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Overcoming current challenges
to T-cell receptor therapy via
metabolic targeting to increase
antitumor efficacy, durability,
and tolerability

Wendy Mao*

Cell Biology, BioNTech Societas Europaea (SE), Gaithersburg, MD, United States
The antitumor potential of personalized immunotherapy, including adoptive T-

cell therapy, has been shown in both preclinical and clinical studies. Combining

cell therapy with targeted metabolic interventions can further enhance

therapeutic outcomes in terms of magnitude and durability. The ability of a T

cell receptor to recognize peptides derived from tumor neoantigens allows for a

robust yet specific response against cancer cells while sparing healthy tissue.

However, there exist challenges to adoptive T cell therapy such as a suppressive

tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of

which can be targeted to further enhance the antitumor potential of T cell

receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies

involving metabolic reprogramming of both the tumor microenvironment and

the cell product, which can lead to increased T cell proliferation, survival, and

anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways

and targets which can be leveraged to improve engraftment of transferred cells

and obviate the need for lymphodepletion, while minimizing off-target effects.

Metabolic signaling is delicately balanced, and we demonstrate the need for

thoughtful and precise interventions that are tailored for the unique

characteristics of each tumor. Through improved understanding of the

interplay between immunometabolism, tumor resistance, and T cell signaling,

we can improve current treatment regimens and open the door to potential

synergistic combinations.
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Introduction

Success of immunotherapy directed against cancer is

predicated on the fact that tumor cells can be specifically

targeted by various populations of immune cells, minimizing

damage to healthy tissue while exclusively eliminating cancerous

growth. Adoptive cellular therapy (ACT) for solid tumors has

gained increased attention in recent years following its initial

success in metastatic melanoma (1) and more recent promising

results in lung (2) and pancreatic (3) cancers, demonstrating the

potential for adoptively transferred tumor-antigen specific T

cells to mediate an antitumor response. In this review, we will

focus on TCR-T, which has already shown promising clinical

efficacy in solid tumors (3–5). In this modality of ACT, T cell

receptors (TCRs) targeting tumor antigens presented in the

context of major histocompatibility (MHC) molecules are

engineered onto isolated T cells and then infused into a

patient, which will then mediate tumor regression (6)

(Figure 1). Despite its successes, the field of ACT has faced

many challenges, from inadequate immune infiltrate, a

suppressive tumor microenvironment (TME), tumor

heterogeneity and evolution, and exhausted effector cells,

among others. Despite preclinical promise, many TCR-T

therapies provide only limited benefit in clinic (7, 8), while in

other contexts, tumors relapse after initial remission following

treatment (9), suggesting that immune suppression and tumor

evolution can dampen success of these therapies. Metabolic

interventions hold promise for enhancing TCR-T survival,

persistence, trafficking, and cytotoxicity against nutrient-

devouring tumor cells. The TCR-T treatment process offers
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many opportunities for metabolic intervention, with the ability

to precondition both T cells and the tumor separately prior to

infusion to achieve the most benefit. These include treatment

modalities that can be applied during engineering to attain better

cell phenotypes, as well as systemic treatments pre-and post-

infusion to condition the TME, each of which will be evaluated

in subsequent sections, and are summarized in Figure 2. In this

review, we will discuss methodologies of targeting metabolic

pathways to not only increase the antitumor efficacy and

durability of TCR-T, but also improve engineering and clinical

protocols to further extend the capabilities of ACT.
Strategies for targeting tumor
metabolism to improve T cell fitness

Tumor cells arise from transformations that fundamentally

alter a cell’s proliferative and survival capacities. As such, the

metabolic demands for cancer cells are different than those of a

nonmalignant cell. In 1956, Warburg observed increased rates of

glycolysis and lactate production in tumors, indicative of a

preference for aerobic glycolysis over the more efficient

oxidative phosphorylation pathway for generating ATP (10), a

term later coined “The Warburg Effect”. Although less efficient

than oxidative phosphorylation at ATP generation, the increased

flux through aerobic glycolysis also generates metabolic

intermediates necessary for supporting rapid proliferation,

including glycerol and citrate for lipid biogenesis (11). The

increased proliferative demands of tumor cells also increases

rates of glutaminolysis to sustain anaplerosis, and this results in
FIGURE 1

Overview of T cell receptor-engineered T cell (TCR-T) therapy. Depiction of the process of TCR-T, from autologous or allogeneic cell sourcing
to engineering and infusion to target tumor cells. HLA, human leukocyte antigen; TCR, T cell receptor.
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tumor metabolism of glutamine being higher than that of any

other nonessential amino acid (12). The high utilization of these

nutrients by tumor cells leads to competition for these resources

with other cells, resulting in a glutamine restricted (13), glucose-

poor, hypoxic, and acidic milieu (14, 15) which have been shown

to suppress T cell infiltration and function (16–18), Figure 3. In

addition, other immune subsets in the TME which are crucial to

tumor-specific T cell activation, such as Dendritic Cells (DCs),

are also adversely affected by the altered metabolic environment

of the tumor (19, 20). Although the mechanism of immune cell

suppression in the tumor is much more nuanced than simple

nutrient depletion and competition, the unique milieu of the

tumor requires that immune cells reshape metabolic flux to

survive, which can then drastically affect their function (21).

Targeting these nutrient pathways, summarized in Figure 3, may

serve a dual purpose of not only reducing tumor growth, but also

supporting the survival and antitumor efficacy of TCR-T.

