
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhi Tian,
University of South Florida,
United States

REVIEWED BY

Jianming Tang,
First Hospital of Lanzhou University,
China
Min Deng,
Guangzhou Medical University Cancer
Hospital, China
Fu Peng,
Sichuan University, China

*CORRESPONDENCE

Weidong Wei
weiwd@sysucc.org.cn
Rongfang He
herongfang2019@fsyy.usc.edu.cn
Wei Du
dw417@sina.com

†These authors have contributed
equally to this work and share first
authorship

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 29 September 2022
ACCEPTED 14 November 2022

PUBLISHED 29 November 2022

CITATION

Luo Y, Tian W, Lu X, Zhang C, Xie J,
Deng X, Xie Y, Yang S, Du W, He R and
Wei W (2022) Prognosis stratification
in breast cancer and characterization
of immunosuppressive
microenvironment through
a pyrimidine metabolism-
related signature.
Front. Immunol. 13:1056680.
doi: 10.3389/fimmu.2022.1056680

COPYRIGHT

© 2022 Luo, Tian, Lu, Zhang, Xie, Deng,
Xie, Yang, Du, He and Wei. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 29 November 2022

DOI 10.3389/fimmu.2022.1056680
Prognosis stratification in breast
cancer and characterization
of immunosuppressive
microenvironment through a
pyrimidine metabolism-
related signature
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of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Guangzhou, China, 2Surgical and Transplant Intensive Care Unit of The Third Affiliated Hospital,
The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China, 3Department of
Pathology, The First People’s Hospital of Changde City, Changde, Hunan, China, 4Department of
Pathology, The First Affiliated Hospital, Hengyang Medical School, University of South China,
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Pyrimidine metabolism is a hallmark of cancer and will soon become an

essential part of cancer therapy. In the tumor microenvironment, cells

reprogram pyrimidine metabolism intrinsically and extracellularly, thereby

promoting tumorigenesis. Metabolites in pyrimidine metabolism have a

significant impact on promoting cancer advancement and modulating

immune system responses. In preclinical studies and practical clinical

applications, critical targets in pyrimidine metabolism are acted upon by

drugs to exert promising therapeutic effects on tumors. However, the

pyrimidine metabolism in breast cancer (BC) is still largely underexplored.

In this study, 163 credible pyrimidine metabolism-related genes (PMGs) were

retrieved, and their somatic mutations and expression levels were

determined. In addition, by using The Cancer Genome Atlas (TCGA) and the

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)

databases, 12 PMGs related to the overall survival (OS) were determined using

the univariate Cox regression analysis. Subsequently, by performing the

LASSO Cox hazards regression analysis in the 12 PMGs in TCGA-BRCA

dataset, we developed a prognosis nomogram using eight OS-related

PMGs and then verified the same in the METABRIC, GSE96058, GSE20685,

GSE42568 and GSE86166 data. Moreover, we validated relationships

between the pyrimidine metabolism index (PMI) and the survival probability

of patients, essential clinical parameters, including the TNM stage and the

PAM50 subtypes. Next, we verified the predictive capability of the optimum

model, including the signature, the PAM50 subtype, and age, using ROC

analysis and calibration curve, and compared it with other single clinical
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factors for the predictive power of benefit using decision curve analysis.

Finally, we investigated the potential effects of pyrimidine metabolism on

immune checkpoints, tumor-infiltrating immune cells, and cytokine levels

and determined the potential implications of pyrimidine metabolism in BC

immunotherapy. In conclusion, our findings suggest that pyrimidine

metabolism has underlying prognostic significance in BC and can facilitate

a new management approach for patients with different prognoses and more

precise immunotherapy.
KEYWORDS

pyrimidine metabolism, breast cancer, prognosis signature, tumor immune
microenvironment, therapy resistance, immunotherapy
Introduction

Breast cancer (BC) is presently one of the most prevalent

malignancies. Furthermore, it is the top cause of cancer-related

fatalities among the female population (1). Though the

treatment of BC has evolved significantly in recent years, and

the treatment efficacy has also improved remarkably, some

patients continue to have poor treatment outcomes due to

their susceptibility to recurrence, metastasis, and drug

resistance. One of the most notable issues leading to this result

is the heterogeneity of BC (2). Thus, the medical field requires

new bio-indicators and treatment targets to guide the

therapeutic management of BC patients.

Over the past half-century, the oncogene revolution has led to

a large volume of research and a series of mutational events

causing key phenotypes in tumor cells to cleverly combine and

alter multiple signaling pathways. In addition, high-throughput

sequencing technology revealed the presence of more diverse

mutations associated with tumorigenesis and progression than

previously assumed (3, 4). These mutations impacted a host of

critical signal pathways and processes that converge to

accommodate tumor metabolism and support tumor growth

and migration. Some of these metabolic alterations, which were

vital for the malignant transformation of tumors, were closely

associated with the malignant phenotype of tumors (5). Therefore,

we hypothesize that these metabolic alterations can function as a

crucial hallmark of survival prognosis in tumor patients.

