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Machine learning links different
gene patterns of viral infection
to immunosuppression and
immune-related biomarkers in
severe burns
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Introduction: Viral infection, typically disregarded, has a significant role in

burns. However, there is still a lack of biomarkers and immunotherapy targets

related to viral infections in burns.

Methods: Virus-related genes (VRGs) that were extracted fromGene Oncology

(GO) database were included as hallmarks. Through unsupervised consensus

clustering, we divided patients into two VRGs molecular patterns (VRGMPs).

Weighted gene co-expression network analysis (WGCNA) was performed to

study the relationship between burns and VRGs. Random forest (RF), least

absolute shrinkage and selection operator (LASSO) regression, and logistic

regression were used to select key genes, which were utilized to construct

prognostic signatures by multivariate logistic regression. The risk score of the

nomogram defined high- and low-risk groups. We compared immune cells,

immune checkpoint-related genes, and prognosis between the two groups.

Finally, we used network analysis and molecular docking to predict drugs

targeting CD69 and SATB1. Expression of CD69 and SATB1 was validated by

qPCR and microarray with the blood sample from the burn patient.

Results: We established two VRGMPs, which differed in monocytes,

neutrophils, dendritic cells, and T cells. In WGCNA, genes were divided into

14 modules, and the black module was correlated with VRGMPs. A total of 65

genes were selected by WGCNA, STRING, and differential expression analysis.

The results of GO enrichment analysis were enriched in Th1 and Th2 cell

differentiation, B cell receptor signaling pathway, alpha-beta T cell activation,

and alpha-beta T cell differentiation. Then the 2-gene signature was

constructed by RF, LASSO, and LOGISTIC regression. The signature was an

independent prognostic factor and performed well in ROC, calibration, and
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decision curves. Further, the expression of immune cells and checkpoint genes

differed between high- and low-risk groups. CD69 and SATB1 were

differentially expressed in burns.

Discussion: This is the first VRG-based signature (including 2 key genes

validated by qPCR) for predicting survival, and it could provide vital guidance

to achieve optimized immunotherapy for immunosuppression in burns.
KEYWORDS

burn, immunosuppression, machine learning, prognostic model, virus infection
Introduction

According to the Global Burden of Diseases, Injuries, and Risk

Factors Study, there were approximately 8.4 million burn

incidents worldwide in 2019, resulting in 110,000 deaths (1).

Burn emergency techniques have advanced significantly over the

past 20 years, bringing about a significant reduction in burn

mortality, but the burden of infection remains high (2). Infections

are triggered by the accompanying immunosuppression in

burn patients. Most studies focused on infections including the

bacterial ones primarily caused by Pseudomonas aeruginosa or

Klebsiella pneumonia. However, burn wounds are also highly

susceptible to viral infections mainly due to the impaired

immune responses and functions of the immune cells within the

wound micro-environment (3).

Herpes simplex virus (HSV), varicella-zoster virus (VZV),

cytomegalovirus (CMV), human papillomavirus (HPV), and

Epstein-Barr virus (EBV) are common pathogens in burn

patients with a viral infection which are mainly latent

infections (3). Post-burn immunosuppression is a common

pathological process, and immunosuppression increases the

risk of viral reactivation. In addition, viral infections can

weaken the body’s immunity, leading to increased bacterial

susceptibility (4). Viral infection is hard to detect because

blisters and skin damage make the skin symptoms of viral
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infection unobvious. In addition, severe viral infection can lead

to liver failure and severe encephalitis, easily misdiagnosed as

multiple organ failure in severe burns (5–7). Although viral

infection is vital to prognosis, there is still a lack of prognostic

and therapeutic biomarkers related to viral infection. It is of

great value to study viral markers.

Current prognostic indicators have some limitations. Total

body surface area (TBSA) is the most common indicator, but it

ignores age and gender and cannot accurately assess complex

complications such as inhalation injury (8). The ABSI and Baux

scales are used at the beginning of the burn, which cannot

dynamically track the progression, and cannot evaluate the state

of inflammation and the patient’s immune function (9). Some

inflammatory mediators and cytokines such as IL-1, IL-6, IL-8,

MCP-1, and GCS-F reflect inflammation and immune function,

but are still limited (10). Immunosuppression and infections are

responsible for the deaths of more than 60% of patients (11, 12).