In addition to metabolite synthesis, cells normally integrate

information regarding nutrient availability and stress to regulate

survival and proliferation; unfortunately, tumor cells have co-

opted many aspects of these signaling cascades, including ones

involving Mammalian Target of Rapamycin (mTOR), in order

to sustain rapid division (22). mTOR has long been thought of as

a master regulator of cell growth and longevity in response to

nutrients and growth factors, and exists in two functionally

distinct complexes, mTOR Complex 1 (mTORC1) and mTOR

Complex 2 (mTORC2) (23), each with differing drug

sensitivities (24, 25). Aberrant expression of mTOR and

associated pathway components are very common in solid

tumors (26–28), and contributes to tumorigenesis and growth
Frontiers in Immunology 03
(29). In addition, mTOR also plays a role in T cell differentiation

and function (30), making it an attractive target for enhancing

antitumor immunity. Strategies for modulating mTOR signaling

also can serve to enhance fitness and cytotoxicity of TCR-T while

concomitantly reducing tumor cell growth (31).
Metabolic reshaping of the TME to
enhance T cell fitness and function

The high level of glucose consumption by tumor cells

provides not only fuel for glycolysis, but also increases flux

through the Pentose Phosphate Pathway (PPP), which is

consequently also elevated in malignant cells compared to

normal cells (32). This pathway is crucial for generating

intermediates for nucleic acid synthesis, nicotinamide-adenine

dinucleotide phosphate (NADPH) for fatty acid synthesis (33),

and generating glutathione to scavenge reactive oxidative species

(ROS) (34), all of which are indispensable for rapidly dividing

cells. Glucose-6-Phosphate Dehydrogenase (G6PD) is the rate

limiting enzyme of the PPP, and its inhibition can induce

autophagy (35) and senescence (36) in tumor cells, as well as

inhibit their proliferation and metastasis (37). Interestingly,

although T cells also proliferate rapidly upon activation,

blockade of G6PD appears to generate superior CD8+ effector

T cells which mediated a stronger tumor antigen-specific

response, as well as increased proinflammatory cytokine

secretion. In these T cells, the increased mitochondrial ROS is

balanced by a concomitant increase in additional antioxidant

enzymes to prevent oxidative damage (38). Taken together, these
FIGURE 2

Timing of Opportunities for metabolic interventions during TCR-T. Depiction of metabolic interventions that can be deployed as part of the cell
engineering and expansion process, or part of patient preconditioning and treatment. TCR-T, T cell receptor-engineered T cell; TCR, T cell
receptor; TME, tumor microenvironment.
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studies suggest that targeting the PPP through inhibition of

G6PD can represent a “best of both worlds” situation in which

tumor cells may not be as metabolically plastic as T cells due to

their overreliance on specific metabolites, allowing T cells to

leverage the shift in metabolic fuel to their benefit.

Evidence of plasticity in T cell metabolism has been

demonstrated in the context of multiple metabolic pathways.

Glutamine provides the fuel needed for the tricarboxylic acid

(TCA) cycle, which in turn generates the intermediates needed

for lipid, protein, and nucleic acid synthesis crucial for rapidly

proliferating cells (39). Predictably, tumor cells rely heavily on

this pathway for their survival, and indeed many tumors show

evidence of being “addicted” to glutamine (40, 41). Treatment of

tumor-bearing mice with glutamine antagonist JHU083, which

impairs enzymes that require glutamine, induced not only

durable antitumor effects, but also disrupted Warburg

physiology by impairing glucose metabolism. Subsequently,

glucose and glutamine concentrations both rose within the

tumor, followed by a parallel decrease in hypoxia. T cells

treated with glutamine antagonist showed increased markers

of activation and memory, and demonstrated enhanced cytokine

production upon restimulation. Interestingly, the T cells were

found to be able to switch to utilizing acetate as a carbon source

for the TCA cycle, a feat which the tumor cells were not able to

replicate (42). In another study, the pharmacologic inhibition of
Frontiers in Immunology 04
glutamine transporter was able to impair tumor growth and also

increase the concentration of glutamine in the tumor. However,

as T cells adapted by upregulating a separate amino acid

transporter, they were able to continue uptake of glutamine

and were not affected by the drug – in addition to demonstrating

enhanced activation and cytotoxic functions (43). Thus,

although T cells and tumor cells rely on increased flux

through many of the same pathways for survival and function,

the superior metabolic plasticity of T cells can allow for

metabolic interventions which reduce tumor fitness while

enhancing T cell effector capabilities.

As part of Warburg physiology, large amounts of lactic acid

are generated as byproducts of aerobic glycolysis, which is

subsequently secreted from the tumor cells and contributes to

the acidification of the tumor compartment (44). This increased

concentration of lactic acid impairs cytotoxic function of both T

cells and natural killer (NK) cells (45) by impairing their ability

to secrete the lactic acid byproduct of their own increased

glycolytic flux following activation, the secretion of which

requires a concentration gradient (46). Treatment with

Diclofenac, which inhibits the lactic acid transporters

Monocarboxylate Transporter 1 and 4 (MCT1 and MCT4,

respectively), enhanced the efficacy of checkpoint blockade

immunotherapy through improved tumor control and

cytokine secretion. In addition, T cells treated with diclofenac
FIGURE 3

Hallmarks of tumor metabolism fueling immunosuppressive tumor microenvironment and strategies for modulation. Depiction of aspects of
tumor metabolism that contribute to acidification, nutrient deprivation, and immunosuppression in the tumor microenvironment (TME) as well
as general mechanisms for inhibiting these pathways. Strategies for inhibition or reversal of tumor phenotypes are in dark blue boxes with white
text. AMPK, AMP-activated protein kinase; PI3K, Phosphoinositide 3 kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; IDO,
Indoleamine 2, 3-dioxygenase; LDH, lactate dehydrogenase; PPP, pentose phosphate pathway; TCA, the tricarboxylic acid cycle; O2, oxygen;
GLUT1, Glucose transporter 1.
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shifted their glucose flux to the TCA cycle and increased oxygen

consumption, allowing them to retain their cytotoxic functions.