During tumor cell proliferation, the need to synthesize

ribosomal RNA (rRNA), replicate the genome (synthesize

DNA), and maintain the transcriptome (produce large

amounts of mRNA) increases the demand for nucleotides. As

the exogenous intake of nucleotides is essentially negligible, the

endogenous synthesis of nucleotides is more important than that

of other nutrients. Pyrimidines, in turn, are an essential and

important component of nucleotides, and therefore, pyrimidine

metabolism has a significant impact on the advancement of
02
neoplasms (6). Accumulating evidence suggests that pyrimidine

metabolism is pivotal in the progression of several kinds of

carcinomas and the development of drug resistance. For

example, blocking pyrimidine synthesis enhanced the

molecular therapeutic response of glioblastoma stem cells (7).

Adaptive response of myeloid malignancy cells to pyrimidine

metabolic network led to resistance to decitabine and

5-azacytidine (8). Dihydroorotate dehydrogenase (DHODH)-

driven pyrimidine biosynthesis was one of the major

mechanisms linking respiration and tumorigenesis. Not only

that, DHODH inhibitors were also potential anticancer

medicines (9). Reprogramming of CDA-mediated pyrimidine

metabolism under ER stress provides a survival advantage for

the dehydrogenase-driven hyperactivation of pyrimidine MUC1

oncoprotein (10). Furthermore, pyrimidine metabolism has a

non-proliferative role via the epithelial-to-mesenchymal

transition in several epithelial and non-epithelial tumors (11).

Tumor-infiltrating immune cells (TIIs), an essential

component of the tumor microenvironment (TME), are a

series of immune effector and immune suppressor cells in and

around the neoplasm (12). In addition, metabolic disorders in

the TME, especially the recently discovered changes in

pyrimidine metabolism, have a critical impact on tumor

development (13). Pyrimidine de novo synthesis has been the

target of a range of chemotherapy drugs in widespread use (e.g.,

5-fluorouracil) and immunosuppressant drugs (e.g., leflunomide

and brequinar), emphasizing its importance in cancer

progression and immune regulation (14). Leflunomide-treated

tumors that inhibit a key enzyme for ab initio synthesis of

pyrimidine exhibited reduced CTLA-4+ T cells, suggesting

reduced intra-tumor T cell depletion and possibly increased

anti-tumor immunity. However, the researchers did not

investigate the effect of the combination with immune

checkpoint inhibitors, for example, inhibitors targeting

programmed cell death-1 (PD-1), programmed cell death

ligand-1 (PD-L1), and cytotoxic T-lymphocyte antigen-4
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1056680
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2022.1056680
(CTLA-4) (15). DHODH and mitochondria-associated

pyrimidine synthesis were independent and important

cytostatic regulators of activated T cells (16). Studies have

demonstrated that a large number of tumor-associated

macrophages (TAMs) infi l trating pancreatic ductal

adenocarcinoma release a series of pyrimidines, including

deoxycytidine, which competes for the inhibition of

gemcitabine through multiple mechanisms (17). Nevertheless,

systematic studies on the interactions between pyrimidine

metabolism and TME are still insufficient.

In this study, we investigated the prognostic value of

pyrimidine metabolism-related genes (PMGs) and established a

signature that could be used to predict the survival prognosis and

immunotherapy benefits of BC patients. We further conducted a

comprehensive evaluation of the clinical application of this

signature. Additionally, potential correlations between this

feature and TME landforms were revealed. This comprehensive

analysis might provide new insights on pyrimidine metabolism

and immunotherapy for cancer research.

Materials and methods

Patients data collection

The transcriptome expression matrices and corresponding

clinicopathological information of BC were retrieved from The

Cancer Genome Atlas (TCGA) database (113 normal breast

samples and 1,113 BC samples), the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC) database

(1,904 BC samples), and GSE96058 (3,409 BC samples),

GSE20685 (327 BC samples), GSE42568 (104 BC samples),

GSE86166 (366 BC samples) from the Gene Expression

Omnibus (GEO) database. We obtained 920 patients of

TCGA-BRCA as a training cohort and 1,891 patients of

METABRIC cohort, 3,069 patients of GSE96058 cohort, 327

patients of GSE20685 cohort, 104 patients of GSE42568 with 366

patients of GSE86166 cohort as validation sets whose overall

survival (OS) was more than 30 days. In total, 186 pyrimidine

metabolism-relevant genes were obtained from the Molecular

Signature Database v7.5.1 (MSigDB). In addition, after taking

the intersection of the above 186 PMGs with the overall genes in

the TCGA-BRCA, METABRIC and GSE96058 datasets

mentioned above, 163 overlapping PMGs were extracted for

further analysis (Supplementary Figure 1).
Identification of somatic mutations and
variations in the expression of genes
among PMGs

We downloaded somaticmutations of BC patients in the training

cohort from the UCSC Xena database. The somatic mutation

frequencies of 163 PMGs are shown in the waterfall plot evaluated
Frontiers in Immunology 03
using the R package “maftools” (18). Differentially expressed genes

(DEGs), which are related to pyrimidine metabolism, were

determined using the R package “edgR” (19).These significant

DEGs are demonstrated in a volcano plot along with a heatmap.
Acquisition of OS-related PMGs

