for most

patients (147).

While graft failurewas low inpatients receivingaßTBdepletion
for malignant indications (0-3%), the incidence was higher in

nonmalignant recipients, ranging from 4-30%, and appears

higher than the rates of graft failure rates reported in a large

CIBTMR study of similar pediatric populations (129–142, 144).

The overall survival in pediatric hematologic malignant patients

was 67-90%, 54% for adult, and 84-100% for non-malignant (129–

142). The GRFS in pediatric patients was 50%-61% in hematologic

malignancy patients and was 69-87% in the pediatric non-

malignant cohort (129–142). In summary, this approach is best

studied in pediatric HCT recipients with malignant and
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nonmalignant diseases, with good anti-leukemia effect, with

particular attention paid to the risks of viral reactivations, which

should include frequent viral infection surveillance and the plan for

preventative or pre-emptive approaches.
Cord blood

Umbilical cord blood (UCB) was first identified as a viable

alternative donor source in 1989 (148), permitting the use of

mismatched transplant with acceptable rates of GVHD. Despite

lower total nucleated cell and CD34+ cell counts, UCB has been

found to have a higher proportion of hematopoietic progenitor

cells than BM and PBSC grafts as well as greater proliferation

potential of CD34+ progenitors (149–152). The initial use of

UCB grafts was restricted to pediatric patients with related

donors due to concerns about low cell doses in adults and the

lack of UCB banks (153). however this has now been overcome

with the use of double umbilical cord blood and studies are

underway to evaluate other modes of hematopoietic progenitor

cell expansion as well (154, 155).

One advantage of UCB transplant has been its success even

in the setting of HLA disparity. Due to lower immunogenicity,

UCB transplant requires less stringent HLA-matching (out of 6

rather than the 8 typically used for adult donor matching).

Greater HLA disparity has been associated with increased rates

of graft failure and GVHD (154, 156–158) and studies in non-

malignant disease have shown higher rates of rejection and

delayed immune reconstitution which is improved with higher

cell doses and better matching (159, 160).

Large studies evaluating single and double UCB transplant

have reported median rates of grade II-IV aGVHD of 38%

(ranging from 24-45%), 17% grade III-IV aGVHD (9-25%)

and 27% cGVHD (14-53%) with the range of relapse, EFS, and

OS being 12-45%, 28-70%, and 31-75% respectively (14, 55, 161–

170). Some studies comparing single and double UCB

transplants have shown increased rates of aGVHD and/or

cGVHD (169, 170), while others have found no differences

(14, 55, 167, 168). Lower rates of cGVHD have also been

observed with UCB when compared to matched related or

unrelated donors (162, 164–166). Several studies have also

suggested potential for increased graft-versus-leukemia effect

and lower relapse with UCB transplant compared to matched

related and unrelated BM and PBSC grafts (154, 165, 170–172).

The incidence of NRM in UCB transplant is highly variable (6-

42%) (14, 24, 123–132) depending on the study. In addition to

higher rates of rejection, delayed immune reconstitution and

consequently higher infection rates (particularly viral infections)

are frequently reported with UCB (164, 173–176). The higher

infection rate is thought to be related to the delayed recovery of

naïve and memory T cells that is observed with UCB (173) and

the absence of passive transference of humoral immunity from

the donor. The use of ATG in the conditioning regimen has also
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been linked to higher NRM (63, 64, 177, 178). The timing of

ATG in proximity to the graft infusion may play a role in poorer

outcomes (178).