Therefore, developing new markers related to immune function

and prognosis is necessary. With the advancement of artificial

intelligence and medical big data technology, machine learning

has become part of precision medicine to validate therapeutic

and prognostic biomarkers (13–15). Based on transcriptome

data, unsupervised consensus clustering has been used to reveal

different patterns in diabetes and cardiovascular disease (16–18),

which can be used to search for similarity and heterogeneity

between transcriptome data and to divide samples into groups

with different prognostic clusters (14, 19–21). Random forest

and LASSO are machine learning algorithms that can screen out

biomarkers related to the prognosis of many genes, and have

been used to screen key genes for cardiovascular diseases and

other diseases (22–24). Conjoint analysis of multiple machine

learning methods can improve the accuracy of prognostic

biomarkers. Therefore, combining transcriptomic data and

machine learning techniques is promising for developing new

prognostic markers for severe burns.

This study used VRGs as hallmarks to identify patients

grouped by two different VRGMPs by consensus clustering.

Function and immune infiltration analysis between groups were
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assessed from four aspects: immune infiltration analysis,

immune score, enrichment analysis, and clinical features. Next,

in WGCNA, we identified gene sets associated with VRGMPs.

The functions of these genes were fully assessed by network

analysis and enrichment analysis. Further, we used RF and

LASSO regression to screen for key genes associated with

prognosis and constructed a nomogram by multivariate

logistic regression to divide patients into high- and low-risk

groups. Finally, we assessed differences in immune cells and

checkpoints between patients in different risk groups and

predicted potential drugs targeting key genes by molecular

docking. The experimental process is shown in the flow

chart (Figure 1).
Methods

Data acquisition and processing

The blood samples of burn patients were downloaded from

the GEO database (GSE19743, GSE77791, and GSE37069). The

patients aged 18-55, total body surface area (TBSA) >25% and

sampling time after burning 7-30 days were included. Data

preprocessing included transforming gene probes into gene

symbols, data consolidation, and batch normalization. Probes

without gene symbols or genes with more than one probe were

deleted or averaged, respectively. The merged data was

prepossessed by the SVA package in R software (version 4.0.5)

to remove batch effects (25).
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VRGs were selected from GeneOntology (GO) database

(http://geneontology.org/) by keyword “Herpes simplex virus,

varicella-zoster virus, cytomegalovirus, human papillomavirus,

and Epstein-Barr virus”.

The in vitro validation cohort was obtained from GSE37069,

GSE26440, and blood samples from the Department of Burns

and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital. Data

acquisition was approved by the Ethics Committee of Xi’an

Ninth Hospital (200268).
Identification of VRGMP groups by
consensus clustering

The GSE19743 dataset was included in consensus clustering

analysis to explore differences in clinical traits and immunology

between the different VRGMPGs. Through the k-means machine

learning algorithm, the “ConsensusClusterPlus” R package was

used to perform unsupervised consensus clustering, which allows

for dividing or condensing cases to multiple clusters according to

the provided hallmarks or signatures. Hallmarks were VRGs. In

detail, we used the consensus clustering algorithm with 1,000

iterations by sampling 80% of the data in each iteration. The

item-Consensus plot, the proportion of ambiguous clustering

(PAC) algorithm, and the relative change in the area under the

cumulative distribution function (CDF) curves confirmed the

optimal cluster number. Principal component analysis (PCA)

was performed to assess gene expression patterns between

the VRGMPGs.
FIGURE 1

The flow chart. The yellow line is the validation of two viral molecular patterns. The orange line is the process of selecting hub genes. The blue
line is the contructed nomogram and analysis of key genes.
frontiersin.org

http://geneontology.org/
https://doi.org/10.3389/fimmu.2022.1054407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1054407
Analysis of immune and clinical features
between two VRGMPGs