PMGs significant for predicting survival prognosis were

ascertained using the univariate Cox hazard regression analysis

in TCGA-BRCA and METABRIC cohorts. The overlapping OS-

related PMGs were extracted to construct the next prognostic

model. Then, the mRNA expression levels and locations on the

chromosomes of these genes were visualized using the R package

“RCircos” (20), and the correlations between these genes and

other genes were shown with strings. Besides, correlation matrix

plots were constructed to ascertain the correlation features

between these overlapping OS-related PMGs.
Construction and validation of
pyrimidine metabolism-related
prognostic signature

For the further discovery of candidate PMGs with more

prognostic significance, the least absolute shrinkage and

selection operator (LASSO) Cox regression analysis was

applied to the training cohort (21). Then, utilizing the

“glmnet” R package (22), the eight optimized PMGs were

explored to model the prognosis of BC patients. Their mRNA

expression level between BC tissues and normal mammary

tissues was plotted in a boxplot, and their prognostic

significance for OS were described in a survival curve. In

accordance with the prediction model, the pyrimidine

metabolic index (PMI) can be derived for patients by applying

the following formula.

PMI  =  oEi*g i
(Ei represents the mRNA expression level of each PMG; and

gi represents the corresponding regression coefficient)

Median-split was applied to classify BC patients in each

cohort into high PMI group and low PMI group. The

classification accuracy of the signatures was evaluated based

on principal component analysis (PCA).
Comprehensive evaluation of PMI and
clinical parameters in BC patients

To further demystify the applicability of PMI to actual

clinical problems, boxplots of Kruskal’s test were employed to

compare the differences in PMI values across the various

clinicopathological parameters in the TCGA-BRCA,

METABRIC and GSE96058 datasets to varying degrees. In

addition, the heatmap demonstrated the association between
frontiersin.org
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the mRNA expression levels of PMGs included in the signature

and several clinical indicators, including PMI, T stage, N stage,

American Joint Committee on Cancer (AJCC) stage, and

survival status in the training set, as well as PMI, tumor size,

positive lymph nodes, PAM50 subtype, AJCC stage, grade, and

survival status in the two validation datasets.
Construction and assessment of
pyrimidine metabolism-relevant
clinical nomogram

Next, univariate and multivariate Cox regression analyses

were performed to characterize whether PMI was an

independent prognostic factor for BC patients. On the basis of

these results, we developed a clinicopathological nomogram

related to pyrimidine metabolism by utilizing the R packages

“rms” and “regplot” (23), which combined PMI with two

additional clinical features, age and PAM50 subtypes, in the

training set. Verification of the predictive power of the

nomogram was completed by the analysis of calibration curves

(24) and decision curve analysis (DCA) which were plotted. R

package “timeROC” was used to performed the Receiver

Operating Characteristic (ROC) analyses (25).
Illustration of the differential biofunction
and metabolic network within the two
PMI groups

To illustrate the differences in biological functions and metabolic

network between the high and low PMI groups, gene set enrichment

analysis (GSEA) was performed (26). “c5.all.v7.5.1.symbols.gmt”

[GO] and “c2.cp.kegg.v7.5.1.symbols.gmt” [KEGG] were selected as

the reference molecular signature database, and |NES| > 1.5 and FDR

q-values< 0.1 were considered to be statistically significant (27).
Prospective implications for
immunotherapy and tumor immune
microenvironment landscape estimates
based upon PMI

In the past half-century, with the advent of immune checkpoint

inhibitors, great progress has been made in the clinical

immunotherapy of BC. Therefore, the mRNA expression levels of

immune checkpoints, including PD-1, PD-L1, CTLA4, CD28,

CD226, IDO1, TIGIT, and PVR in the high- and low-PMI

groups were compared with the Wilcox test to initially validate

the potential significance of PMI-based immunotherapy.

The estimate scores, immune scores and stromal scores were

evaluated using the ESTIMATE algorithm (28) to further analyze

the TME landscape between the two PMI subgroups. Twenty-two

tumor immune-infiltrating cell types in the TME in the TCGA-

BRCA, METABRIC and GSE96058 cohorts of BC tissues were
Frontiers in Immunology 04
computed using the CIBERSORT deconvolution algorithm (29). To

elucidate the association between PMI and cytokines in TME, we

selected several key cytokines whose mRNA expression levels were

compared in the high- and low-PMI groups, including IL-1B, IL-6,

IL-10, IL-15, IL-27, IL-33, INFG, and TNF.

Cell culture

Cell lines of human BC including BT-549, MCF-7, T47D,

MDA-MB-231 and SK-BR-3 were obtained from ATCC

(American Type Culture Collection). All cells were grown at

37°C in a 5% CO2 and 70% relative humidity atmosphere

without antibiotics. Survival cells were passaged for less than

six months before testing negative for mycoplasma (30).

RNA isolation and quantitative real-time
PCR analysis

This technique was applied using RNA Quick Purification

Kit. An overview of primer sequences is provided in

Supplementary Table S1. The samples were analyzed in

triplicate using a Bio-Rad CFX96 system with SYBR Green.

