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Introduction: Cuproptosis is a novel identified regulated cell death (RCD),

which is correlated with the development, treatment response and prognosis

of cancer. However, the potential role of cuproptosis-related genes (CRGs) in

the tumor microenvironment (TME) of gastric cancer (GC) remains unknown.

Methods: Transcriptome profiling, somatic mutation, somatic copy number

alteration and clinical data of GC samples were downloaded from the Cancer

Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database to

describe the alterations of CRGs from genetic and transcriptional fields.

Differential, survival and univariate cox regression analyses of CRGs were

carried out to investigate the role of CRGs in GC. Cuproptosis molecular

subtypes were identified by using consensus unsupervised clustering analysis

based on the expression profiles of CRGs, and further analyzed by GO and KEGG

gene set variation analyses (GSVA). Genes in distinct molecular subtypes were

also analyzed by GO and KEGG gene enrichment analyses (GSEA). Differentially

expressed genes (DEGs) were screened out from distinct molecular subtypes

and further analyzed by GO enrichment analysis and univariate cox regression

analysis. Consensus clustering analysis of prognostic DEGs was performed to

identify genomic subtypes. Next, patients were randomly categorized into the

training and testing group at a ratio of 1:1. CRG Risk scoring system was

constructed through logistic least absolute shrinkage and selection operator

(LASSO) cox regression analysis, univariate and multivariate cox analyses in the

training group and validated in the testing and combined groups. Real-time

quantitative polymerase chain reaction (RT-qPCR) was used to evaluate the

expression of key Risk scoring genes. Sensitivity and specificity of Risk scoring
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system were examined by using receiver operating characteristic (ROC) curves.

pRRophetic package in R was used to investigate the therapeutic effects of

drugs in high- and low- risk score group. Finally, the nomogram scoring system

was developed to predict patients’ survival through incorporating the

clinicopathological features and CRG Risk score.

Results:Most CRGs were up-regulated in tumor tissues and showed a relatively

high mutation frequency. Survival and univariate cox regression analysis

revealed that LIAS and FDX1 were significantly associated with GC patients’

survival. After consensus unsupervised clustering analysis, GC patients were

classified into two cuproptosis molecular subtypes, which were significantly

associated with clinical features (gender, age, grade and TNM stage), prognosis,

metabolic related pathways and immune cell infiltration in TME of GC. GO

enrichment analyses of 84 DEGs, obtained from distinct molecular subtypes,

revealed that DEGs primarily enriched in the regulation of metabolism and

intracellular/extracellular structure in GC. Univariate cox regression analysis of

84 DEGs further screened out 32 prognostic DEGs. According to the

expression profiles of 32 prognostic DEGs, patients were re-classified into

two gene subtypes, which were significantly associated with patients’ age,

grade, T and N stage, and survival of patients. Nest, the Risk score system was

constructed with moderate sensitivity and specificity. A high CRG Risk score,

characterized by decreased microsatellite instability-high (MSI-H), tumor

mutation burden (TMB) and cancer stem cell (CSC) index, and high stromal

and immune score in TME, indicated poor survival. Four of five key Risk scoring

genes expression were dysregulated in tumor compared with normal samples.

Moreover, CRG Risk score was greatly related with sensitivity of multiple drugs.

Finally, we established a highly accurate nomogram for promoting the clinical

applicability of the CRG Risk scoring system.

Discussion: Our comprehensive analysis of CRGs in GC demonstrated their

potential roles in TME, clinicopathological features, and prognosis. These

findings may improve our understanding of CRGs in GC and provide new

perceptions for doctors to predict prognosis and develop more effective and

personalized therapy strategies.
KEYWORDS

cuproptosis-related genes (CRGs), tumor microenvironment (TME), prognosis model,
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Introduction

Gastric cancer (GC) is the fifth most common cancer and the

third most common cause of cancer death worldwide (1).

Although surgery, chemotherapy, radiotherapy, immunotherapy,

and targeted therapy have proven efficacy, the prognosis of GC

patients was still poor because of its high recurrence and mortality

rate (2). So far, despite increasing studies focused on identifying

patients at risk for recurrence and mortality, with the hope of
02
potentially improving outcomes, there were few satisfactory

biomarkers or methods that could accurately predict the

survival of GC patients (3). Thus, there is an urgent need to

identify the prognostic signature and potential mechanism of the

development of GC.

Copper is a fundamental trace element involved in a variety of

biological processes, including mitochondrial respiration, iron

uptake, kinase signaling, autophagy, protein quality control and

antioxidant/detoxification processes (4). Increasing pieces of
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evidence demonstrated dysregulation of copper homeostasis may

trigger cytotoxicity and influence tumor growth andmetastasis (5).

Consistently, serum or tissue levels of copper were elevated in

various human cancers, such as breast, brain, prostate, colon, lung

and liver cancer (6–13). At the same time, copper chelation and

ionophore, such as tetrathiomolybdate (TTM) and disulfiram, have

been applied in anticancer treatment (14–16). However, the

specific underlying mechanisms by which copper overload

leaded to cell death remained unknown, until Tsvetkov et al.

(17) discovered that copper toxicity occurred via a mechanism

different from all other known mechanisms of regulated cell death

(RCD), and termed it as cuproptosis. This research demonstrated

that cuproptosis occurred by directly binding copper to lipoylated

components of the tricarboxylic acid (TCA) cycle, thus leading to

the abnormal aggregation of lipoylated protein and loss of iron-

sulfur cluster, which ultimately resulted in proteotoxic stress

response-mediated cell death. Furthermore, this study identified

ten genes (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A) closely associated with cuproptosis.

Based on the research of Tsvetkov et al., increasing studies are

emerging to explore the associations between cuproptosis-related

genes (CRGs) and typical tumors. For example, Bian, Z. et al. (18)

identified a CRGs signature (FDX1, DLAT and CDKN2A) in clear

cell renal cell carcinoma (ccRCC) and found it could serve as a

potential prognostic predictor for ccRCC. Chen, Y (19) also

identified a cuproptosis-related prognostic signature (CDKN2A,

GLS, and LIPT1) for uterine corpus endometrial carcinoma

(UCEC). In addition, different cuproptosis-related risk score

systems were established respectively based on the

comprehensive analysis of CRGs in hepatocellular carcinoma

(HCC) and esophageal carcinoma (ESCA) (20, 21). A high

cuproptosis-related risk score indicated poor survival, and was

positively associated with pro-tumor immune infiltrates in tumor

microenvironment (TME) of HCC and ESCA. TME has been

recognized as an essential role in regulating tumor immune

suppression, distant metastasis, local resistance and the targeted

therapy response (22, 23). Specific alterations in TME, such as T-

cell exhaustion and activation of epithelial NOTCH signaling, were

closely associated with the prognosis of cancer patients (24, 25).

The characterization of TME was proposed to predict patients’

survival, chemotherapy and immunotherapy response (26, 27).