However, it should be noted that proliferation of T cells was

reduced following treatment with diclofenac (47), which could

indicate that the timing of administration could be crucial in

enhancing the efficacy of lactic-acid targeting therapies. Another

paper also corroborated these findings through RNA interfering

(RNAi)-nanoparticle mediated knockdown of lactate

dehydrogenase (LDHA) in tumor cells, which also neutralized

tumor pH and increased the infiltration and cytotoxicity of NK

and T cells. Interestingly, the authors also conducted these

experiments in immunocompromised mice and showed no

effect on tumor growth, demonstrating that cytotoxic immune

infiltrate was necessary for potentiating the antitumor effect of

targeting lactic acid metabolism (48). Although targeting lactic

acid metabolism may negatively affect proliferation of

endogenous T cells, TCR-T can be administered after lactic

acid transporter inhibition “preconditioning”, which could

potentially render the tumor milieu more amenable to the

survival and efficacy of the transferred cells.

In addition to the metabolites mentioned previously, the

anabolism/catabolism of other nutrients and amino acids can

also drive immunosuppression in the TME and thus serve as

potential targets for metabolic therapy. One example is the role

of Indoleamine 2,3-dioxygenase (IDO), the first and rate-

limiting step of tryptophan degradation as part of the

kynurenine pathway, which fuels many essential biological

processes including energy metabolism and generation of the

co-factor Nicotinamide adenine dinucleotide (NAD+) (49). IDO

is elevated in many tumor types and is correlated with poorer

prognoses in solid tumors (50), and a higher kynurenine-to-

tryptophan ratio is associated with shorter survival in patients

with leukemia (51). One possible explanation for this association

is that the tryptophan/kynurenine axis has been associated with

multiple immunoregulatory effects – kynurenine can bind to the

aryl hydrocarbon receptor (AHR), which skews T cells towards a

immunosuppressive regulatory T cell (Treg) phenotype (52);

additionally, it can induce exhaustion and immune checkpoint

expression in T cells (53) and drive conversion of dendritic cells

(DCs) towards a tolerogenic phenotype (54). In T cells

specifically, IDO-mediated tryptophan deprivation was found

to induce autophagy and inhibit both mTOR and protein kinase

C theta (PKC-Q) (55), which are crucial for T cell activation and

proliferation (56). IDO inhibition in combination with a tumor

vaccine was found to be able to convert suppressive Tregs into

Th17-like cells in tumor draining lymph nodes of tumor-bearing

mice, and this treatment both enhanced CD8 T cell activation

and reduced tumor growth (57). Given their preclinical promise,

IDO inhibitors which target IDO1 or the isoenzyme IDO2 have

been and are currently being investigated in clinical trials. The

ECHO-301/KEYNOTE-252 trial found that treatment with the
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IDO1 inhibitor Epacadostat did not improve overall survival or

progression free survival in melanoma (58), which brings into

question the utility of IDO inhibitors in a clinical setting. These

disappointing results could be explained by several factors: the

inability of Epacadostat to completely inhibit IDO1 even at the

highest dose, the compensatory expression of other tryptophan-

degrading enzymes such as IDO2, and patient cohort selection

(59). Subsequent studies have focused on targeting other

metabolites in the kynurenine pathway, including kynurenine

itself. Treatment of tumors in vivo with an enhanced

kynureninase to degrade kynurenine increased infiltration and

proliferation of cytotoxic CD8s, resulting in improved tumor

control in a variety of tumor types. Interestingly, the treatment

had no effect on tumor growth in immunocompromised mice,

suggesting that the antitumor mechanism of kynureninase is

contingent upon the presence of immune cells (60). The example

of IDO inhibitors demonstrates the importance of

understanding compensatory mechanisms and possibility of

targeting alternative components of the same pathway when

investigating the effects of metabolic perturbations.
Increasing neoantigen presentation in
the TME

Effective antitumor immune therapy is predicated on the

function of dendritic cells (DCs), which uptake and present

tumor antigen to activate naive T cells and induce their

proliferation (61). DC ablation drastically reduces the

activation of memory T cells - whose reactivation threshold is

much lower and postulated to be DC-independent - in response

to infections (62), thus suggesting that DCs play a role in

maximizing the efficacy of T cell responses. In TCR-T,

endogenous DCs can present tumor neoantigens to mobilize

new cohorts of T cells of diverse TCR clonotypes, which is

crucial to address epitope spread – especially since loss of target

antigen is a common tumor mechanism of resistance in patients

who relapse post-ACT (63). In the tumor, certain yet unknown

tumor factors induce upregulation of scavenger receptors on

DCs, increasing their uptake of lipoproteins and increasing their

internal lipid content. These lipid-loaded DCs were shown to be

unable to process and present antigen effectively, and were

drastically impaired in their ability to activate T cells.

Targeting fatty acid synthesis by impairing acetyl-CoA

carboxylase, and thus forcing DCs to utilize exogenous lipids

for triglyceride synthesis, reversed this effect (64). However,

since proliferating T cells also increase their requirements for

fatty acid synthesis to sustain division and inhibiting this

pathway has been shown to be detrimental to cell expansion

(65), systemic inhibition of acetyl-CoA carboxylase would have

to be carefully timed to avoid interference with TCR-T.
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A similar tale of functional balance can be told for the role of

adenosine monophosphate-activated protein Kinase (AMPK)

pathway in DC activation and T cell effector capabilities. AMPK

is crucial to regulating energy balance within the cell, turning on

ATP-producing catabolic pathways when cellular stress reduces

the amount of ATP available (66). AMPK activation is crucial for

protein kinase B (PKB; also known as AKT) activation in response

to cellular stress (67), which in turn phosphorylates and

inactivates Glycogen synthase kinase-3 beta (GSK3b), a negative
regulator of cAMP response element-binding protein (CREB).