The qRT-PCR plate was supplied by NEST. An expression level

of RNA was calculated with 2−DDCT and normalized to b-actin.

Statistical analyses

R software (Version 4.2.0) was utilized to perform all

statistical analyses. The differences between the two groups

were examined by the Wilcox test, and Kruskal–Wallis test

was used for cases that involved more than two groups. The

Kaplan–Meier (KM) curve was achieved by log rank test.

Screening of PMG and independent OS prognostic indicators

associated with OS in BC was performed using univariate and

multivariate Cox regression analyses. The correlation matrix was

graphed based on Spearman’s correlation test. Bilateral and

p< 0.05 were ascertained to have statistical significance.

Results

Identification of prognostic pyrimidine
metabolism-relevant genes in
BC patients

Our study flow chart is shown in Figure 1. Initially, we

evaluated 163 global variations in PMGs in somatic mutations of

the TCGA-BRCA cohort. The waterfall plot displayed the top 20

genes, which had the highest frequencies of somatic mutations

(Figure 2A). In addition, after comparing the mRNA expression

levels of PMGs in the TCGA-BRCA cohort between the BC

specimens and normal breast specimens using |log2FC|>1 and

FDR<0.05 as thresholds, the results were attained, which are
frontiersin.org
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displayed herein by heatmap (Figure 2B) and a volcano plot

(Figure 2C). As shown in the volcano plot, the PMGs of which

|log2FC|>2 were marked with the symbol names. In addition, to

identify PMGs significantly associated with BC prognosis for

subsequent model construction, we used the univariate Cox

regression analysis to screen OS-associated genes in the TCGA-

BRCA andMETABRIC datasets (Figure 2D), fromwhich 26 and 64

important PMGs related to OS were obtained, respectively. After

taking the intersection of the above results, we obtained 12

overlapping genes (CMPK1, POLR3GL, RRM2, PNPT1,

POLR2D, GMPS, PDE6B, RRM2B, POLR3A, TXNRD1,

DHODH, and CANT1) for the follow-up study (Figure 2E). In

addition, the chromosomal locations and expression levels of 12

genes were demonstrated by circos plots (Figure 2F).The string

connects the chromosomal location where the gene with which the

12 overlapping genes has a protein interaction is located. Finally, the

association characteristics between these genes were unveiled by

correlation matrix plots (Figure 2G).
Construction of prognostic signature
pyrimidine metabolism-related in BC
patients

LASSO Cox regression analysis was conducted on 12

candidate genes in the TCGA-BRCA training dataset, and eight

critical genes were identified to construct a prognosis signature,

Pyrimidine Metabolic Index, designated as PMI (Figures 3A, B),

containing CANT1, CMPK1, DHODH, GMPS, PDE6B,

POLR3GL, RRM2B, and TXNRD1. For further exploring the

expression levels of each PMG and the ability to independently

predict prognosis, and the relevance of PMGs expressions and OS

was investigated using KM survival curves (Figure 3C), the mRNA

expression levels of BC versus normal tissues were demonstrated

with boxplots (Figure 3D). According to the results, the

expressions of CANT1, GMPS, PDE6B, and RRM2B were

notably elevated in BC, while the expressions of CMPK1,

DHODH, and POLR3GL were significantly downregulated. In

the KM analysis of OS, high expressions of CANT1, CMPK1,

DHODH, GMPS, RRM2B, and TXNRD1, and downregulation of

PDE6B and POLR3GL were markedly associated with a poor

prognosis of BC, further confirming the reliability of selected

PMGs. Furthermore, we detected the mRNA expression levels of

signature-contained PMGs in common human BC cell lines,

including MDA-MB-231, BT 549, SK-BR-3, MCF-7, and T47D

(Figure 4). The results indicated that the expression levels of

CANT1, CMPK1, DHODH, GMPS, and PDE6B in the vast

majority of human BC cell lines were consistent with the tissue

expression levels in the database compared with mammary

epithelial cell line MCF-10A. Ultimately, the prognostic

signature – the PMI of each patient – was determined as follows:

PMI = Expression of CANT1 * 0.032209 + Expression of

CMPK1 * 0.064783 + Expression of DHODH * 0.207055 +
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Expression of GMPS * 0.076095 - Expression of PDE6B *

0.10174 - Expression of POLR3GL * 0.33513 + Expression of

RRM2B * 0.225794 + Expression of TXNRD1 * 0.004771
Validation of signature based on eight
pyrimidine metabolism-relevant genes