However, due to heterogeneity of tumors and corresponding

TME, CRGs signature varied in different cancers. Researches on

CRGs in GC are limited. Specifically, there is uncertainty

regarding the prognostic accuracy of CRGs and their

relationships with TME in GC. In this study, we aimed to

comprehensive analysis the molecular alterations and clinical

relevance of CRGs, through constructing two cuproptosis

patterns. We are the first to establish CRGs Risk scoring

system to predict GC patients’ survival. This scoring system

can provide new perceptions for doctors to develop more

effective and personalized therapy strategies.
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Methods

Data acquisition

We downloaded RNA-Sequence data and the corresponding

clinicopathological data of STAD project for stomach

adenocarcinoma from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/), and expression levels in TPM

of genes were extracted and combined for all samples. Then,

series matrix file of GSE84433 was downloaded from the Gene

Expression Omnibus database (GEO) (https://www.ncbi.nlm.

nih.gov/geo/). The TCGA cohort contained 375 GC samples

and 32 normal samples from 375 patients, and the GEO cohort

(GSE84433) contained 357 GC samples. The detailed

clinicopathological information on these GC patients is

presented in Table S1. The GEO dataset was combined with

TCGA-STAD dataset. Before conducting subsequent analyses,

we eliminated batch effects by using “Combat” algorithm.

Additionally, somatic mutation data were downloaded from

TCGA and contained 431 GC samples. Somatic copy number

alteration data were downloaded from TCGA and contained 440

GC samples.
Consensus clustering analysis of CRGs
and differentially expressed genes (DEGs)

Nineteen CRGs, listed in Table S2, were achieved from

previous cuproptosis-related publications (17, 28). Consensus

unsupervised clustering analysis was carried out by using

“ConsensusClusterPlus” package in R to classify GC patients

into different molecular subtypes according to the expression of

CRGs. Furthermore, DEGs, derived from different molecular

subtypes, were grouped into different genomic subtypes by the

same way. The criteria were as follows: First, the number of

samples in each group was relatively consistent. Second, the

cumulative distribution function (CDF) curve rose gradually and

smoothly. Third, after clustering, the intra-group link was

stronger, while the inter-group link was weaker.
Correlation of molecular subtypes,
clinicopathological characteristics
and prognosis

To explore the clinical value of different molecular subtypes,

we performed correlation analysis between molecular subtypes

and clinicopathological characteristics of GC patients. The

clinicopathological characteristics included age, gender, grade

and tumor node metastasis (TNM) stage. Survival and

survminer packages in R were used for survival analysis, the

same as our previous research (29). We used Kaplan–Meier plot
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and log-rank to test the correlations between molecular subtypes

and overall survival (OS) of GC patients.
Relationships between distinct molecular
subtypes and TME

In order to verify the characteristics of TME in distinct

molecular subtypes, we conducted gene set variation analysis

(GSVA) with the hallmark gene set (C2.CP.KEGG (186 gene

sets) and C5.GO.Gene Ontology (10561 gene sets)), achieved

from the MSigDB database (https://www.gsea-msigdb.org/gsea/

msigdb). Adjusted P-value <0.05 was recognized to be

statistically significant. Gene Set Enrichment Analysis (GSEA)

(4.1.0) based on different gene sets, was applied to learn the

specific functional profile of different molecular subtypes. The

absolute value of normalize enrichment score (NES) >1, nominal

p value<0.05, FDR<0.25 were considered to be statistically

significant. In addition, the deconvolution algorithm (referred

to as CIBERSORT) was used to calculate the abundance of

tumor-infiltrating immune cells (TICs) in each GC sample (30).

The gene expression signature matrix of TICs was downloaded

from the CIBERSORT platform (https://cibersortx.stanford.edu/).

The matrix data of gene expression levels in TCGA-STAD and

GSE84433 cohorts were compared with those of the signature

matrix of TICs to generate a proportion matrix for the TICs in GC

tissues. We further applied Monte Carlo sampling algorithm to

obtain a p value for the deconvolution of each sample, which

providing a measure of confidence for the obtained data. A

CIBERSORT p<0.05 were deemed qualified for further analysis.

The levels of TICs in each GC sample were also calculated by

using a single-sample gene set enrichment analysis

(ssGSEA) algorithm.
Identification and functional enrichment
analysis of DEGs derived from different
molecular subtypes

Package “limma” in R was used to identify DEGs between

different cuproptosis molecular subtypes. A fold-change of 1.5

and an adjusted p-value of <0.05 were set up to screen DEGs.

“ClusterProfiler”, “org.Hs.eg.db”, “enrichplot”, and “ggplot2”

packages in R were used for gene ontology (GO) enrichment

analysis of DEGs. Adjusted p value <0.05 was recognized to be

statistically significant.
Construction of CRG risk scoring system

CRG Risk scoring system was established to identify the

cuproptosis patterns of the individual tumors. First, DEGs,

screened out from distinct cuproptosis molecular subtypes,
Frontiers in Immunology 04
were subjected to univariate Cox regression analysis to seek

those related to GC patients’ survival. Second, we divided

patients into different cuproptosis gene subtype, including

subtype A and B, through consensus clustering analysis based

on the expression of prognostic DEGs. Third, “caret” package in

R was used to randomly categorized all GC patients from

TCGA-STAD and GSE84433 database into training (n=364)

and testing (n=364) groups at a ratio of 1:1. Lastly, we

constructed CRG Risk scoring system in the training group

and further validated the system in the testing group and the

combined group. In detail, we applied “glmnet” R package to

conduct logistic least absolute shrinkage and selection operator

(LASSO) Cox regression analysis to minimize the risk of over-

fitting. The varied trajectory of each independent variable was

analyzed and cross-validated to establish the model. Multivariate

Cox analysis was applied again to seek candidate cuproptosis-

related Risk genes and establish prognostic CRG Risk scoring

system in the training set. The CRG Risk score was calculated as

follows: CRG Risk score = S(Expi * coefi). Expi presented the

expression of key cuproptosis-related Risk gene, and coefi

presented the Risk coefficient. Correlation analysis was applied

to evaluate the relationship between Risk score and different

molecular or gene subtypes. A total of 364 GC patients in the

training group were classified into high- (n=182) and low-risk

(n=182) sets according to the median Risk score. Kaplan–Meier

survival analysis was further used to identify the survival

difference between high- and low-risk sets.

Similarly, both the testing and combined sets were grouped

into high- and low-risk sets, each of which was subjected to

survival analysis and the generation of receiver operating

characteristic (ROC) curves.
Tissue samples acquisition and real-time
quantitative polymerase chain reaction
(RT-qPCR)

Ten groups of GC and corresponding normal tissues were

harvested from GC patients at Nanjing Jiangning Hospital. The

study was permitted by the Ethics Committee of Nanjing

Jiangning Hospital. RNA isolation and RT-qPCR were carried

out as our previous description (31). The primer sequences used

for qRT-PCR in this study are listed in Table S3.
Evaluation of TME and different risk
score groups

We identified the expression of CRGs in high- and low- Risk

score groups through boxplots, and further calculated the

abundance of TICs in TME of each GC sample by applying

CIBERSORT in R. Correlation analyses were also carried out to

study the relationships between TICs and prognostic Risk genes.
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Relationships of microsatellite instability
(MSI), cancer stem cell (CSC), tumor
mutational burden (TMB), and somatic
mutations in distinct CRG risk
score groups

We analyzed the associations of MSI, CSC, and TMB in two

Risk groups. Mutation frequency analyses of high- and low- Risk

groups were conducted by using the”maftools” R package.
Drug susceptibility analysis

In order to investigate the therapeutic effects of drugs in the

two groups, we calculated the semi-inhibitory concentration

(IC50) values of drugs using “pRRophetic” package in R.
Development of a nomogram
scoring system

The clinicopathological features and CRG Risk score were

incorporated to develop a nomogram using the “rms” package,

based on patients’ survival. In the nomogram scoring system, a

variable, such as gender, age, TNM stage and CRG Risk score, was

matched with a score, and the total score was obtained by adding

the scores across all variables of each sample. The subsequent

calibration graph of the nomogram scoring system was performed

to examine the predictive value between the predicted 1-, 3-, and

5-year survival rates and the virtually outcomes.
Statistical analyses

All statistical analyses were performed using R version 4.2.1.