In summary, UCB transplant is associated with tolerable

rates of grade II-IV aGVHD and reduced rates of cGVHD while

permitting greater HLA disparity, though mismatched donors

have been associated with higher GVHD and NRM. Delayed

immune reconstitution and higher infection rates and their effect

on NRM are a concern with UCB transplant while the graft

versus leukemia effect appears to be preserved.
Experimental approaches

The prevention of graft versus host disease after allogeneic

hematopoietic cell transplantation is a rapidly evolving field. In

addition to the strategies listed above, many are currently in

development and/or clinical trials. A clinicaltrials.gov search

yielded over 50 studies currently active, including engineered

grafts that supplement immunomodulatory cells e.g. Treg cells

(“Orca-T”) NCT03802695 or interferon gamma-primed

mesenchymal stromal cells NCT04328714, in vivo depletion with

Obinutuzumab (CD20 blockade) NCT02867384, ustekinumab

(IL-12 and IL-23 blockade) NCT04572815, tildrakizumab (IL-23

blockade) NCT04112810, or BAFF inhibition with belimumab

NCT03207958, or the addition of medications that modulate the

immune system, e.g. proteasome inhibition with Ixazomib

NCT03225417, histone deacetylase inhibition with vorinostat

NCT03842696, JAK1 inhibition with itacitiniab NCT04859946,

or the addition of alpha-1-antitrypsin NCT03805789.
Controversies in GVHD prevention
strategies

What regimens might prioritize reduction
of acute or chronic GVHD or both?

While aGVHD is a risk factor for cGVHD, not all regimens

that reduce one reduce the other. The early data for naïve T cell

depletion does not appear to impact rates of aGVHD, especially

as this was tested in patients with matched sibling donors and

thus those at the lowest risk for GVHD. That said, if one

develops highly treatable aGVHD with low rates of cGVHD

and relapse, would this be the method of choice for patients with

very high-risk hematologic malignancies and a matched sibling

donor? Notably, this was tested in young adults and evaluation

in pediatrics is underway but unknown. In addition, there is no

data for nonmalignant indications, and for these patients neither

aGVHD nor cGVHD provides benefit (in contrast to the

potential benefit of concurrent graft versus leukemia effect,

GVL). ATG may reduce both but is this needed for all

matched sibling transplants? This may be an especially critical
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query for young children who incur low rates of chronic GVHD

and may have aggressive malignant disease with higher relapse

rates. Abatacept has also been tested in children and adults with

matched and mismatched unrelated donors and has reduced the

rates of severe aGVHD in those with high-risk hematologic

malignancies but with the same query for 8/8 matched

transplants. Similarly, should CD34 selection be chosen for

these patients even if it reduces the rates of acute and chronic

GVHD? Should the age of the recipient and/or donor influence

the choice of additional prophylaxis? Perhaps, one should

consider late teens to older adults a population to consider for

these trials in the future?

While this remains an ongoing question in the matched

transplant donor setting, historical data clearly justify the use of

additional GVHDprophylaxis for alternative donors (<8/8match),

in which unacceptable rates of acute and/or chronic GVHD have

been demonstrated. For those without an 8/8 matched donor, the

choices typically include a 7/8 matched unrelated donor, a haplo-

identical donor, and cord blood transplantation. For 7/8 matched

unrelateddonors, abataceptmaintainedgoodantileukemia control,

with event free survival ratesmatchingmatched cohorts, albeit with

some increase in cGVHD. The dose of abatacept is now being

extended to evaluate if both acute and chronic GVHD may be

averted by this method. However, on balance, good leukemia

control may be more valuable with high-risk diseases and merit a

higher riskof cGVHD,and this approachdid extend the donorpool

formanypatientsby includingmismatchedunrelateddonors.ATG

impacted aGVHDand cGVHD in this setting as well, though some

studies suggested an impact on graft versus leukemia effects.

Alternatively, in the haplo-identical setting, PTCy reduced

aGVHD and cGVHD, albeit with some increased in viral

reactivations in both approaches and some studies showing

higher relapse and nonengraftment. Similarly, in children, the

haplo-identical platform has included aßTB depletion, which

reduced cGVHD without aGHVD, with similar risks of graft

failure and viral reactivations though as yet to be studied in

adults. Additionally, cord blood reduces the risk of cGVHD,

especially in matched settings, while still incurring a risk of

aGVHD but potentially preserving GVL. Abatacept, ATG, cord

blood, aßTB depletion, and PTCy markedly increase the donor

pool to include mismatched donors without severe acute and/or

chronic GVHD, critical as many HCT recipients lack matched

donors. Collectively, these data support a personalized approach to

the risks of acute and chronic GVHD, including thoughtful

evaluation of the risk of relapse, the risk of severe acute or

chronic GVHD (e.g., based on age, intensity of preparative

regimen), the risk of nonengraftment, and the risks of

severe infections.