BC patients from the TCGA-BRCA training set and two

validation sets (METABRIC and GSE96058) were individually

divided into high- and low-PMI subpopulations based on the

median PMI value to further test the predictive accuracy of PMI

in BC (Figure 5A). As predicted, deaths of BC patients had risen

with increasing PMI in all cohorts (Figure 5B). Moreover, the

distribution patterns of high- and low-PMI subgroups in a two-

dimensional graph were visualized using PCA (Figure 5C). Also, the

KM survival analysis demonstrated that high-PMI patients tended

to have a lower OS than patients with low PMI (Figure 5D, TCGA-

BRCA, p = 3.067e−07; METABRIC, p = 6.397e−09; METABRIC,

p< 0.0001; GSE96058, p = 2.006e−08).Furthermore, the AUC curve

confirmed that the PMI-only model was statistically significant for

diagnosing the probability of survival in breast cancer patients

(Figure 5E).Finally, the predictive accuracy of PMI in BC was again

validated in the GSE86166, GSE42568 and GSE20685 (Figure 6).
Comprehensive assessment of PMI and
clinical parameters in BC patients

We further determined the relationship between PMI and

clinical characteristics to elucidate the ability of PMI to predict

other clinical factors. In the training set, significant variations

existed in PMI at different levels of survival status, T stage,

N stage, M stage, and PAM50 subtypes (all p< 0.05), which

demonstrated that high PMI might be relevant to the severity of

the clinical parameters described above (Figure 7A). Similarly,

remarkable discrepancies were reaffirmed between PMI and

various levels for diverse clinical parameters, including

unfavorable survival probability, larger tumor size, more positive

nodes, severer stage, and PAM50 subtype in high-PMI patients of

the METABRIC cohort (Figure 7B) and worse survival status, more

massive tumor, more metastatic lymph nodes, higher tumor grade,

and PAM50 subtype in high-PMI patients of the GSE96058 cohort

(Figure 7C). The integrated correlation analyses were also displayed

with heatmaps in TCGA cohort (Figure 7D), METABRIC cohort

and GSE96058 cohort (Supplementary Figure 2).
Development and assessment of
clinicopathological nomogram related to
pyrimidine metabolism

To ascertain whether PMI signature could serve as an

independent predictor for prognoses of BC patients, we conducted
frontiersin.org
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FIGURE 1

Study flowchart.
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univariate and multivariate Cox regression analyses in the TCGA-

BRCA cohort. The results demonstrated that the T stage, N stage, M

stage, age, PAM50 subtype, and PMIwere notably correlated with OS

in univariate COX analysis (Figure 8A), while only age, PAM50

subtype, and PMI remained independently prognostic indicators in

multivariate Cox analysis (Figure 8B). Next, we developed a

clinicopathological nomogram incorporating PMI, age, and PAM50

subtype to predict individual OS at 1, 2, and 5 years based on the

above results (Figure 8C). To further validate the predictive power of

the model, calibration plots are depicted to confirm the predictive

consistency (Figure 8D). Subsequently, to compare the discrepancy in

the predictive power between nomogram and single independent

clinical parameters, decision curves were drawn to demonstrate that
Frontiers in Immunology 07
nomogram yielded greater net benefits than single independent

clinical features (Figure 8E). To demonstrate the predictive power

of the model more visually in multiple aspects, AUC analyses were

conducted (Figure 8F). The results showed that the PMI model had

significantly predictive efficacy in patients of both training and

validation cohorts.
Gene Set Enrichment Analysis between
two PMI groups

GSEA analysis in the training set was performed to

identify whether the enriched signaling pathways and
A B

D

E

F G

C

FIGURE 2

Characterization of prognosis-related PMGs in BC patients. (A) The somatic mutation frequency of PMGs in the TCGA-BRCA cohort.
(B, C) Differentially expressed PMGs between normal and tumor tissues in TCGA-BRCA were shown in a heatmap and a volcano plot
successively. (D) Prognostic PMGs were screened by the univariate Cox analysis in TCGA-BRCA and METABRIC severally. (E) A Venn diagram to
obtain 12 overlapping prognostic PMGs. (F) A circos plot depicting the chromosomal location of the 12 prognostic PMGs and the chromosomal
location of their interacting genes and describing the expression levels of the 12 PMGs. (G) The correlation characteristics between the 12
prognostic PMGs in TCGA-BRCA was revealed with a correlation matrix plot.
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biological functions were distinguished between the high- and

low-PMI groups. The results using the ontology gene sets

indicated that proteasomal protein catabolic process,

regulation of mitotic cell cycle, positive regulation of

cellular catabolic process, proteasome-mediated ubiquitin-

dependent protein catabolic process, and mitotic cell cycle

phase transition were mainly enriched in the high-PMI group

(Figure 9A) , when using KEGG gene sets salmonella

infection, endocytosis, human T-cell leukemia virus 1

infection, pathogenic Escherichia coli infection and tight

junction were enriched in the high-PMI group (Figure 9B).
Frontiers in Immunology 08
Latent implications of PMI-based
immunotherapy and TME
landscape estimation

Tumor immune microenvironment landscape and

characteristics are increasingly relevant to tumor development

and subsequent therapeutic aspects. Therefore, the ESTIMATE

algorithm was applied to evaluate and quantify TME by

calculating the immune score, stromal score, and ESTIMATE

score. The results demonstrated that the low PMI group obtained

higher scores above shown in comparison to the high PMI group
A B

D

C

FIGURE 3

Development of a PMI signature in BC. (A, B) LASSO Cox regression analysis to select candidate PMGs for the signature. (C) The KM survival
curves of eight selected PMGs based on expression levels and OS. (D) Estimation over the mRNA expression levels of eight signature-contained
PMGs in the training cohort. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, no significance.
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FIGURE 4