This results in CREB-mediated enhancement of anti-

inflammatory IL-10 transcr ip t ion whi l e reduc ing

proinflammatory cytokine transcripts through reduction of

Nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) signaling (68). Phosphorylation of the alpha subunit of

AMPK (AMPKa) is required for AMPK activation (69).

Knockdown of isoform 1 of this subunit, AMPKa1, in

macrophages and DCs enhanced antigen presentation,

decreased the production of the anti-inflammatory cytokine

interleukin 10 (IL-10), and increased production of IL-17 as

well as interferon gamma (IFN-y). This favored the skewing of

activated helper T cells to T helper 1 (Th1) and 17 (Th17)

phenotypes (70). In a tumor setting, these AMPKa1 deficient

macrophages and dendritic cells would be poised to increase

tumor antigen presentation, and induce a favorable

proinflammatory phenotype of T cells. However, the effects of

decreased AMPK in T cells remain less clear, but is necessary to

consider if treatments targeting AMPK are to be administered

concurrently with TCR-T. Although AMPKa1 deficient CD8 cells
producedmore proinflammatory IFN-y and IL-17A, they also had

impaired viability compared to control cells when subjected to

metabolic stress (71). This finding was corroborated by another

study, in which the authors demonstrated that this requirement

for AMPKa1 to drive T cell functionality was dependent on

glucose concentration – that is, T cell impairment was observed in

AMPKa1 deficient cells when glucose was scarce (72), as is the

case in the tumor microenvironment. Interestingly, metformin, an

AMPK agonist, has been shown to directly enhance antitumor

function in tumor antigen specific T cells, increasing

polyfunctionality and protecting T cells from apoptosis and

exhaustion. The same effect was not noted in immunodeficient

mice, suggesting that this antitumor effect was driven specifically

by the presence of immune cells (73). Taken together, these

studies indicate that the balance of AMPK signaling must be

modulated very carefully; while increased signaling may lead to

better immune cell survival and reduce flux through glycolytic

pathway in cancer cells (74), it can also contribute to reducing the

effects of cell stress signaling which can lead to tumor cell survival.

Future treatment regimens may consider pretreating the T cells in

TCR-T with an AMPK agonist to increase stress resistance, while

utilizing tumor metabolomics to consider if AMPK is a viable

target in each individual tumor setting.
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Strategies for improving
functionality and persistence of
adoptively transferred T cells

In TCR-T, human T cells are engineered with a TCR of

interest and then infused into the patient, where the hope is that

those cells will traffic to the tumor and surrounding lymph nodes,

setting up long-lived cytotoxic populations which will attack the

tumor. In order for this therapy to be successful, the T cells must

be able to survive in the TME, and thus are subject to many of the

same pitfalls that plague immunotherapy in general – namely,

exhaustion of effector cells, poor viability, and loss of effector

function (75). The competition for glucose with tumor cells in the

TME results in T cells with reduced capacity to produce IFN-y

and decreased signaling through glycolysis and nutrient sensing

pathways (76). Engagement of inhibitory immune checkpoint

molecules such as Cytotoxic T-Lymphocyte Associated Protein 4

(CTLA-4) and Programmed Cell Death Protein 1 (PD-1) on T

cells inhibits the glycolysis and amino acid metabolism which is

crucial to effector differentiation and function (77). Hypoxia in

the TME can upregulate the ligand for PD-1, Programmed death-

ligand 1 (PD-L1) on tumors (78–81), as can glucose-depleted

conditions (82), which engage inhibitory checkpoints on T cells

and lead to their “exhaustion”. Even though the TME is known to

be immunosuppressive and poor in nutrients, the survival and

persistence of infiltrating immune cells is crucial to the sustained

effectiveness of TCR-T. Already, blockade of CTLA-4, PD-1, and

PD-L1 are being utilized to reinvigorate the dysfunction seen in

exhausted T cells, and can restore effector T cell metabolic

profiles (77) while dampening glycolytic flux in tumor cells

(76). Tumor infiltration of T cells can also be influenced by

nutrient changes in the TME, including hypoxia-mediated lactate

accumulation which inhibits T cell migration (83), and aberrant

lipid metabolism which negatively impacts function and

migration of a variety of immune subsets (84). Here, we will

summarize some strategies to “armor” T cells against metabolic

challenges posed by the TME.
Targeting glucose metabolism to
increase T cell functionality

Upon activation, T cells shift their metabolism from

oxidative phosphorylation (OXPHOS) to glycolysis to meet

energy requirements (85, 86), Figure 4. After the effector phase

is completed, T cells yet again shift to rely on fatty acid

metabolism for energy when they differentiate into memory T

cells (Tmem) (87). Inhibition of glycolysis during antigen

encounter drives T cells towards a memory phenotype (88)

(Figure 4), but also reduces effector function (89). Glucose

metabolites are also utilized in the PPP, which provides crucial
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intermediates for cell survival and growth, and scavenges ROS

produced during cell proliferation. Inhibition of 6-

phosphogluconate dehydrogenase (6PGD), the enzyme

catalyzing the second step of the PPP, CD8+ T cells increased

mitochondrial content and mitochondrial ROS production

balanced by increased antioxidant production to protect

against oxidative damage. Functionally, these cells increased

IFN-y production and granzyme B, and showed superior

effects against both tumors and infections, consistent with a T

Effector Memory (TEM) phenotype. The cells also increased their

expression of glucose-transporter 1 (GLUT1) to increase glucose

uptake (38), which is crucial in a TME where there is

tremendous competition for this crucial nutrient (76)