Statistical significance was set at p < 0.05.
Results

Genetic and transcriptional alterations of
CRGs in GC

A total of 19 CRGs were analyzed in our following study,

such as NFE2L2, NLRP3, ATP7B, ATP7A, SLC31A1, FDX1,

LIAS and so on (Table S2). We first compared the expression of

CRGs between tumor samples and normal samples from TCGA-

STAD database, and found that 16 CRGs were up-regulated in

tumor tissues, including NLRP3, ATP7A, ATP7B, SLC31A1,

FDX1, LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, CDKN2A, and GCSH (Figure 1A).

Next, we conducted general analysis of the somatic mutation

frequency in these 19 CRGs, the result showed a relatively high
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mutation frequency in GC samples from TCGA-STAD database

(Figure 1B). In detail, 99 (22.97%) GC samples had mutations in

CRGs. LIPT1 had the highest mutation frequency (6%), followed

by CDKN2A, NLRP3, ATP7A, ATP7B, DLAT, DLD, MTF1, GLS,

DLST, LIAS, NFE2L2, PDHB and DBT. The other five CRGs,

including FDX1, SLC31A1, LIPT2, PDHA1 and GCSH, did not

have any mutations in tumor samples. Furthermore, we calculated

somatic copy number alterations in these CRGs and found that

copy number alterations were pervasive in all 19 CRGs. Among

them, NLRP3, LIPT2, ATP7B, SLC31A1, GLS and MTF1 had

relatively elevated copy number variation (CNV), while CDKN2A,

DLAT, FDX1, DBT and PDHB showed relatively decreased CNV

(Figure 1C). Detailed locations of CNV alterations on

chromosomes were presented in Figure 1D.

From above, we noted that CRGs in GC tissues had

prevalent genetic and transcriptional alterations, which might

have their roles in GC oncogenesis.
Identification of cuproptosis
molecular subtypes

In order to explore the expression pattern of CRGs involved

in GC tumorigenesis, we collected 732 GC patients from TCGA

database (TCGA-STAD) and GEO database (GSE84433) for

further analyses. Detailed clinicopathological information of

patients was presented in Table S1. Survival analysis revealed

that 9 CRGs (ATP7A, DLAT, DLD, FDX1, LIAS, LIPT1, MTF1,

NLRP3 and SLC31A1) were significantly associated with overall

survival (OS) of GC patients (Figures 2A–I, p<0.05). The result

of univariate Cox regression analysis on CRGs showed that both

LIAS and FDX1 were significantly associated with GC patients’

survival (Table 1). The intersection between survival analysis

and multivariate Cox regression analysis indicated that both

LIAS and FDX1 were significantly associated with the prognosis

of GC patients. Next, a cuproptosis network was carried out to

comprehensively demonstrate the association among CRGs and

their prognostic value in GC patients (Figure 2J; Table S4). The

network indicated there were prevalent and complicated

interactions among CRGs.

Regarding the comprehensive associations among CRGs,

we categorized GC patients into two groups based on the

expression profiles of CRGs by using a consensus clustering

algorithm. The results indicated that k=2 might be an optimal

selection for clarifying patients into 2 groups, including

molecular subtype A (n=339) and B (n=393) (Figure 3A,

Figures S1A–I; Table S5). PCA analysis verified that there

were significant differences in the cuproptosis related

transcription profiles between subtype A and B (Figure 3B).

Survival analysis indicated that GC patients of subtype A had a

higher survival probability than those in subtype B (log-rank

test, p = 0.014; Figure 3C). In addition, the associations

between CRGs expression and the clinical features, such as
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gender, age, grade and TNM stage, were profiled according to

different molecular subtypes of GC (Figure 3D). The heat-map

showed that a group of CRGs were upregulated in cluster A,

such as FDX1, GLS, SLC31A1, LIAS and so on. And gender,

age, and T stage were significantly correlated with GC patients’

cuproptosis subtypes (Figure 3D, p<0.05).
Clinical features of TME in molecular
subtype A and B

In order to further identify the characteristics of TME in

distinct subtypes, we conducted not only GO and KEGG GSVA

enrichment analysis, but also GSEA enrichment analysis. The

results of GO GSVA enrichment analysis displayed that subtype

A was significantly enriched in metabolic related pathways,

including TCA cycle, peroxisomal organization and

transportation, mitochondrial membrane organization and

transportation, regulation of mitochondrial gene expression,

protein transmembrane import, amino acid metabolic process,

and so on (Figure 4A; Table S6). GSEA enrichment analysis

suggested that for C5 collection, the gene ontology sets, genes in

molecular subtype A were also enriched in the above metabolic
Frontiers in Immunology 06
related pathways (Figure 4C; Table S7). KEGG GSVA

enrichment analysis also found that subtype A was primarily

enriched in metabolic related pathways, such as TCA cycle,

glycan biosynthesis, ubiquitin mediated proteolysis, peroxisome,

RNA degradation, cysteine, methionine, glyoxylate,

dicarboxylate, pyruvate, butanoate and selenoamino acid

metabolism, valine leucine and isoleucine degradation and so

on (Figure 4B; Table S8). GSEA enrichment analysis indicated

that for C2 collection, the KEGG gene sets database, genes in

molecular subtype A were also primarily enriched in the above

metabolic related pathways (Figure 4D; Table S9). In particular,

both GO and KEGG GSVA enrichment analysis found that TCA

cycle, peroxisome, amino acid metabolism were obviously

enriched in subtype A, and TCA cycle has been proven to be

closely associated with cuproptosis (17).

We further explored whether CRGs were involved in TIME

of GC through correlation analysis between two subtypes.