The mRNA expression levels of selected genes were detected in human BC cell lines and the normal mammary epithelial cell line. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001.
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(Figures 9C–E). In addition, as an up-and-coming target for

immunotherapy in the 21st century, immune checkpoints are

playing an essential role in clinical BC treatment protocols. Thus,

a comparison of candidate immune checkpoint with mRNA

expression levels in both PMI groups showed that PD-L1,

CTLA4, CD28, CD226, IDO1, TIGIT, and PVR except PD-1

were dramatically increased in the high-PMI group (Figure 9F),

intimating that patients with a high PMI may achieve more

enhanced responses to immunotherapy against the above
Frontiers in Immunology 10
checkpoints. The results were also very close in the other two

validation groups (Supplementary Figure 3).

It is unsurprising to conclude from the above results that TME

differs significantly between different PMI groups. To further

investigate the variation of immune cell infiltration in TME of BC

in different PMI groups, the CIBERSORT algorithm was applied.

The results demonstrated that macrophages M0 and M2, resting

NK cells, activatedmemory CD4+ T cells, and restingmemory CD4

+ T cells weremarkedly elevated in the high-PMI group, while naive
A

B

D

E

C

FIGURE 5

Assessment and verification of the efficiency of the PMI signature. (A) The increasing PMI score in TCGA-BRCA, METABRIC, and GSE96058.
(B) Variations in the deaths of BC patients accompanied by PMI increasing. (C) The PCA analyses of high- and low-PMI clusters. (D) KM analyses
of overall survival probabilities between the high- and low-PMI subgroups. (E) The ROC curves of the PMI-only model in predicting 2-, 3-, and
5-year OS of BC patients.
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B cells, resting dendritic cells, resting mast cells, monocytes,

activated NK cells, CD8+ T cells, follicular helper T cells, gamma

delta T cells, and regulatory T cells were considerably intensified in

the low-PMI group (Figure 9G). Furthermore, we also conducted

the identical analysis of the other two validation sets

(Supplementary Figure 4). In both the training and the other two

validation sets, macrophages M0 and activated memory CD4+ T

cells were intensified significantly, while resting mast cells and

gamma delta T cells were attenuated in the high-PMI group.

Altogether, the above results unveiled a significant

correlation and complexity between TME and pyrimidine

metabolism, which deserves further in-depth study.
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In addition, cytokines are a critical component of

immune TME. Given this, we further scrutinized the

correlation between PMI signature and cytokines, which

included the essential cytokines of TME, IL-1B, IL-6, IL-

10, IL-15, IL-27, IL-33, INFG, and TNF. In the TCGA-

BRCA, METABRIC and GSE96058 cohorts selected, the

boxplots demonstrated that the expressions of IL-27 and

INFG were consistently elevated in the high-PMI group,

those of IL-6 and IL-33 were consistently declined in the

high-PMI group (Figure 10). The results illustrated that

PMI signature were significantly related to cytokines in

the TME.
A
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FIGURE 6

Additional three validation sets for the assessment and verification of the efficiency of the PMI signature. (A) The increasing PMI score in
GSE86166, GSE42568, and GSE20685. (B) Variations in the deaths of BC patients accompanied by PMI increasing. (C) The PCA analyses of high-
and low-PMI clusters. (D) KM analyses of overall survival probabilities between the high- and low-PMI subgroups. (E) The ROC curves of the
PMI-only model in predicting 2-, 3-, and 5-year OS of BC patients.
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Prognostic investigation of PMI in BC
patients receiving different treatments

In addition, we investigated the correlation between

pyrimidine metabolism and therapeutic approaches in BC

patients. In the METABRIC cohort, the BC patients receiving

chemotherapy (n = 396) (Figure 11A), endocrinotherapy

(n = 1168) (Figure 11C) or radiotherapy (n = 1134)

(Figure 11E) both had poorer prognosis in high PMI group.
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While in TCGA-BRCA cohort, there was no statistically

significant prognosis between the high- and low- PMI groups

who were undergoing chemotherapy (n = 512) (Figure 11B),

endocrinotherapy (n = 470) (Figure 11D) or radiotherapy

(n = 506) (Figure 11F). We hypothesized that this result was

due to a lack of adequate case samples or that patients with

high PMI required chemotherapy, radiation and endocrine

therapy to achieve a similar prognosis as patients with

low PMI.
A

B

D

C

FIGURE 7

Systematic characterization of PMI and clinical variables among BC patients. (A–C) Beeswarm plots demonstrating the correlation between PMI
levels and various degrees of diverse clinicopathological indicators in TCGA-BRCA (A), METABRIC (B), and GSE96058 (C) datasets. (D) Heatmaps
incorporating PMI and clinical parameters in relation to gene expression levels in eight signature-included PMGs in TCGA-BRCA *p< 0.05; **p<
0.01; ***p< 0.001; ****p< 0.0001.
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Discussion