(Figure 3). Blockade of 6PGD may also have the benefit of

reprogramming immunosuppressive Tregs - which rely heavily

on the antioxidant capacities of the PPP to balance the ROS

produced by their fuel of choice – lipid oxidation - into Th1, 2,

and 17 cells , which improved antitumor responses

(90) (Figure 4).
Preconditioning regimens to increase T
cell survival in the TME

In previous sections, we have explored the evidence for T cell

metabolic plasticity which allows them to adjust flux through

various pathways to adapt to environmental cues. This plasticity
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can not only be leveraged to favor survival of T cells over tumor

cells, but also to induce metabolic changes which prepare T cells

for the nutrient challenges they will face in the TME. Although

glucose has been shown to be essential for T cell effector

function, transient glucose restriction (TGR) in activated cells

can help enhance antitumor function. In a mouse model of

lymphoma, adoptively transferred effector CD8s preconditioned

in low glucose conditions were able to mediate complete

clearance of tumor, with an enhanced effector phenotype and

increased number in circulation. TGR T cells redirected their

utilization of glucose carbons to the TCA cycle rather than

glycolysis, resulting in a drastic increase in ATP generation, and

were better poised to handle oxidative stress due to the sustained

synthesis of the reactive oxidative species (ROS) scavenger

glutathione – two characteristics which allow these T cells to

better survive in the TME compared to cells which have not

undergone preconditioning. Metabolomic interrogation of these

TGR effector cells showed that these cells were able to enhance

their glucose uptake following re-exposure to glucose and

increase flux through the PPP (91), both of which can boost

effector function and improve ability to compete for nutrients.

In a similar vein, glutamine restriction can also yield

comparable results to glucose restriction. T cells cultured in

glutamine depleted conditions or treated with inhibitors of

glutamine metabolism were shown to increase survival and

promote tumor clearance. Phenotyping of the tumor infiltrate

showed that glutamine restricted T cells displayed lower levels of
FIGURE 4

Metabolic phenotypes of T cells and strategies for skewing towards memory phenotype. Depiction of changes in T cell metabolism upon
activation, and highlighting differences in metabolism upon transition either to a memory phenotype or an exhausted effector cell. Strategies for
improving memory phenotype skewing are also depicted in the blue box. 6PGD, 6-phosphogluconate dehydrogenase; PI3K, phosphoinositide 3
kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; mTORC2, mTOR Complex 2.
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exhaustion markers and increased proliferation, cytokine

production, and markers associated with long-lived memory

populations. Metabolically, these cells showed increased

mitochondria l spare respiratory capaci ty , reduced

mitochondrial ROS, and increased glycolytic flux, indicating

that glutamine restriction can skew cells metabolically towards

a memory-like phenotype with greater self-renewal and

antitumor capabilities (92). Just as in the case of glucose

restriction, glutamine restriction can rewire T cells to utilize

available nutrients more effectively while also increasing

oxidative stress tolerance, giving preconditioned effector cells

an edge over their non-pretreated counterparts in the TME.

During glycolysis, the generation of pyruvate from

phosphoenolpyruvate (PEP) by pyruvate kinase generates one

molecule of ATP (93). Knockdown or pharmacological

inhibition of PEP-generating enzymes T cells led to a decrease

in calcium flux upon activation in T cells, which showed

diminished cytokine production and effector capacities. In T

cells, overexpression of phosphoenolpyruvate carboxykinase 1

(PCK1), which can generate PEP from the TCA cycle

intermediate oxaloacetate, improved function in both CD4s

and CD8s both in terms of measured calcium flux and

antitumor effects. Interestingly, overexpression of PCK1 only

increased intracellular PEP in low glucose conditions (94),

making it a promising modification for increasing efficacy in

the glucose-depleted TME while preventing aberrant

metabolism in the periphery. This suggests that despite low

levels of crucial nutrients in the TME, strategies for increasing

expression of intermediates in key pathways can obviate some of

the effects of nutrient deprivation in T cells.

Cell therapies comprising greater populations of memory

cells compared to terminally differentiated effectors can yield

greater antitumor efficacy and long-term durability (95). Other

studies have found that a naïve/stem cell memory population

resulted in reduced cytokine release syndrome and improved

antitumor efficacy compared to bulk unselected T cell infusion,

which comprises mostly terminally differentiated effectors;

however, stem cell memory T cells are extremely rare in

circulation and their expansion requires additional engineering

steps; additionally, the initial cytotoxic functions of these cells

are not as robust as bulk effectors (96). Both effector/central

memory cells and naïve/stem cell memory populations exhibit

the ability to expand and differentiate, making them very

valuable for cell therapy. One of the hallmarks of a memory T

cell is their ability to respond rapidly and robustly to antigen

rechallenge. Critical to this rapid recall response is carbamoyl-

phosphate synthetase 2, aspartate transcarbamylase, and

dihydroorotase (CAD), the rate-limiting enzyme of the de

novo pyrimidine synthesis pathway. Inhibition of CAD

decreases available pre-rRNA, which limits the ribosomal

biogenesis required for synthesizing new proteins to support

proliferation and cytokine production. Overexpression of CAD

was shown to enhance proliferation and improve cytokine
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production upon rechallenge (97). This suggests that methods

of increasing flux through the de novo pyrimidine synthesis

pathway ex vivo could yield an improved cohort of memory cells

for infusion (Figure 4), with enhanced antitumor and

proliferative capacities, potentially ameliorating the need for

repeated infusions.