It is noteworthy that there is large variability in the number

of pediatric and adult patients in whom each approach has been

tested. The largest data exists for ATG, cord, and PTCy with

each of these including some prospective comparison studies

with less data for the other (often newer) approaches. In
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addition, a limitation to comparing approaches is that not all

studies report acute and chronic GVHD incidence, infections,

graft failure, relapse rates, and GRFS. As we move forward, it

would be helpful for each trial to present complete data on these

variables to aid in precision medicine of GVHD prophylaxis and

to prioritize prospective comparison trials.
What is the best regimen for patients at
higher risk for graft failure?

Certain indications for transplant incur higher risks of

nonengraftment, due to either decreased fertile stromal milieu

(e.g., myelofibrosis) or activated host T cell populations (e.g.,

autoimmune diseases). When choosing GVHD prophylaxis

regimens for these patients, the risks of nonengraftment

should be prioritized. Given that PTCy, aßTB depletion, and

cord blood may be potentially associated with increased risks of

nonengraftment compared to other approaches, these

approaches might be deprioritized in these patients. Further,

one might also consider the impact of residual ATG on these

patients, adopting a pharmacokinetic approach to mitigate the

effect on donor T cells that can aid in engraftment. Alternatively,

there may be other ways to mitigate this risk, such as testing for

donor specific antibodies and using this for donor selection,

agents that could enhance the stromal function, or targeting

higher stem cell doses either by increased volume at collection or

by CD34 stem cell expansion strategies.
What is the best regimen for those
at highest risk for relapse of
malignant disease?

The regimen that best preserves the graft versus leukemia

effect remains to be determined. In part, this is because the key

lymphocytes and tumor milieu that mediate GVL remain

elusive. Data support that functional lymphocytes are key to

maintain GVL (179). Thus, GVHD prevention strategies for

malignant disease are challenged by competing interests of T cell

immunity against infections and the need to maintain active

GVL, while desiring less T cell activity to achieve tolerance,

especially in the mismatched transplant setting. As relapse

remains the primary cause of death after HCT for malignant

indications, this is of paramount importance. Several studies

have linked cord blood to lower rates of relapse but not all.

Higher doses of ATG were linked to relapse in several studies,

though lower doses did not appear to increase relapse rates and

strategies to optimize timing and dose based on lymphocyte

count may be valuable to optimize this strategy. Some studies

had higher rates of relapse in other regimens, though not born

out by others. Variability of disease status at the time of

transplant may have contributed to some of these data, with
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some studies permitting residual disease (e.g., for myeloid

diseases) and others largely enrolling those without evidence

of disease, and de facto, decreasing the risks of relapse.

It is also important to consider other factors that alter the risk of

relapse.Reducedpreparative regimens increase relapse risk, though

arenecessary for thosewithdiminishedorgan functionoradvanced

age. Alternatively, some approaches rely upon total body

irradiation which may increase the anti-leukemia benefit by

disease reduction in sites with diminished blood flow or high

residence in the marrow stromal niches. An increased risk of

relapse after HCT may be mitigated by post-transplant disease

reduction approaches as well, via pharmacologic interventions

(e.g., hypomethylating agents, FLT3 blockade) or via adoptive

transfer of donor lymphocytes. These donor lymphocytes

infusions have historically been unmanipulated, though newer

approaches include removal of CD45RA naïve T cells, or

manipulation to expand T cells specific for tumor antigens.

Collectively, these considerations suggest that these factors

should be carefully considered as the preparative and GVHD

prophylaxis regimens are developed, including optimization of

initial disease reduction, consideration of the effects of graft

versus tumor effect on the GVHD prophylaxis chosen, and the

post-transplant options for maintenance of remission.
What are the GVHD prophylaxis
considerations for those with
nonmalignant disease?