Human immune cell subsets of each GC sample were

calculated by using CIBERSORT algorithm (Table S10). We

observed significant differences in the infiltration of most

immune cells between subtype A and B through ssGSEA

(Figure 4E). In detail, the infiltration levels of activated B cell,

activated CD8 T cell, activated dendritic cell, immature B cell,
A
B

DC

FIGURE 1

Genetic and transcriptional alterations of CRGs in GC. (A) The expression levels of 19 CRGs between 375 GC samples and 32 normal samples.
Wilcoxon test was used to compare two groups. (B) The maftool exhibited incidence of somatic mutations of CRGs in 431 GC patients from
TCGA database. (C) The CNV frequency of CRGs in 440 GC samples from TCGA database. (D) Locations of CNV alterations on 23
chromosomes. P < 0.05 was considered as significant importance. * indicated P < 0.05, ** indicated P < 0.01, *** indicated P < 0.001.
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immature dendritic cell, myeloid-derived suppressor cell

(MDSC), macrophage, mast cell, monocyte, natural killer T

cell, natural killer cell, plasmacytoid dendritic cell, regulatory T

cell, T follicular helper cell and Type 1 T-helper cell were

obviously lower in subtype A than those in subtype B

(Figure 4E). From above, we primarily speculated that subtype

A was enriched in metabolic related pathways, and subtype B

was closely related with TIME.
Frontiers in Immunology 07
Identification of cuproptosis-related
gene subtypes based on DEGs

To further investigate the underlying biological behavior of

different cuproptosis molecular subtypes, we identified 84 DEGs

between subtypeA and B (Table S11). GO enrichment analysis was

carried out to seek related biological pathways. The result showed

that DEGs primarily enriched in digestive system development,
A B

D E F

G IH

J

C

FIGURE 2

The survival analyses of CRGs and a comprehensive landscape of cuproptosis network in GC. (A–I) The survival analyses of CRGs (ATP7A, DLAT,
DLD, FDX1, LIAS, LIPT1, MTF1, NLRP3 and SLC31A1) in 732 GC patients. Kaplan–Meier plot and log-rank tests were conducted for survival
analyses. (J) Mutual correlations among CRGs in 732 GC samples. Spearman correlation analyses were used. The line between two CRGs
indicated their interaction, and the stronger the correlation, the thicker the line. Pink line represented positive correlation and blue line
represented negative correlation. P < 0.05 was considered to be statistically significant.
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extracellular matrix organization, extracellular structure

organization, intermediate filament cytoskeleton and

organization, arginine metabolic process and so on (Figures 5A,

B; Table S12). According to the above enrichment analysis, we

speculated that cuproptosis played an important role in the

regulation of metabolism and intracellular/extracellular structure

in GC.We further performed univariate Cox regression analysis to

identify theprognostic valueof 84 subtype-relatedDEGsandfinally

screened out 32 genes related toOS (p < 0.05), whichwere analyzed

in the following section (Table S13)

Next, we performed consensus clustering analysis of 32

prognosis related DEGs to validate this regulation mechanism.

Patients were divided into two genomic subtypes, namely, gene

subtype A and B (Figure 5C; Figure S2; Table S14). The two

cuproptosis gene subtypes presented significant differences in

the expressions of CRGs, consistent with the expected results of

the cuproptosis patterns (Figure 5E). In addition, cuproptosis

gene subtype was significantly correlated with patients’ age,

grade, and T and N stage (Figure 5D, p<0.05). The result of

survival analysis showed that patients in gene subtype B had a

higher survival probability than those in gene subtype A

(Figure 5F, p<0.001).
Construction and validation of
prognostic CRG Risk scoring system

We established CRG Risk scoring system according to the

expression of prognostic DEGs derived from distinct molecular

subtypes. As shown in Figure 6A, GC patients were grouped into
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two cuproptosis molecular subtypes, two gene subtypes, and two

CRG Risk score groups. First, we randomly classified GC patients

into training (n=364) and testing (n=364) groupsat a ratio of 1:1, by

using “caret” package in R (Tables S15, 16). LASSO and

multivariate Cox analyses of 32 prognostic DEGs were used to

seek optimum prognostic signature (Figure S3). Then multivariate

Cox regression analysis was carried out to construct CRG Risk

scor ing system in the tra in ing sets : R isk score =

(-0 .145406843672574 * express ion of SLC27A2) +

( - 0 . 1 0 0834783 610163 * e xp r e s s i on o f NAT2 ) +

( 0 . 1 0 8 0 30 1 8 3 3 32 1 5 1 * e xp r e s s i o n o f TAGLN) +

( 0 . 0 8 0 0 6 0 2 82 9 9 1 5 1 4 9 * e xp r e s s i o n o f S FRP2 ) +

(0.0876442662604965 * expression of KRT17). We calculated

Risk score of each GC samples in both molecular subtypes and

gene subtypes, and found that Risk score was significantly elevated

inmolecular subtype B and gene subtype A, compared with that in

molecular subtype A and gene subtype B, respectively (Figures 6B,

C). Next, the expressions of five key cuproptosis-related risk genes

in the training sets were profiled in Figure 6E, based on CRG Risk

score (Table S17). The results indicated that the expression of five

keyRisk scoring genes showed a great difference between high- and

low- risk sets (Figure 6E). The levels offive cuproptosis-related Risk

geneswere alsomeasured inGC tissues and adjacent normal tissues

by RT-qPCR. As shown in Figure 6D, the expression of SLC27A2,

SFRP2, KRT17 were up-regulated in tumor tissues (p<0.05), the

expression of TAGLNwas down-regulated (p<0.05), while those of

NAT2 remained unchanged (p>0.05), compared with the levels in

the corresponding normal tissues.

The scattergram of CRG Risk score in the training sets

revealed that patients’ survival time decreased while CRG Risk
TABLE 1 Multivariate Cox regression analyses of CRGs associated with OS in GC patients.

id HR HR.95L HR.95H P value

LIAS 0.628484 0.489251 0.8073397 0.000278

FDX1 0.778137 0.6304864 0.9603639 0.019455

SLC31A1 0.873637 0.7476713 1.0208252 0.089035

DLAT 0.862436 0.7240589 1.0272583 0.097202

MTF1 0.852843 0.6814416 1.0673578 0.16437

DBT 0.874791 0.7021722 1.0898458 0.232948

GCSH 1.196277 0.8872363 1.6129623 0.239867

LIPT1 0.860036 0.6513559 1.1355729 0.287622

PDHA1 0.898972 0.7362679 1.0976302 0.295787

DLD 1.077261 0.9031478 1.2849406 0.408008

NLRP3 1.069949 0.906117 1.2634027 0.425258

ATP7A 0.945946 0.7731582 1.1573494 0.589213

DLST 0.950347 0.7755852 1.1644879 0.623283

CDKN2A 1.015237 0.9438608 1.0920104 0.684323

PDHB 1.05097 0.8079387 1.3671055 0.711006

ATP7B 0.981223 0.8761234 1.0989298 0.742961

GLS 1.021636 0.8975885 1.1628266 0.745868

NFE2L2 0.991532 0.8153638 1.2057635 0.932099
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score increased (Figures 6F, G). The Kaplan–Meier survival curves

showed that GC patients with low Risk scores had a better overall

survival compared to that in patients with high Risk scores

(Figure 6H, p <0.001). Additionally, the 1-, 3-, and 5-year

survival rates of CRG Risk score were represented by area under

the time-concentration curve (AUC) values of 0.621, 0.654, and

0.670, respectively, indicating both moderate sensitivity and

specificity (Figure 6I). The CRG Risk score predicted 1- year

survival with a 70% specificity and 50% sensitivity, 3- year survival

with a 42% specificity and 83% sensitivity, and 5-year survival

with a 61% specificity and 65% sensitivity.