The proportions of the immune cells and functions between

VRGMPGs were determined by CIBERSORT, Gene Set

Enrichment Analysis (GSEA), and single sample Gene Set

Enrichment Analysis (ssGSEA). The ssGSEA was performed

by R package “GSVA” to explore the different infiltration degrees

of immune cell types, immune-related functions, and immune-

related pathways between Virus 1 and 2 groups (26). GSEA

software (version 3.0) was obtained from the GSEA website

(http://software.Broadinstitute.org/gsea/index.Jsp), and

“c2.cp.kegg.v7.4.symbols. gmt” subset was downloaded from

the Molecular Signatures Database (http://www.gsea-msigdb.

Org/gsea/downloads.jsp). CIBERSORT was performed online

(https://cibersortx.stanford.edu/) (27). Based on gene

expression profiles and VRGMPGs, the minimum gene set was

set to 5 and the maximum gene set to 5000, with one thousand

re-samplings, and P < 0.05 was considered statistically

significant. The top 7 terms with the smallest p-values are

shown. The prognostic value of immune cells was assessed by

the receiver operating curve (ROC). We downloaded clinical

information from the GSE19743 dataset to analyze clinical

features (survival, ABSI, Baux, TBSA, age, sex, inhalation

injury, and hospital time) between VRGMPGs.
WGCNA and identification of VRDEGs

WGCNA is a systems biology approach that can identify

modules of highly correlated genes based on linkages between

gene sets and phenotypes. Gene modules associated with

VRGMPGs in GSE19743 were identified using the “WGCNA”

package. The “limma” package was applied to calculate the

differential expression genes between healthy controls and

burns in GSE19743, GSE77791, and GSE37069, respectively.

We took the intersection of WGCNA module genes and burn

differential genes to obtain virus-related differentially expressed

genes (VRDEGs) for further analysis.
Network analysis of VRDEGs

The functions of VRDEGs were assessed by GO and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis in The Database for Annotation, Visualization and

Integrated Discovery (DAVID) (https://david.ncifcrf.gov/).

We constructed a PPI network based on the STRING

database (https://cn.string-db.org/), visualized it using

Cytoscape, and used the MCODE plugin to identify hub genes

in the network.
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Screening for prognosis-related genes

In GSE77791, univariate logistic regression analysis was

performed based on the hub genes, and variables with P < 0.05

were used for the subsequent analysis; LASSO regression

analysis was performed with the hub genes, and variables with

non-zero coefficients were screened out for the next analysis;

Random forest analysis was utilized to screen out the most

important genes for prognosis (top 20). The results of LASSO,

logistic and random forest were intersected to obtain prognostic

genes for multivariate logistic regression.
Constructing risk scoring models and
independence verification

In GSE77791, multivariate logistic regression analysis was

performed on prognostic genes to find key genes (P < 0.05).

Visualize the relationship between variables and predictive models

using the “rms” package. The nomogram was constructed to

predict the risk of death using CD69 and SATB1. Its performance

was assessed by the area under the receiver operating

characteristic curve (AUC), calibration curve, and decision

curve. According to the nomogram risk score, patients were

divided into high- and low-risk groups with a median cutoff

value. To verify the independence of risk scores, univariate and

multivariate logistic regression analyses were performed for risk

scores, TBSA, AGE, SEX, BUAX, and ABSI, respectively.
Immune analysis between high- and
low-risk groups

Immune infiltration and immune checkpoint analysis in the

high- and low-risk groups.We performed the CIBERSORT,

GSEA, and ssGSEA analysis to assess immune cell expression

and immune score between high- and low-risk groups. In

addition, we also analyzed differences in the expression of

immune checkpoint genes between high- and low-risk groups.