In recent decades, considerable feats have been achieved in

the treatment and survival improvement of BC (31). Some BC

subtypes have unique and efficacious treatment methods, for

example, HER2-positive BC can be treated with trastuzumab-

targeted therapy (32). Even so, a proportion of patients with BC
Frontiers in Immunology 13
still require more advanced therapy, and the emergence of

pyrimidine metabolism brought a promising solution for this

issue. As a complicated enzymatic network, pyrimidine

metabolism incorporated nucleoside salvage, de novo

nucleotide synthesis, and catalytic degradation of pyrimidines

(33). Studies have demonstrated that a steady supply of dNTPs

was fundamental to cancer cells, and consequently, the
A B

D E

F

C

FIGURE 8

Establishment of a prognosis-related nomogram model based on PMI. (A) Univariate Cox regression analysis of PMI and clinicopathological
characteristic. (B) Multivariate Cox regression analysis of PMI and clinicopathological characteristic. (C) Construction of a nomogram to predict
OS of BC patients from TCGA-BRCA. (D) The calibration curve to estimate prediction accuracy of the nomogram based on the agreement of
predicted OS with actual OS. (E) The decision curve to evaluate the clinical decision effectiveness of the nomogram against other separate
clinical parameters. (F) The ROC curves and AUC values demonstrated favorable competence of the nomogram in predicting 2-, 3-, and 5-year
OS of BC patients. *p < 0.05; **p < 0.01; ***p < 0.001.
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activation of PMGs has been regarded as indispensable for

tumor growth (11). However, the prognostic implication of

PMGs remains to be better elucidated in BC.

In this study, by applying the univariate COX regression

analysis for these PMGs in both TCGA-BRCA and METABRIC

datasets, 26 and 64 PMGs significantly associated with OS were
Frontiers in Immunology 14
obtained, respectively. Finally, 12 overlapping genes that were

highly meaningful in predicting BC patients in the two cohorts

were obtained. To maximize the validity of the following studies,

we further performed the LASSO analysis of these 12 genes, and

finally, eight optimal DEGs were chosen to establish a prognostic

risk signature.
A B
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FIGURE 9

PMI-based GSEA enrichment analysis and TME assessment in BC. (A, B) Presentation of the top 10 differential pathways from GO (A) and KEGG
(B) enrichment analysis results in TCGA-BRCA. (C–E) Variance of immune score (C), stromal score (D), and ESTIMATE score (E) in different PMI
groups. (F) Differences in the mRNA expression levels of eight well-known immune checkpoints between different PMI groups. (G) Boxplots
were used to depict the discrepancies in the infiltration extent of 22 immune cells between different PMI groups among BC patients. *p< 0.05;
**p< 0.01; ***p< 0.001; ****p< 0.0001.
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DHODH, a key enzyme in the de novo biosynthesis of

pyrimidine nucleotides, has appeared as a therapeutic target

for a variety of tumor treatments (34). The modulation of

DHODH activity in cancer focused on activating the

biosynthesis of de novo pyrimidine biosynthesis through CAD

complex (35). Previous results have suggested that DHODH

suppression was correlated with decreased cell proliferation in

most cancer cell lines, which was consistent with it being a poor

prognostic factor in our result. Notably, the upregulation of

DHODH mRNA expression in BC showed a paradox, which

may result from the existence of different molecular subtypes of

BC and needs further investigation.

TXNRD1, the cytosolic selenoprotein thioredoxin reductase

1 (TrxR1), served as a central regulator of the thioredoxin system

and may be inhibited pharmacologically to achieve selective
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killing of cancer cells (36, 37). More importantly, in certain

cancer types, including gastric cancer and non-small cell lung

cancer, TrxR1 appeared to be secreted into the serum and may

be available as a biomarker of disease severity and

responsiveness to treatment (38, 39). Our result revealed that

TXNRD1 was overexpressed in BC with no significance, which

obviously related to unfavorable survival. Regrettably, except for

DHODH and TXNRD1, the relevance of other candidate genes

to human cancer has not been reported. From the results we

obtained above, upregulations of CANT1, GMPS, PDE6B, and

RRM2B and downregulations of CMPK1 and POLR3GL were

observed in human BC tissues. From the survival analyses, we

found that high expressions of CANT1, GMPS, RRM2B, and

CMPK1 and low expressions of PDE6B and POLR3GL were

significantly correlated with low survival probabilities in BC
A

B

C

FIGURE 10

Investigation of essential cytokines in TME according to PMI levels. Comparison between the mRNA expression levels of IL-1B, IL-6, IL-10, IL-15,
IL-27, IL-33, IFNG, and TNF between high- and low-PMI groups were explored in TCGA-BRCA (A), METABRIC (B), and GSE96058 (C) datasets
separately. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001.
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patients. Technically speaking, the role of each selected gene in

cancer required more exploration.