To validate the accuracy of the CRG Risk scoring system, we

calculated CRG Risk score in the testing group, and combined

TCGA-STAD and GSE84433 group (Figures S4, S5; Tables S18,
Frontiers in Immunology 09
19). GC patients were stratified into high- and low-risk sets, the

same as which in the training set. The expression of five key Risk

scoring genes in the testing set and the combined set, were

presented in Figure S4A and S5A, respectively. The relationships

between patients’ survival and CRG Risk score were shown in

Figures S4B, C, S5B, C. Survival analyses presented that GC

patients with low CRG Risk scores had a significantly favorable

overall survival compared to those in patients with high scores,

which was the same in the training group (Figure S4D, p=0.002;

Figure S5D, p<0.001). We also conducted prognostic prediction

classification efficiency analysis and found that CRG Risk score

still had relatively high AUC values (Figures S4E, S5E),

suggesting that the CRG Risk scoring system was suitable to

accurately predict the survival of GC patients.
A B

D

C

FIGURE 3

CRG molecular subtypes and their clinicopathological features. (A) Identification of two molecular subtypes (k = 2) and their correlation area
through consensus clustering analysis in 732 GC samples. (B) PCA presented a great difference in transcriptomes between different molecular
subtypes. (C) Survival analysis showed a significant difference of survival between molecular subtype A and (B) Kaplan–Meier plot and log-rank
tests were conducted for survival analyses. (D) The heat-map showed the CRGs expression profile in molecular subtype A and B, and the
associations between clinicopathologic characteristics and different molecular subtypes. Chi-square test was used for the comparison. Red
color indicated up-regulated expression level and blue color indicated down-regulated expression level. P < 0.05 was considered to be
statistically significant. Molecular subtype A contained 339 GC samples and molecular subtype B contained 393 GC samples. * indicated P <
0.05, ** indicated P < 0.01.
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FIGURE 4

Correlations between TME and CRG molecular subtypes. (A) GO GSVA enrichment analyses between molecular subtype A and (B) Red color
indicated more enriched in pathways and blue color indicated less enriched in pathways. Adjusted p value <0.05 was considered to be
statistically significant. (B) KEGG GSVA enrichment analyses between molecular subtype A and (B) Red color indicated more enriched in
pathways and blue color indicated less enriched in pathways. Adjusted p value <0.05 was considered to be statistically significant. (C) GO GSEA
enrichment analyses of genes between molecular subtype A and (B) NES>1, nominal p value<0.05, FDR<0.25 were considered to be statistically
significant. (D) KEGG GSEA enrichment analyses of genes between molecular subtype A and (B) NES>1, nominal p value<0.05, FDR<0.25 were
considered to be statistically significant. (E) ssGSEA indicated differences between the infiltration levels of TICs and distinct molecular subtypes.
P value<0.05 was considered to be statistically significant. Molecular subtype A contained 339 GC samples and molecular subtype B contained
393 GC samples. * indicated P < 0.05, *** indicated P < 0.001.
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Relationships between TME and different
groups of CRG risk score

In order to explore the relationship of TME and CRG Risk

score, we first analyzed the expression of CRGs in both high- and

low- CRG Risk score groups, and found that ten CRGs were
Frontiers in Immunology 11
significantly related with CRG Risk score. To be specific, ATP7B,

SLC31A1, FDX1, LIAS, DLD, DLAT, PDHA1, GCSH and DLST

were down-regulated in high-Risk score group, while NLRP3

were up-regulated in high-Risk score group (Figure 7A). Next,

we performed correlation analyses to clarify the relationship

between the abundance of immune cells and CRG Risk score,
A B

D

E
F

C

FIGURE 5

Identification of CRG gene subtypes based on 84 DEGs derived from different molecular subtypes. (A, B) GO enrichment analyses of 84 DEGs
from molecular subtype A and (B) Adjusted p value<0.05 was considered to be statistically significant. (C) Identification of two gene subtypes
(k = 2) and their correlation area through consensus clustering analysis according to the expression of 32 prognosis-related DEGs. (D) The heat-
map showed the gene profiles in gene subtypes A and B, and the associations between clinicopathologic characteristics and distinct gene
subtypes. Chi-square test was used for the comparison. P < 0.05 was considered to be statistically significant. (E) Differential analysis of the
expression of CRGs in different gene subtypes. P < 0.05 was considered to be statistically significant. (F) Survival analysis of two gene subtypes.
Kaplan–Meier plot and log-rank tests were conducted for survival analyses. P < 0.05 was considered to be statistically significant. Molecular
subtype A contained 339 GC samples and molecular subtype B contained 393 GC samples. Gene subtype A and B contained 329 and 403 GC
samples, respectively. * indicated P < 0.05, ** indicated P < 0.01, *** indicated P < 0.001.
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through applying CIBERSORT algorithm. As shown in

Figures 7B–J, CRG Risk score was positively related with

resting Mast cells, activated natural killer (NK) cells, M2

Macrophages and monocytes, while negatively associated with

follicular helper T cells, activated memory CD4 + T cells, plasma

cells, resting NK cells and M0 macrophages. A high CRG Risk

score was positively associated with both immune and stromal

score (Figure 7K). In addition, we studied the association

between the abundance of immune cells and the five key

cuproptosis-related Risk genes. The results showed that the

majority of immune cells were significantly related with the

five genes (Figure 7L). As a result, CRG Risk score may be related

with tumor TIME of GC.
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Association of CRG risk score with MSI,
CSC, TMB, and somatic mutations

Accumulating evidence has implied that MSI is a potential

genomic biomarker to identify patients’ sensitivity to

immunotherapy (32). We assessed the MSI status in distinct

sets of CRG Risk score. In the high-score group, MSI-H

accounted for 14%, MSI-L accounted for 16%, the rest 70%

were microsatellite stable (MSS) (Figure 8A). However, in the

low-score group, the proportion of MSI-H was significantly

increased (22%), and the proportion of MSI-L was decreased

(14%) (Figure 8A). Further correlation analyses indicated

that a low CRG score was significantly related with MSI-H
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FIGURE 6

Construction of CRG Risk scoring system in the training group. (A) Alluvial diagram of subtype distributions in groups with different molecular
subtypes, gene subtypes, Risk scores and survival outcomes. (B) Differential analysis of CRG Risk score in 339 molecular subtype A and 393
molecular subtype (B, C) Differential analysis of CRG Risk score in 329 gene subtype A and 403 gene subtype (B, D) RT-qPCR indicated the
expression of five CRG risk score gene in 5 tumor and normal samples. * indicated P < 0.05. (E) Heat-map of five scoring genes expression
profile in different risk sets of the training group. (F, G) Ranked dot and scatter plots of CRG Risk score distribution and patient survival in the
training group. (H) Survival analysis in high- and low- CRG Risk score groups in the training set. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. (I) ROC curve predicted the sensitivity and specificity of 1-, 3-, and 5-year survival according to CRG Risk score
in the training group. The training group contained 364 GC samples. P < 0.05 was considered to be statistically significant.
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status, while a high CRG score was correlated with MSS status

(Figure 8B). This might be associated with better efficacy

of immunotherapy.

CSCs have been recognized as promising therapeutic targets

for cancer therapy according to their self-renewal capacity and

differentiation potential (33). As a result, we studied the
Frontiers in Immunology 13
correlation between CRG Risk score and CSC index values.