P < 0.05 was considered significant. Furthermore, we performed

a Pearson correlation analysis between key genes, T cell

subtypes, and T cell activation/suppression.
Drug prediction and molecular docking

Using the online network analysis tool “Networkanalysis”

(https://www.Networkanalyst.ca/), the interaction network of key

genes and chemicals was constructed based on the Comparative

Toxicogenomics Database (CTD), and the compounds that acted

on both genes at the same time were selected for the next step of

molecular docking. The “.sdf” format structures of compounds
frontiersin.org
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were downloaded from The PubChem Project (https://pubchem.

ncbi.nlm.nih.gov/). We downloaded the structures of proteins

from the RSCB PDB database (https://www.rcsb.org/). PyMOL

2.2.0 software (https://pymol.org) was used to process small

molecule ligands, including removal of water molecules, ligand

removal, and addition of hydrogen. AutoDockTools 1.5.6

(https://autodock.scripps.edu/) was used to process receptor

proteins, such as adding polar hydrogen and a charge.

Molecular docking was performed by using AutoDock Vina

1.1.2 software (28). By analyzing the binding energy of the

molecule, choosing the conformation with the lowest binding

energy and observing the formation of hydrogen bonds, we used

Pymol software to map and display the three-dimensional

structures, protein residues and binding bonds of proteins.
Validation expression of key genes

The immune system of burn patients was in dynamic

changes, so we detected the expression of key genes in five

different periods (0-24h, 24-72h, 72h-7d, 7d-30d, >30d) in the

whole blood PCR group and the microarray group. The PCR

samples (blood) were obtained from the Department of Burns

and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital, and

data acquisition was approved by the Ethics Committee of Xi’an

Ninth Hospital (202268). The Microarray group samples were

collected from the public dataset (GSE37069) and do not require

ethical approval. Peripheral blood mononuclear cells (PBMC)

were isolated from blood using Ficoll sodium diatrizoate

gradient centrifugation (Sigma-Aldrich, St. Louis, MO, USA)

and were dissolved in TRIzol reagent (Invitrogen, Carlsbad, CA,

USA). The total RNA was extracted using an RNeasy kit

(Qiagen, Hilden, Germany) and stored at −80°C. The RR047A

cDNA synthesis kit (TaKaRa, China) was used to perform the

reverse-transcription of the extracted RNA, and the 2X SG Fast

qPCR Master Mix (High Rox, B639273, BBI) was used for

quantitative PCR of hub genes on an ABI PRISM 3700

instrument (Foster, CA, USA). GAPDH was used as an

internal control, and primers are as follows:
Fron
CD69-F: 5’-ATTGTCCAGGCCAATACACATT-3’

CD69-R: 5’ –CCTCTCTACCTGCGTATCGTTTT-3’

SATB1-F: 5’-GATCATTTGAACGAGGCAACTCA-3’

SATB1-R: 5’-TGGACCCTTCGGATCACTC-3’

GAPDH-F: 5’ -TGGGTGTGAACCATGAGAAGT-3’

GAPDH-R: 5’ -TGAGTCCTTCCACGATACCAA-3’
Statistical methods

The independent Student’s t-test was used to compare the

continuous data with normal distribution, and the c2 test for
tiers in Immunology 05
categorical data was utilized for pairwise comparisons between

subgroups. The Mann–Whitney U test was used to compare

differences between two independent groups when the

dependent variable was either ordinal or continuous but not

normally distributed. All statistical analyses were performed

using the R programming language (Version 4.0.5) and SPSS

software. A difference of P < 0.05 indicates statistical significance

unless specified otherwise.
Result

Data acquisition and processing

We included 28 burns and 25 controls in GSE19743, 76

burns and 14 controls in GSE77791, and 83 burns and 36

controls in GSE37069. The three datasets for burns were

processed with the batch effect shown below (Figure 2). A

total of 20,441 genes were integrated from the three datasets

(Figure 2), and the datasets were directly comparable (Figure 2).

Through the GO database, we extracted 35VRGs that were

used to be Hallmarks in Consensus clustering.

We obtained 6 blood samples of severe burn patients (total

body surface area, TBSA > 25%) aged 18-55, with sampling times

including (0-24h, 24-72h, 72h-7d, 7d-30d, >30d) and 6 healthy

adults with peripheral blood samples from Department of Burns

and Plastic and Cosmetic Surgery, Xi’an Ninth Hospital.