Alternate pathways through which T cells generate fuel in

glucose-depleted conditions can also identify specific targets for

preconditioning regimens to further enhance T cell function. T

cells can utilize acetate as an alternative to glucose in glucose-

poor environments, and ex vivo exposure to acetate can increase

histone acetylation and chromatin accessibility to epigenetically

remodel exhausted T cells into active effectors again. These cells

show increased cytokine production and promote tumor

clearance (98). Inosine can also be utilized by T cells as an

alternative to glucose, and treatment with inosine after adoptive

transfer also enhances antitumor effector function in tumor

models that are unable to metabolize inosine (99). Although it

could be speculated that inosine preconditioning would also

enhance T cells’ ability to utilize this alternative fuel source in a

tumor setting, studies still need to be completed to test this

hypothesis. Additionally, the ability of some tumors to also

metabolize inosine (100, 101) and thus compete with T cells

for this fuel source would also limit its utility.
Strategies for navigating the complexities
of mTOR signaling to increase
T cell fitness

During T cell activation and differentiation, mTOR signaling

through mTORC1 and mTORC2 have differing effects on T cell

fate and phenotype. Constitutive mTORC1 activation in T cells

generates highly potent effector CD8s, but at the cost of

inhibiting transition to a memory phenotype (102, 103).

However, although inhibition of mTORC1 led to generation of

long-lived memory cells which exhibited poorer effector

function, these cells also failed to display a hallmark of

memory cells – ability to generate a recall response upon

rechallenge. Interestingly, in the T cells where constitutive

mTORC1 signa l ing decreased memory format ion ,

administration of rapamycin – an mTORC1 inhibitor - was

able to re-enable the formation of memory recall responses

(102). A similar study also showed that rapamycin treatment

during initial activation and expansion favored the generation of

memory precursors, while treatment during the contraction

phase favored the differentiation of memory cells (104). The

importance of precisely timing this inhibition is further

supported by the observation that mTORC1 signaling is

inexorably linked to glucose uptake and glycolysis, and

treatment with rapamycin early upon activation both impairs

glucose metabolism and decreases perforin production (105).

These studies suggest that the inhibition of mTORC1 can be
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leveraged to achieve both a potent effector response and

generation of long-lived memory through the carefully timed

targeting of mTORC1 (Figure 5).

Due to the complexity of targeting mTORC1 to enhance

potent and long-lived T cell responses, mTORC2 has also

emerged as a potential target. T-cell specific knockdown of

Rapamycin-insensitive companion of mTOR (Rictor), a

binding partner of mTORC2 crucial to its activation, was able

to generate robust T cell responses similar to wild type controls

upon vaccination, indicating that deficiencies in mTORC2 did

not affect effector capabilities. Interestingly, upon rechallenge,

these cells displayed increased markers of memory, robust

cytokine production, and were present at a higher frequency

in the spleen. This is possibly due to the fact that mTORC2

prevents activation and nuclear translocation of Forkhead Box

O1 (FOXO1), a transcription factor which is responsible for

upregulation of memory-associated transcripts like L-selectin

(CD62L) and C-C Motif Chemokine Receptor 7 (CCR7) (106).

Additionally, they displayed hallmarks of both effector and

memory T cells, with increased glycolytic flux and enhanced

spare respiratory capacity (SRC) for long-term survival,

regardless of whether the culture media contained cytokines

favoring effector or memory formation (102). This study

suggests that inhibition of mTORC2 can lead to the generation

of T cells bearing favorable characteristics of both potent

effectors and long-lived memory, enhancing their survival in

the TME while also decreasing their dependence on exogenous

cytokines for maintenance of phenotype. Thus, targeting of

mTORC2 could be a viable alternative to mTORC1 inhibition
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in generating cells endowed with both intact effector functions

and memory-like persistence, with greater metabolic resilience

to the challenges posed by the TME; however, a challenge

remains in identifying specific mTORC2 inhibitors which do

not target mTORC1 as well (107) (Figure 5).
Personalized strategies for assessing T
cell metabolic vulnerabilities

In recent years, advances in sequencing and analysis

technologies have made it possible to conduct large-scale

screens at a reduced cost, bringing truly personalized medicine

within reach. As mentioned previously, different tumors will

have varying metabolic vulnerabilities, and T cells from

individual patients will also display similar diversity in

sensitivities. As such, it may be prudent to leverage in vitro

pharmacological or genetic screens to determine optimal

treatment regimens for personalized metabolic medicine. A

recent study described insights gained from such a screening

process, where T-cell and tumor cells were placed in coculture in

the presence of 240 different pharmacological perturbations to

assess which compounds influenced T cell activation. Not only

were they able to gain understandings about vulnerabilities of T

cells and their underlying mechanisms, but they were also able to

identify compounds in which T cells were differentially affected

compared to tumor cells. For example, in the context of a B16-

OVA tumor with OT-1 T cells, glutathione peroxidase 4 (GPX4)

inhibition induced ferroptosis in CD8+ T cells while leaving
FIGURE 5

Benefits and drawbacks of inhibiting mTORC1 or mTORC2 to enhance T cell phenotypes for TCR-T. Depiction of the challenges and
advantages of inhibiting either mTORC1 (mTOR Complex 1) or mTORC2 (mTOR Complex 2) for T cell enhancement. Green boxes indicate
benefits, and blue boxes indicate challenges. mTOR, mammalian target of rapamycin.
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tumor cells mostly unaffected, and this sensitivity was attributed

to acyl-CoA synthetase long-chain family member 4 (ACSL4)