Figure 8C showed the results of the negative linear correlation

between CRG Risk score and CSC index (R = −0.64, p <.001),

suggesting that GC cells with low CRG Risk score had more

different stem cell properties and a lower degree of cell

differentiation (Figure 8C).
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FIGURE 7

Associations of TME and CRG Risk score. (A) Differential analyses of CRGs expression in the high- and low-risk score groups. (B–J) Correlation
analyses between CRG Risk score and TICs. (K) Differential analyses between CRG Risk score and immune/stromal/estimate scores. (L) Correlation
analyses between the abundance of TICs and five key Risk scoring genes in the proposed model. High-risk score group contained 352 GC samples
and low-risk score group contained 376 GC samples. P < 0.05 was considered to be statistically significant. * indicated P < 0.05, ** indicated
P < 0.01, *** indicated P < 0.001.
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TMB, reflecting cancer mutation quantity, is also clinically

related with immune checkpoint inhibitors (ICIs) outcomes

(34). Patients with a higher TMB usually benefited from ICIs.

Our analysis of the mutation data from TCGA-STAD cohort

demonstrated that lower TMB was observed in the sets of

high CRG Risk score than that in the sets of low CRG Risk

score (p<0.001; Figure 8D). Spearman correlation analysis

discovered that TMB was negatively associated with CRG Risk

score (R = −0.24, p = 3.4e-06; Figure 8E). The above analyses

indicated that the low-risk set might benefit from ICIs. We

further described the distribution variations of the somatic

mutations between two CRG Risk score sets in TCGA-STAD

cohort through maftools. The top ten mutated genes in the high-
Frontiers in Immunology 14
and low-CRG Risk sets were TTN, TP53, MUC16, LRP1B,

ARID1A, SYNE1, CSMD3, FAT4, FLG, PCLO and ZFHX4

(Figures 8F, G). Patients with a low CRG Risk score had

obviously higher frequencies of all these mutations, except

CSMD3, compared to those in patients with a high CRG

Risk score.
Drugs susceptibility analysis

To investigate the therapeutic effects of drugs in patients of

the two groups, we applied “pRRophetic” package in R to

calculate the IC50 values of drugs. We assessed not only the
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FIGURE 8

Associations of CRG Risk score with MSI, TMB and CSC. (A) The distribution of MSI in different Risk score groups. (B) Differential analyses
between CRG Risk score and MSI. (C) Correlation analysis between CRG Risk score and CSC index. (D) Differential analysis of TMB in distinct
CRG Risk score groups. (E) Correlation analysis of CRG Risk score and TMB. (F, G) The waterfall plot of somatic mutation characteristics in high-
and low- CRG Risk score groups. High-risk score group contained 352 GC samples and low-risk score group contained 376 GC samples. P <
0.05 was considered to be statistically significant.
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TABLE 2 The drug susceptibility in patients of low- and high- score groups.

Drugs Low-score group High-score group

AKT inhibitors MK.2206 + –

ALK inhibitor NVP.TAE684 + –

proteasome inhibitor Bortezomib + –

MG.132 + –

ATP inhibitor PF.562271 + –

Bcl-2 inhibitor ABT.263 + –

TW.37 + –

Bcr-Abl inhibitor Imatinib + –

GNF.2 + –

BTK inhibitor LFM.A13 + –

CDK inhibitor CGP.60474 + –

PD.0332991 + –

Chk1 inhibitor AZD7762 + –

DNA synthesis inhibitor Bleomycin + –

FGFR inhibitor PD.173074 + –

FTase inhibitor FTI.277 + –

GSK-3 inhibitor CHIR.99021 + –

SB.216763 + –

HIF-PH inhibitor DMOG + –

IGF-1RIR inhibitor BMS.536924 + –

BMS.754807 + –

ITK inhibitor BMS.509744 + –

JNK inhibitor AS601245 + –

JNK.9L + –

JNK.Inhibitor.VIII + –

PKC Modulator Bryostatin.1 + –

Midostaurin + –

MEK inhibitor RDEA119 + –

MET inhibitor PF.02341066 + –

PHA.665752 + –

mTOR inhibitor Temsirolimus + –

AZD8055 + –

mTOR and PI3K inhibitor NVP.BEZ235 + –

ATM inhibitor KU.55933 + –

Bcr-Abl inhibitor Nilotinib + –

Doxorubicin + –

Elesclomol + –

Docetaxel + –

Lck/Src inhibitor KIN001.135 + –

MDM2 inhibitor JNJ.26854165 + –

PDK1 inhibitor BX.795 + –

PI3K inhibitor AZD6482 + –

GDC0941 + –

PK inhibitor NU.7441 + –

RXR activator Bexarotene + –

VEGFR inhibitor AMG.706 + –

ROCK inhibitor GSK269962A + –

RSK inhibitor CMK + –

(Continued)
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current clinical used chemotherapy drugs, but also drugs under

clinical trials. We classified drugs into multiple groups, including

AKT inhibitors, BCL-2 inhibitors, PI3K inhibitors, MEK

inhibitors, ROCK inhibitors, XIAP inhibitors, Raf inhibitors,

Multikinase inhibitors, and so on. Interestingly, we found that

the patients in the low CRG Risk score group had higher IC50

value for AKT inhibitors (MK.2206), ALK inhibitor

(NVP.TAE684), proteasome inhibitor (Bortezomib, MG.132),

ATP inhibitor (PF.562271), Bcl-2 inhibitor (ABT.263, TW.37),

Bcr-Abl inhibitor (Imatinib, GNF.2), BTK inhibitor (LFM.A13),

CDK inhibitor (CGP.60474, PD.0332991), Chk1 inhibitor

(AZD7762), DNA synthesis inhibitor (Bleomycin), FGFR

inhibitor (PD.173074), FTase inhibitor (FTI.277), GSK-3

inhibitor (CHIR.99021, SB.216763), HIF-PH inhibitor
Frontiers in Immunology 16
(DMOG), IGF-1RIR inhibitor (BMS.536924, BMS.754807),

ITK inhibitor (BMS.509744), JNK inhibitor (AS601245,

JNK.9L, JNK.Inhibitor.VIII), PKC Modulator (Bryostatin.1,

Midostaurin), MEK inhibitor (RDEA119), MET inhibitor

(PF.02341066, PHA.665752), mTOR inhibitor (Temsirolimus,

AZD8055), mTOR and PI3K inhibitor (NVP.BEZ235), ATM

inhibitor (KU.55933), Bcr-Abl inhibitor (Nilotinib),

Doxorubicin, Elesclomol, Docetaxel, Lck/Src inhibitor

(KIN001.135), MDM2 inhibitor (JNJ.26854165), PDK1

inhibitor (BX.795), PI3K inhibitor (AZD6482, GDC0941), PK

inhibitor (NU.7441), RXR activator (Bexarotene), VEGFR

inhibitor (AMG.706), ROCK inhibitor (GSK269962A), RSK

inhibitor (CMK), Src inhibitor (A.770041, AZD.0530,

WH.4.023), WIP1 inhibitor (CCT007093) and XIAP inhibitor
TABLE 2 Continued

Drugs Low-score group High-score group

Src inhibitor A.770041 + –

AZD.0530 + –

WH.4.023 + –

WIP1 inhibitor CCT007093 + –

XIAP inhibitor Embelin + –

eIF2a Dephosphorylation inhibitor Salubrinal – +

TrkA inhibitor GW.441756 – +

TNF inhibitor Lenalidomide – +

PLK inhibitor GW843682X – +

Rac1 inhibitor EHT.1864 – +

Aurora inhibitor VX.680 – +

Mitomycin.C – +

DHFR inhibitor Pyrimethamine – +

RSK inhibitor PF.4708671 – +

HDAC inhibitor Vorinostat – +

MS.275 – +

Raf inhibitor PLX4720 + –

AZ628 + –

SB590885 – +

MAPK inhibitor VX.702 + –

BIRB.0796 – +

multikinase inhibitor Dasatinib + –

Pazopanib + –

AP.24534 + –

CEP.701 + –

Sorafenib – +

PARP inhibitor AZD.2281 + –

AG.014699 + –

ABT.888 – +

EGFR/Her-1/2 inhibitor Lapatinib + –

BIBW2992 – +

HSP90 inhibitor AUY922 + –

CCT018159 – +
"+":indicated up-regulated sensitivity; "-":indicated down-regulated sensitivity.
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(Embelin). However, patients in the low CRG Risk score group