Since immune cells were significantly different at different

time points after burning, we selected the samples in GSE37069

to evaluate the expression of key genes at different time points,

including 0-24h, 24-72h, 72h-7d, 7d-30d, >30d.
Analysis of immune and clinical features
between two VRGMPGs

To explore the association between severe burn patients and

viral infection, we performed unsupervised clustering using

genes associated with VRGs as hallmarks. Based on the

machine learning algorithm “ConsensusClusterPlus”, we

divided patients into two distinct virus-associated molecular

patterns (C1:Virus-1 and C2:Virus-2 groups) (Figure 3A).

According to the results of principal component analysis,

different VRGMPs have different gene expression patterns

(Figure 3). In GSEA analysis, genes in the C1 group were

more enriched in INTESTINAL_IMMUNE_NETWORK_FOR_

IGA_PRODUCTION, GRAFT_VERSUS_HOST_DISEASE,

ASTHMA, T_CELL_RECEPTOR_ SIGNALING_PATHWAY,

V I R A L _MYOCARD I T I S , S Y S T EM I C _ LU PU S _

ERYTHEMATOSUS, and ETHER_LIPID_METABOLISM

(Figure 3). In the CIBERSORT immune infiltration analysis,

the proportions of plasma cells, Tregs, monocytes, and

neutrophils significantly differed between different virus-
frontiersin.org
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associated molecular patterns (Figure 3). In ssGSEA analysis,

CD8 T cells and effector CD4 T cells differed significantly

between different virus-associated molecular patterns. Gamma

delta T cell, CD56 bright natural killer cell, and Activated

dendritic cell have better prognostic values (Figure 3G). TBSA

and survival also differed significantly between different

VRGMPGs (Figure 3).
WGCNA and identification of VRDEGs

In the WGCNA analysis, two outlier samples were excluded

with a soft threshold of 16 (Figure 4A). The genes of GSE19743

can be divided into 14 modules (Figure 4). The black modules

containing 244 genes were significantly correlated with

VRGMPGs (P < 0.01, coefficient=-0.48) (Figure 4). In

GSE19743, there were 5481 differentially expressed genes

(DEGs) (|LogFC > 1|, FDR < 0.05) between burn patients and

healthy adults. In GSE77791, there are 2246 DEGs. In GSE37069,

there are 2765DEGs (Figure 4G). Finally, there were 133

intersections between the black modules of WGCNA and
Frontiers in Immunology 06
differently expressed genes (Figure 4). These genes were used in

the next step of network analysis to screen the hub genes further.
Network analysis of VRDEGs

Using the MCODE plugin for Cytoscape, we identified 65

hub genes with dense interaction networks (Figure 5). In GO

and KEGG enrichment analysis, these genes are highly

correlated with T cell-related pathways, such as T cell

activation and differentiation, T cell receptor signaling, T cell

receptor complex, and Th1, Th2, and Th17 cell differentiation

(Figure 5B). Furthermore, there are highly shared genes among

these pathways, illustrating the high possibility of interaction

between these genes (Figure 5G).
Screening for prognosis-related genes

When the number of decision trees is 500, there is a lower

error in RF, and the top 20 important genes are screened out
A

B
C

FIGURE 2

Correcting for batch effects. (A) Bar graphs with different colors represent different data sets. The ordinate is the expression value of the
microarray data, and the abscissa is the sample number. (B) Overlapping genes after converting gene names between different datasets.
(C) Sample expression profiles before batch correction and after batch correction.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1054407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1054407
(Figure 6A). 16 variables had non-zero coefficients in the least

absolute shrinkage and selection operator (LASSO) regression

model (Figure 6C). In GSE77791, 25 genes were significantly

associated with survival (P < 0.05) according to the univariate

analysis (Figure 6). Finally, we obtained 4 prognostic genes for

further study (Figure 6).
Frontiers in Immunology 07
Constructing risk scoring models and
independence verification