(108), one of the key regulators of ferroptosis (109). One could

imagine a scenario in which patient T cells could be initially

screened against either tumor organoids or cell lines to identify

metabolic enhancements which would benefit T cell survival

over that of tumors, or to detect susceptibilities. Through

performing personalized tumor-T cell screens, T cells for

TCR-T can be engineered to reduce their metabolic

vulnerabilities, and concurrent pharmacological interventions

to target specific tumor vulnerabilities can be identified.
Strategies for improving TCR-T
screening and engineering

The fundamental principle behind TCR-T is that tumor-

specific TCRs can be engineered onto a bulk population of T

cells, and this population can then be redirected to target the

tumor while sparing healthy tissue (110). However, this means

that TCR discovery is also of high importance – TCRs must not

only be specific for the tumor antigen, but also induce

cytotoxicity and cytokine production in T cells once engaged.

TCR signal strength has been correlated with T cell functional

state, with high-strength interactions inducing inhibitory

receptors and acquiring a molecular profile associated with

dysfunction (111), suggesting that selecting TCRs with higher

affinity may reduce efficacy of the final cell product. As such,

methods for identifying TCRs with optimal affinity and

influence on T cell phenotype can be very time consuming.

These methods can include assessing individual TCR affinity,

functional avidity, and conducting cytotoxicity assays to ensure

that engineered TCRs have a high enough affinity to detect

tumor targets, but not so elevated that it adversely affects their

function (112). Understanding how metabolism can influence T

cell sensitivity to antigen can decrease TCR screening time, and

perhaps increase the number of TCRs that enter the final stages

of preclinical evaluation to broaden the targetable

patient population.

Another challenge in TCR-T has been optimizing the

phenotype of the TCR-engineered T cell population

throughout the expansion process to yield long-lived cells

which will persist and carry out effector functions in their new

niche. It has been found that a central memory phenotype of

adoptively transferred T cells was optimal for obtaining the best

antitumor responses in patients (113); however, a diverse

starting population of T cells poses a challenge as to how to

induce this profile for therapy. Previously, we have examined

how metabolism plays a crucial role in T cell differentiation into

memory and effector subsets, and this knowledge can also be

applied to the engineering process to enhance efficacy of the final

TCR-T product.
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Fine tuning peptide sensitivity of TCRs

T cell sensitivity to their cognate peptide/major

histocompatibility molecule (MHC) appear to be governed by

both intrinsic and induced factors – there is an intrinsic affinity

of a TCR for its ligand, but also induced dynamic TCR clustering

(114), both of which modulate the strength of activation. As

such, a single T cell clone has the ability to differentiate into both

high avidity and low avidity effectors, suggesting that the

sensitivity of a T cell can be modulated at the time of

activation and is not dependent on the TCR alone (115). After

this period of plasticity, T cells develop an activation threshold

“set point”, whereupon encounters with sub-threshold or supra-

threshold levels of antigen result in apoptosis (116). This poses

many issues for TCR therapy, from the initial screening needed

for identifying optimal TCRs based on functional avidity, to the

engineering process for clinical products. However,

understanding the mechanism through which T cells are able

to adjust their sensitivity can allow for enhanced cell therapy

products and even new applications.

Upon activation, naïve T cells typically switch their

metabolism from primarily oxidative phosphorylation to

glycolysis (117). However, upon strong peptide stimulation,

flux through both OXPHOS and glycolysis were increased.

This increased OXPHOS upregulated the transcription factor

NFATC1 leading to an increased production of IL-4, which

signaled in an autocrine manner to reduce functional avidity of

high-peptide-dose stimulated cells. IL-4 neutralizing antibodies

were able to block this effect and restore sensitivity (118).

Physiologically, the production of IL-4 and its autocrine

signaling in cells that have encountered high peptide

stimulation can serve as a mechanism for inducing tolerance

in the periphery. This has implications for TCR-T, where TCR

discovery efforts may be hindered by the activation “set point” of

cells used to screen for reactivity. Of course, recent

advancements in screening capabilities using phage display or

yeast libraries remove the need for using T cells or APCs for

initial TCR screening, which allows for identification of putative

antigen-reactive TCRs without being affected by T cell or APC

phenotypes; however, these systems may not be optimal for low-

affinity interactions (119), and T cell-based systems are still

needed to validate TCRs for functional relevance. In addition to

the complexities of TCR discovery, when it comes to

manufacturing the cell product, the activation threshold of

different T cells in the starting population may be different

even when bearing the same TCR, affecting the sensitivity of the

final product (118). It could be postulated that monitoring and

adjusting IL-4 levels could help alleviate some of these concerns.

Additionally, the fine-tuning of activation threshold can be seen

as a blessing, in which T cells could theoretically be able to

discern between increased levels of antigen on tumor cells versus

low physiological levels of antigen on normal tissue. Due to the
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challenges of identifying TCRs against antigens specific to the

tumor, being able to modulate sensitivity of T cells to target

overexpressed tumor antigens such as HER-2 (120) would

greatly expand TCR-T treatment to more indications.

Optimizing expansion culture conditions
to improve T cell functionality

Cell manufacturing for TCR-T incorporates large-scale cell

culture capable of expanding TCR-engineered T cells in

preparation for clinical infusion. Multiple factors other than

the TCR itself have been shown to influence the final cell

product, and composition of media in which cells are

expanded can play a large role in their antitumor capabilities

(121). It has been shown that expanded T cells in vitro have a

different metabolic profile than cells activated in physiologic

conditions, with the former acquiring more of a Warburg-like

metabolism and the latter displaying higher rates of oxidative

metabolism (122). The differentially active metabolic and

signaling pathways between cultured and physiologically

conditioned cells could raise concerns regarding the fitness of

these cultured cells once placed into a physiologic setting, such

as patient infusion. A recent study exploring the impact of

several different media formulations on cell therapy products

found that exposure to ascites from ovarian cancer patients

reduced IFN-y and tumor necrosis factor alpha (TNF-a)

production by T cells regardless of expansion condition.