Many patients who undergo transplant for nonmalignant

diseases have increased risk for infections (e.g., primary

immunodeficiency), non-engraftment, or increased risk for

particular organ impairments (e.g., pulmonary and renal

dysfunction from sickle cell disease). Those who enter HCT

with active viral infections in the setting of pre-existing T cell

dysfunction may benefit from optimizing early T cell function to

avert life-threatening viral disease. In this case, abatacept and

ATGmay be better than PTCy, CD34+ selection, aßTB depleted

haplo, or cord blood in which the viral reactivations may be

higher. Alternatively, other supportive care approaches may also

be employed to mitigate this risk. Letermovir is now approved

for prophylaxis of CMV in adult HCT recipients at high risk of

reactivation and thus diminish this risk. Similarly, the planned

use of T cells specific for particular viruses (through selective

expansion or cytokine capture) may also enable more donor

choices through decreasing these viral risks.

In contrast, those with sickle cell disease who are less likely to

have matched donors may benefit from PTCy or abatacept to

increase the donor pool without increasing adverse effects (to the

kidney and lungs). Someof these patientswith nonmalignant disease

may require rapid transplantation whichmay prioritize the PTCy or

aßTBdepletion,permittingexpeditedHCTwithmismatched related

donor, both accessible and likely motivated to proceed.
Frontiers in Immunology 11
It is also notable that several groups are developing preparative

regimens without cytotoxic chemotherapy. This may shift the

landscape for these patients, potentially mitigating aGVHD risk, and

permitting prioritization of reduction of cGVHD for these patients.

Finally, there are a dearth of data regarding GVHD

prophylaxis to treat nonmalignancy. This is surprising as this

population may be the ideal population to test various

prophylaxis options. Relapse is not a competing risk and

estimates suggest ~25% of patients will develop cGVHD (144).

What is the optimal regimen for immune
reconstitution?

The approaches to prevent GVHD, including donor sources,

have varying degrees of impact on immune reconstitution. Delayed

immune reconstitution is linked to increased infectious

complications and associated mortality. Some patients have

baseline infectious risk factors necessitating a more rapid immune

recovery, e.g., neutrophil recovery for active fungal disease or high-

risk bacterial infections or T cell recovery for a history of

mycobacterial infections or viral reactivations or active infections.

Cord blood has been associated with delayed T cell reconstitution

and infections compared to adult donors, attributed to the absence

of memory cells to effect viral immunity. Additionally, PBSC grafts

have been found to have significantly quicker neutrophil recovery

than BM grafts. PTCy has also been linked to delayed T cell

reconstitution and increased risk of viral infections, while

abatacept showed similar immune reconstitution to controls.

Full T cell reconstitution requires two pathways for recovery.

Initially, the infused donor T cells will increase number but not

diversity through peripheral expansion. These initial T cells can

provide GVL and viral immunosurveillance. Full recovery of diverse

T cell reconstitution requires thymopoiesis, an option for children

and young adults after hematopoietic cell transplantation. Little is

knownabout the thymic recoveryof thedifferentGVHDprophylaxis

approaches. However, minimizing the risk of GVHD overall should

diminish one risk of thymus impairment, that of direct T cell attack

on the thymus tissue. Including studies of thymus-derived T cells,

diversity of T cell receptor, evidence of T cell function (e.g., vaccine

response), would be beneficial to evaluate the overall effect of each

approach on lymphoid immune reconstitution.

Summary

In conclusion, the approach to acute and chronic GVHD

prophylaxis should be personalized, factoring in the age of the

recipient (and potential donor), the preexisting conditions and

disease indication, the intensity of the conditioning regimen, the

risk of, and opportunities to mitigate infections or disease

relapse/recurrence, and the risks of nonengraftment and

delayed immune reconstitution. Recently, there have been

many new approaches that have both diminished the rates of

severe acute and/or chronic GVHD, that have increased both the
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available donor pool and the options for personalized GVHD

prophylaxis regimens. Comparisons of alternative donor

approaches would potentially be valuable for particular disease

indications across the lifetime spectrum of the recipient, to assist

practitioners in these weighty decisions. In addition, the optimal

GVHD prophylaxis is influenced by other aspects of the HCT,

e.g., preparative regimen intensity, enhanced supportive care for

the diagnosis and treatment of infections, which may reprioritize

the prophylaxis regimens for particular HCT recipients.
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