Multivariate logistic regression analysis revealed that CD69

and SATB1 were independent risk factors for severe burns

(Table 1). These two independent factors were used to
A
B

D E

F G

H

C

FIGURE 3

Consensus clustering and its grouping for clinical properties and immunological analysis. (A) Different colored lines represent different K
(number of sample groups). According to the evaluation of the area under the CDF curve, the area under the CDF curve gradually increases
when the K value increases. Here, the clusters with the highest average consistency in the group are the number of clusters is K=2, and the
number of the next highest cluster is K=4. (B) When K=2, the samples can be divided into 2 groups with different expression patterns (C1 and
C2). (C) The dots of different colors represent different groups. PCA is performed according to the gene expression data. The gene expression
profiles of the two groups of patients in the figure are significantly different. (D) The results of GSEA showed that different colors represent
enriched pathways; ES > 0 indicates that the genes of C1 are enriched in this pathway, and ES < 0 means that the genes of C2 are enriched in
this pathway. (E) Comparison of 22 immune cells between C1 and C2 subgroups. The vertical axis represents the proportion of immune cells.
Cells with P < 0.05 were considered to be different between groups. (F) ssGSEA results. In the C1 and C2 subgroups, showing differences in
clinical shape, immune cells, and immune function, P < 0.05 was considered to be different between the different subgroups. (G) Immune cells
and immune function ROC curves with significant differences. The larger the AUC value, the better the predictor of the patient’s prognosis. P <
0.05:*, P < 0.01:**, P < 0.001:***P < 0.0001:****, P > 0.05:ns.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1054407
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1054407
construct the nomogram (Figure 7). The AUC value of the

nomogram was 0.825 (95% CI): (Figure 7), which indicated that

the model had good predictability. Furthermore, the calibration

curve showed a high consistency between prediction and actual

observation (Figure 7). The AUCs of TBSA, hospital time,

halation injury, Baux, AGE, and ABSI were 0.73, 0.73, 0.63,

0.7, 0.56, and 0.7, respectively (Figure 7I). The AUC of the

nomogram was 0.75 in the validation set (Figure 7). The

calibration curve also showed a relatively low consistency

between prediction and actual observation (Figure 7). The

decision curve analysis (DCA) showed that the Risk_score had

the best ability to identify survival than any other clinical factor

in the validation sets (Figure 7M). Multivariate logistic
Frontiers in Immunology 08
regression analysis revealed that risk scores were independent

risk factors for severe burns (Table 2).
Immune analysis between high- and
low-risk groups

In CIBERSORT analysis, T cells CD4 naive, T cells CD4

memory resting, and T cells CD4 memory activated were higher

in the low-risk group (Figure 8). Similarly, in ssGSEA, the score

of CD4 T cells was higher in the low-risk group (Figure 8). In

addition, the scores of immature B cell, CD56 bright natural

killer cell, MDSC, and T cell co-stimulation were also higher in
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FIGURE 4

WGCNA and differential expression analysis (A) In the cluster analysis results of the GSE19743 dataset, abnormal samples can be eliminated
according to the height value. (B) Analysis of scale-free fit indices (left) and average connectivity (right) to select various soft power (b). Soft
threshold: select the soft threshold when R2>0.85. (C) Cluster dendrogram of burn trait genes; each color below represents a co-expressed
gene module. (D) Correlation of consensus clustering groupings with gene modules. The values are the correlation coefficients (p), respectively.
Red represents positive correlation, and blue represents negative correlation. Black modules have a significant correlation with virus grouping.
(E–G). Differential expression analysis of genes in three burn datasets. Green represents down-regulated genes, and red represents up-regulated
genes. The genes in black are not significantly different. (H) The intersection of the three burn datasets and the black module in WGCNA.
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FIGURE 5