had lower IC50 value for eIF2a dephosphorylation inhibitor

(Salubrinal). methotrexate, TrkA inhibitor (GW.441756), TNF

inhibitor (Lenalidomide), PLK inhibitor (GW843682X), Rac1

inhibitor (EHT.1864), Aurora inhibitor (VX.680), Mitomycin.C,

DHFR inhibitor (Pyrimethamine), RSK inhibitor (PF.4708671)

and HDAC inhibitor (Vorinostat, MS.275). Furthermore, the

same type of drugs might act different roles in different Risk

score groups. For instance, patients in the low CRG Risk score

group had higher IC50 value for Raf inhibitor (PLX4720,

AZ628), and lower IC50 value for Raf inhibitor (SB590885). In

the low CRG Risk score group, MAPK inhibitor (VX.702)

displayed a higher IC50 value, while MAPK inhibitor

(BIRB.0796) showed a lower IC50 value. Multikinase

inhibitors (Dasatinib, Pazopanib, AP.24534, CEP.701)

exhibited a better drug susceptibility in the group of low CRG

Risk score, while multikinase inhibitor (Sorafenib) showed the

opposite effect. The opposite drug susceptibility in low and high

CRG Risk score groups were also seen between PARP inhibitor

AZD.2281, AG.014699 and ABT.888, EGFR/Her-1/2 inhibitor

Lapatinib and BIBW2992, HSP90 inhibitor AUY922 and

CCT018159. Together, these results showed that CRGs were

significantly related to drug sensitivity (Figures S6, 7; Table 2).
Establishment of a nomogram to predict
GC patients’ survival

As the importance of CRG Risk score in GC patients’

survival, we established a nomogram incorporating the CRG

Risk score and clinicopathological features to predict the 1-, 3-,

and 5-year OS rates (Figure 9A). Clinicopathological features

contained gender, age and TNM stage. The subsequent
Frontiers in Immunology 17
calibration graph indicated that the proposed nomogram had

a similar performance in GC patients compared to an ideal

model (Figure 9B).
Discussion

Gastric cancer is a global health problem. Despite the

incidence and mortality decline over the past 5 decades, gastric

cancer remains the third leading cause of cancer death

worldwide (35). The clinical efficacy of conventional

chemotherapy is limited, and the survival of advanced GC

remains poor (36). Pioneer researches indicate that risk factors

for GC are involved in the interplay between genetic

susceptibility and environmental exposure (2). Based on the

exploration of TME, ICIs, a kind of monoclonal antibodies that

inhibit programmed cell death protein 1 (PD-1), PD-L1, and

cytotoxic T-lymphocyte antigen 4 (CTLA-4), emerged as an

exciting treatment strategy across a variety of malignancies in

the last decade (37). TMB, MSI, PD-L1 and Epstein-Barr virus

are recognized as potential biomarkers to identify susceptibility

to ICIs. However, the number of patients benefit from ICIs is

limited, and the primary and acquired resistance remains a big

problem. Therefore, a comprehensive understanding of the

alterations in the genome, transcriptome, and somatic

mutation in TME is ultimate for the prevention, treatment,

and prognosis evaluation of GC.

RCD, also known as programmed cell death (PCD), is

generally regulated by genetic reprogramming of the cell that

leads to an energy-dependent cascade of biochemical and

morphological changes (38). Numerous researches have revealed

that RCD takes a great part in kinds of pathological and

physiologic processes, including tumorigenesis (39). An
A
B

FIGURE 9

Construction and validation of a nomogram in 728 GC samples. (A) Nomogram for predicting the 1-, 3-, and 5-year OS of GC patients.
(B) Calibration curves of the nomogram. 728 GC samples contained 352 high-risk score and 376 low-risk score.
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increasing number of novel forms of RCD (apoptosis, necroptosis,

autophagy, ferroptosis, pyroptosis, alkaliptosis, oxeiptosis,

parthanatos, entotic cell death, netotic cell death, and lysosome-

dependent cell death) have been identified and are being

comprehensively studied in various cancers (40). For example,

ferroptosis, a novel iron-dependent lipid peroxidation induced

RCD, was recently identified and found to be greatly involved in

tumorigenesis (41). Evaluation of the prognostic value of

ferroptosis-related genes has been widely performed in various

tumors, such as pancreatic cancer, bladder cancer, colon cancer,

hepatocellular carcinoma, glioblastoma, soft tissue sarcoma,

thyroid papillary carcinoma, gastric cancer, ovarian cancer and

so on (42–50). Associations between ferroptosis-related genes and

TME have also been investigated in multiple cancers, including

breast cancer, hepatocellular carcinoma, clear cell renal cell

carcinoma, lung adenocarcinoma, head and neck squamous cell

carcinoma, melanoma, papillary thyroid carcinoma and so on

(51–57). Classifying tumor patients into distinct subtypes based

on their molecular characteristics, enables us to better predict

distinct phenotypes, drugs susceptibility, and prognosis of cancer

patients (58).

Copper is the 26th element in abundance on earth (59).

Aberrant copper homeostasis (ACH) are probably associated to

metabolic activity, because copper is a cofactor for cytochrome C

oxidase, which is involved in the electron transport chain (60).

As an important trace element, despite the role of copper in GC

has been primarily studied, it remains contradictory. For

example, serum copper level was elevated in GC patients and

significantly correlated to the survival time (61). Serum Cu: Zn

ratio was also elevated, especially in advanced GC (62). Some

studies focused on copper/zinc-superoxide dismutase (Cu/Zn-

SOD) and found that serum levels of Cu/Zn SOD were

significantly up-regulated in GC and higher Cu/Zn SOD levels

indicated an increased risk of GC (63). Another research payed

attention to Cu/Zn-SOD immunoreactivity and found that Cu/

Zn-SOD was widely distributed in the gastric mucosa and the

grade of Cu/Zn-SOD immunoreactivity was greatly associated

with the histological type of GC, suggesting the function of GC

cells may be vulnerable to active oxygen species. Additionally,

well-differentiated gastric cancer appeared to be more frequently

positive (64). However, Bo, L.Y.et.al (65). discovered that

elevated level of Cu2+ was associated with higher growth

inhibition, cell cycle arrest, mitochondrial membrane potential

disruption, autophagy inhibition, and apoptosis induction. In

addition, disulfiram (DSF) was an approved drug for anti-

alcoholism medication and accumulating evidence suggested

DSF, in combination with copper, showed excellent antitumor

activity in multiple cancers, including GC (66). For example,

DSF/Cu complex exhibited antitumor activity against GC cells

via modulating the stress response, glycolysis, S6K1, c-Myc and

Wnt/b-catenin signaling (67, 68). DSF/Cu also induced

apoptosis through reactive oxygen species (ROS)/mitogen-

activated protein kinase pathway (69). However, the role of
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cuproptosis in GC remains unknown, and the evaluation of

prognostic value of CRGs has never been conducted in GC.