Basing on the eight prognostic genes, we then generated a

risk signature, which was named “pyrimidine metabolic index”

or PMI. Patients from the datasets selected were divided into

high- and low-PMI groups independently. Surprisingly, BC

patients with a high PMI exhibited a greater mortality rate

compared with patients with low PMI, which implied that

PMI had a promising value for predicting OS. In addition, the

relationship between PMI and clinicopathological factors also

demonstrated a remarkably strong correlation. In brief, PMI was

positively linked with larger tumor, more lymph node

metastasis, and a severer stage. Then, to examine whether PMI

could serve as an independent prognostic indicator, we

successively performed univariate and multivariate Cox

regression analyses and successfully constructed a prognostic
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nomogram containing age, PAM50 subtype, and PMI. As can be

seen from the calibration plot, the predicted probability derived

from the nomogram was compatible with the observed

probability. Similarly, the nomogram enhanced clinical benefit

in comparison with conventional factors based on decision

curves. Additionally, the nomogram demonstrated excellent

performance in terms of ROC curves in both training and

validation cohorts. At this point in the study, the reliability of

this nomogram has been definitively confirmed.

Cancer metabolism has been widely studied, and cancer cells

have a well-characterized metabolic phenotype that can

profoundly affect the TME (40). Despite the growing attention

to pyrimidine metabolism, there are still no available details on its

relevance to immunotherapy. According to the results, patients

with a low PMI obtained higher stromal scores, immune scores,

and ESTIMATE scores, indicating that they might be more
frontiersin.or
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FIGURE 11

Prognostic Investigation of PMI in BC Patients Receiving Different Treatments.KM analyses of overall survival probabilities between the high- and
low-PMI subgroups in BC patients undergoing chemotherapy (A, B), endocrinotherapy (C, D) and radiotherapy (E, F) in the METABRIC and
TCGA-BRCA cohort, respectively.
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sensitive to immunotherapy. This would also explain the fact that

patients with a high PMI have a worse prognosis since they could

not benefit more from the immunotherapeutic treatment. Given

that immune checkpoint inhibitors are essential in

immunotherapy (41), we assessed the mRNA expression levels

of eight selective immune checkpoints in BC patients, which

revealed that the mRNA expression levels of all seven immune

checkpoints, excluding PD-1 elevated statistically in the high-PMI

group. In terms of this aspect, BC patients with a high PMI might

have a stronger therapeutic response to drugs designed to inhibit

immune checkpoints. Consequently, the estimation of immune

infiltrating cells between the high- and low-PMI subgroups

signified that macrophages M0 and M2, resting NK cells,

activated memory CD4+ T cells, and resting memory CD4+ T

cells were markedly activated in the high-PMI group, while naive

B cells, resting dendritic cells, resting mast cells, monocytes,

activated NK cells, CD8+ T cells, follicular helper T cells,

gamma delta T cells, and regulatory T cells were notably

strengthened in the low-PMI group. Higher infiltration levels of

CD8+ T cells, and gamma delta T cells indicate better prognosis in

BC patients (42, 43). This is consistent with our conclusion of

poor prognosis in the high-PMI group. High infiltration of M2

cells is one of the risk factors for breast cancer (44), as seen in the

TCGA-BRCA and METABRIC cohort, where distribution was

significantly higher in the high-PMI group compared to the low-

PMI group. The growth, differentiation, and activation of immune

cells in TME were regulated by cytokines (45). Meanwhile, we

investigated the expression levels of IL-1B, IL-6, IL-10, IL-15, IL-

27, IL-33, INFG, and TNF between the high- and low-PMI

groups. From the analysis results of training and two validation

sets, elevated expressions of IL-27 and INFG and decreased

expressions of IL-6 and IL-33 were stably presented in the high

PMI group. Despite the primary demonstration of the relationship

between pyrimidine metabolism and TME, it still requires further

elucidation due to the functions of tumor-infiltrating immune

cells are complicated (46, 47).

This study systematically analyzed pyrimidine metabolism-

related transcriptomic profiling and created a prognostic signature

PMI in BC patients. However, limitations still existed, and especially

the profound mechanism of pyrimidine metabolism in TME

demanded more exploration.

Conclusion

Overall, our study identified a credible risk signature for BC

patients based on PMGs. This signature was validated to have

excellent predictive power and was identified as an independent

prognostic factor for BC patients. We also dissected the unique

relationship between this signature and immune TME. In

conclusion, our study provides supportive implications for

pyrimidine metabolism in BC research.
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SUPPLEMENTARY FIGURE 1

The acquisition of 163 credible PMGs. (A) Venn diagram to acquire 163
overlapping PMGs in TCGA-BRCA, METABRIC and GSE96058 datasets.

(B) The detailed information on 163 eligible PMGs.

SUPPLEMENTARY FIGURE 2

Heatmaps incorporating PMI and clinical parameters in relation to gene

expression levels in eight signature-included PMGs in METABRIC (A) and
GSE96058 (B).
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SUPPLEMENTARY FIGURE 3

The mRNA expression level of immune checkpoints in the METABRIC (A)
and GSE96058 (B).

SUPPLEMENTARY FIGURE 4

The TME landscapes between high- and low-PMI groups were estimated
in the two validation sets. The boxplots were applied to display the

infiltration context of 22 immune cells in METABRIC (A) and
GSE96058 (B).
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