However, there were differences in the extent to which ascites

exposure reduced viability, cytokine production, and

mitochondrial activity, suggesting that different media

formulations with varying levels of nutrients can affect T cell

resilience in TME-like conditions (123). Additionally,

supplementing with interleukin-7 and -15 in culture during T

cell expansion can promote a central memory phenotype and

robust antitumor function (124); IL-7 has been found to induce

expression of glycerol channel aquaporin 9 (AQP9) on memory

T cells, which imports glycerol for fatty acid esterification and

triglyceride synthesis required for survival (125). Additional

studies have shown the synergistic potential of IL-21 with IL-

15 in enhancing cell function and antitumor effects (126, 127); T

cells cultured in IL-21 media increased fatty acid oxidation over

glycolysis, skewed towards a central memory phenotype, and

displayed reduced exhaustion markers (128). Thus, cytokine

supplementation in media can have profound effects on T cell

metabolism and phenotype, and can be utilized to generate cell

populations with enhanced self-renewal and differentiation

capabilities. To date, there is no standardized expansion media

condition for cell therapy production across the field.

Optimizing expansion conditions by adjusting the levels of key

metabolites can generate cell products which persist better in the

TME and retain more of their antitumor function under

immunosuppressive conditions.
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Discussion

Harnessing the immune system for attacking tumors is an

area of active investigation, and TCR-T is a promising treatment

modality which endow T cells with new specificity against tumor

antigens. This has the potential to treat even advanced disease;

indeed, a recently published case report highlighted the ability of

Kirsten rat sarcoma virus (Kras) G12Dmutation-targeting TCR-

T to mediate regression of metastatic pancreatic cancer, with the

response ongoing 6 months post-treatment (3). To ensure more

cases of tumor regression like this one, there needs to be a deeper

understanding of how infused T cells interact with the

immunosuppressive TME, which has an altered nutrient and

metabolite profile. Metabolism plays a key role in T cell fitness

and effector capacity, and certain alterations in nutrient

conditions can abrogate activation altogether. However, these

metabolites also play a role in tumor cell survival, and finding

the precise metabolic targets which enhance T cell function at

the expense of the tumor can lead to new treatments given

alongside TCR-T to improve efficacy. In this review, we highlight

several methods of targeting both tumor and T cell metabolism

to improve antitumor response. However, one of the largest

challenges in the immune-oncology sphere is tumor

heterogeneity, and there is no guarantee that metabolic

vulnerabilities will be consistent even within the same tumor,

let alone across indications. Personalized screening can help to

identify unique susceptibilities specific to tumors and patient T

cells; however, it will need to keep in mind the limitations set by

tumor evolution and heterogeneity. In addition, metabolism is a

matter of balance, and as seen with the example of mTOR

targeting, perturbations must be timed precisely to be able to

yield the desired phenotype. While the plasticity of T cells allows

them to acclimate to different nutrient conditions, metabolic

interventions during a T cell response raises the possibility of

skewing towards immunosuppressive populations such as Tregs,

as is the case with mTORC1 inhibition in certain conditions

(129). New methods of three dimensional automated coculture

screening can more closely mimic dynamics of T cell activation

and help identify the effects of individual metabolic

perturbations on T cell function and phenotype and identify

potential targets for enhancement (130), and can be applied for

personalized medicine as well. Further studies into the temporal

relationship between metabolism, trajectory of activation, and in

vivo phenotype will shed further light on potential treatment

regimens. Due to the nature of T cell engineering and expansion

for cell therapy, there is a unique window of opportunity to

modulate the phenotypic profile of T cells prior to infusion, in

addition to post-infusion systemic treatment. Additionally, most

metabolic enhancements, such as nutrient preconditioning, are

very cost-effective and simple to implement – without the need

for lengthy regula tory approva ls tha t accompany

genetic engineering.
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Future TCR-T approaches will seek to shorten engineering

time, improve cell function and phenotype, and broaden the

applicability of therapy to more patients. Although initial trials

with TCR-T utilized a patient’s own cells for engineering

(autologous cell therapy), this requires that engineering and

expansion be completed for each individual, which is resource

and time intensive. There has recently been a push towards “off

the shelf” allogeneic products, whereby healthy donor cells can be

engineered to form a bank of cells which can then be infused into

any HLA-matched patient, reducing time and engineering costs;

additionally, the availability of large numbers of these cells allows

for repeat dosing (131, 132). However, as with any transplant

scenario, there is concern for graft-versus-host disease (GVHD),

and much effort has been put into preventing transferred cells

from attacking healthy host tissue due to alloreactivity. In addition

to current engineering controls to test TCRs for alloreactivity (133,

134) and suppress endogenous TCR expression (135, 136),

infusing cells with a memory phenotype, which is favored for

cell therapy, can reduce the chances of GVHD occurrence (137–

139). Above, we have discussed multiple methods through which

to influence T cell metabolism to generate memory cells which are

more resilient and polyfunctional, many of which can be easily

translated into current engineering protocols. Metabolic

interventions represent a promising treatment modality to

augment the efficacy of TCR-T, leading to a more robust cell

product that is more resilient to the immunosuppressive effects of

the TME and demonstrate superior antitumor efficacy.
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