Luckily, the large-scale public database, including TCGA

and GEO database, allows us to access and analysis the

transcriptome profiles of multiple cancers, thus we can have

an overall view of the genetic landscape, screen potential

biomarkers, develop treatment strategies and predict patients’

prognosis (70, 71). In our study, we downloaded transcriptome

profiling and the corresponding clinicopathological data of GC

samples from TCGA and GEO databases. Firstly, we examined

the levels of CGRs in tumor and normal tissues, and found that

most CRGs were obviously elevated in tumor tissues. General

analyses of somatic mutation frequency and copy number

alterations in these 19 CRGs exhibited a relatively high

mutation frequency and copy number alterations in GC

samples. Survival analysis and univariate Cox regression

analysis of GC patients from TCGA-STAD and GSE84433

databases revealed that a set of CRGs were significantly

correlated with GC patients’ survival. Therefore, we

hypothesized cuproptosis might be a potential target for the

treatment of GC, and CRGs signature might serve to predict

therapeutic response and prognosis of GC patients, which

provided us new sights for exploring the role of copper in GC.

As a result, we further grouped GC patients into molecular

subtype A and B based on the expression profile of CRGs.

Survival analysis showed that GC patients in subtype A had a

higher survival probability than those in subtype B. Gender, age

and T stage were also significantly associated with different

subtypes. GSVA enrichment analysis indicated that subtype A

was obviously enriched in metabolic related pathways, which

was consistent with the findings of Tsvetkov et al. (17).

Considering the important position of immunotherapy in

gastric cancer, we further evaluated TIME related indicators,

such as TICs, MSI, CSC, TMB and somatic mutations, to better

explain the association between CRGs and TIME of GC. The

profiling of TICs showed that most immune cells were more

enriched in subtype B than in subtype A. GO and KEGG

enrichment analyses of DEGs obtained from subtype A and B

showed that these DEGs took a great part in the regulation of

metabolism. Univariate Cox regression analysis was utilized to

seek prognosis related DEGs. Then, patients were again divided

into two sets (gene subtype A and B), based on the expression of

32 prognostic DEGs. Different gene subtypes showed great

differences in CRGs, and were significantly correlated with

patients’ age, grade, T and N stage, and survival. Regarding the

great importance of CRGs in the prognosis of GC, we further

established CRG Risk scoring system based on the expression of

prognostic DEGs in the training group. The accuracy of system

was validated in the testing group and the combined group.

Patients with high Risk score showed a poorer survival rate than

those with low Risk score. Furthermore, all of CGRs, TICs, MSI,

CSC, TMB, somatic mutations, and drugs susceptibility were

significantly related with different Risk score groups. Finally, we
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established a nomogram incorporating the CRG Risk score and

clinicopathological features to predict 1-, 3-, and 5-year OS rates

of GC patients. CRG Risk score was previously reported by Jiang

R et al. (21) in ESCA and Wang et al. (72) in HCC. A high

cuproptosis-related risk score was correlated with poor survival

and pro-tumor immune infiltrates in TME of HCC and ESCA.

The Risk score in ESCA was based on the expression of six CRGs

(SLC25A5, SLC23A2, PDHX, COX7B, ATP7A and PIH1D2).

However, it was different in HCC, and the Risk score was

calculated by the expression of distinct five CRGs. We

speculated that the unique TME determined the uniqueness

and importance of CRGs Risk scoring system in each tumor. It is

not appropriate to apply CRG Risk score derived from ESCA or

HCC to evaluate the characteristics of TME, or predict survival

and therapeutic response in GC. As a result, we established our

own CRG Risk score system based on the comprehensive

analyses of TME and evaluated its application in GC.

However, our research on the relationship between CRG and

TME of GC were almost based on the bioinformatics analysis.

Further in vitro and in vivo experiments are required to explore

the specific mechanism of CRGs affecting TME, which might be

extremely important in the treatment of GC.

In conclusion, CRGs were significantly associated with TME,

drugs susceptibility, prognosis evaluation of GC. The CRGs Risk

scoring system served to accurately predict GC patient survival.

Patients with a high CRGs Risk score showed shorter survival

time, and less MSI, CSC and TMB. In addition, CRGs Risk

scoring system exhibited a good capability in predicting the

patients’ responsiveness to specific therapeutic drugs.
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SUPPLEMENTARY FIGURE 1

Unsupervised clustering of CRGs and consensus matrix heat-maps for k =

3-9 through consensus clustering analysis in 732 GC samples.

SUPPLEMENTARY FIGURE 2

Unsupervised clustering of prognostic genes and consensus matrix heat-

maps for k = 3-9 through consensus clustering analysis in 732 GC samples.

SUPPLEMENTARY FIGURE 3

Identification of optimum prognostic genes in 732 GC samples. (A, B) The
LASSO regression analysis and partial likelihood deviance analysis on 32

subtype-related prognostic DEGs.

SUPPLEMENTARY FIGURE 4

Validation of CRG Risk score in the testing group. (A) The heat-map of five
scoring genes expression in different risk sets of the testing group. (B, C)
Ranked dot and scatter plots of CRG Risk score distribution and patient
survival in the testing group. (D) Survival analysis of high- and low- CRG

Risk score in the testing group. Kaplan–Meier plot and log-rank tests were
conducted for survival analyses. P < 0.05 was considered to be statistically

significant. (E) ROC curve predicted the sensitivity and specificity of 1-, 3-,
and 5-year survival according to CRG Risk score in the testing group. The
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testing group included 364 GC samples, among which 170 samples were
in high-risk group and 194 samples were in low-risk group.

SUPPLEMENTARY FIGURE 5

Validation of CRG Risk score in the combined TCGA-STAD and

GSE84433. (A) The heat-map of the expression profile of five scoring
genes in different risk groups. (B, C) Ranked dot and scatter plots of CRG

Risk score distribution and patient survival in the combined group. (D)
Survival analysis of high- and low- CRG Risk score in the combined group.
Kaplan–Meier plot and log-rank tests were conducted for survival

analyses. P < 0.05 was considered to be statistically significant. (E) ROC
curve predicted the sensitivity and specificity of 1-, 3-, and 5-year survival

according to CRG Risk score in the combined group. Combined TCGA-
STAD and GSE84433 included 728 GC sample, among which 352 GC
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samples were in high-risk score group and 376 GC samples were in low-
risk score group.

SUPPLEMENTARY FIGURE 6

Differential drugs susceptibility analyses in high- and low- Risk group.
High-risk score group contained 352 GC samples and low-risk score

group contained 376 GC samples. P < 0.05 was considered to be
statistically significant.

SUPPLEMENTARY FIGURE 7

Differential drugs susceptibility analyses in high- and low- Risk group.
High-risk score group contained 352 GC samples and low-risk score

group contained 376 GC samples. P < 0.05 was considered to be
statistically significant.
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