Network analysis of VRDEGs (A) The core gene network after the intersection of genes was screened by the MCODE plugin. The darker the
color and the larger the circle, the more nodes the gene plays. (B) GO enrichment analysis results, orange is BP, green is CC, blue is MF, the
abscissa is the enrichment score, and the ordinate is the pathway name. (C) KEGG enrichment analysis results. The red is the gene, and the
yellow is the pathway. The larger the circle is, the more genes are enriched in the pathway. Different colors represent different enrichment
results. (D–G). Network plot of KEGG and GO enrichment analysis. Each link represents a commonly enriched gene between pathways, and the
thicker the connecting line, the greater the number of common genes. The more enriched genes, the bigger the dots, and the smaller the P
value, the redder the dots.
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the low-risk group (Figure 8). Interestingly, the low-risk group’s

expression of immune checkpoint-related genes, such as CD28,

CD86, CD276, ICOS, TIGIT, and TNFSF4, was upregulated

(Figure 8). CD69 significantly correlates with Activated CD4 T

cell, ActivatedCD8T cell, Gamma-delta T cell, Treg, Th2, and T cell

co-inhibition. SATB1 significantly correlates with Activated CD8 T

cell, Gamma-delta T cell, T follicular helper cell, Th2, T cell co-

inhibition, and T cell co-stimulation (Figure 8). In GSEA, Low-risk

group genes were mainly enriched in AXON_GUIDANCE,

TGF_BETA_ SIGNALING_PATHWAY, GRAFT_VERSUS_

HOST_DISEASE, ALDOSTERONE_ REGULATED_SODIUM_

REABSORPTION,TYPE_I_DIABETES_MELLITUS,T_CELL_

RECEPTOR_SIGNALING_PATHWAY,CELL_ADHESION_

MOLECULES_CAMS, and CIRCADIAN_RHYTHM_MAMMAL
Frontiers in Immunology 10
while high-risk group in GLYCOSAMINOGLYCAN_

DEGRADATION,FOLATE_BIOSYNTHESIS (Figures 8E, F).
Drug prediction and molecular docking

A total of seven chemicals were found to be effective against

both CD69 and SATB1 (Figure 9). We excluded two toxic

chemicals and molecularly docked five chemicals, including

Acetaminophen, decitabine, Cyclosporine, NickelSulfate, and

JQ1, to confirm their potential as immunosuppressive drugs

for the treatment of burns. Generally, binding energy less than 0

indicates that the ligand can bind the receptor spontaneously

(29); binding energy less than -5.00 kcal/mol indicates strong
A
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FIGURE 6

Screening variables by machine learning (A) When the random forest selects different numbers of decision trees, the error rate of the
classification results. When the decision tree is 500, it has a lower error rate. (B) The ordinate is the Gini value, representing the variable’s
importance in the random forest analysis. (C, D). LASSO regression results have a better screening effect when the coefficient is set at 0.03.
(E) The results of univariate logistic analysis. The ordinate is the regression coefficient, and the size of the circle is proportional to the P value.
(F) Intersection of random forest, lasso regression, and univariate logistic regression results.
TABLE 1 Univariate and multivariate logistic regression for 4 genes.

Univariate analysis Multivariate analysis

Genes P OR 95% CI P OR 95% CI

SATB1 0.021 0.047 (0.003-0.634) 0.008 0.025 (0.003-0.191)

CD69 0.003 10.716 (2.258-50.85) 0.001 5.001 (1.508-16.577)

BCL11B 0.008 1.456 (0.102-0.709) 0.774 – –

IL2RB 0.026 0.111 (0.016-0.768) 0.69 – –
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binding activity (30). As illustrated in Figure 9B, CD69 and

SATB1 could form ligands primarily through hydrogen bonding

or hydrophobic interaction. Cyclosporin, JQ1, and Decitabine

performed better than the other two compounds for CD69.

However, the binding energy of all 5 compounds was less than

-5.00 kcal/mol for SATB1, which indicates weak binding activity

(Table 3). The docking results could help validate the regulatory

relationship between the target and the ligand.
Frontiers in Immunology 11
Validation expression of key genes

In the microarray group, CD69 was significantly down-

regulated at five time periods (0-24h, 24-72h, 72h-7d, 7d-30d,

>30d), as was SATB1. In the PCR group, SATB1 was significantly

down-regulated at five time periods (0-24h, 24-72h, 72h-7d,

7d-30d, >30d), while there was no significant difference between

burns and healthy controls at 24-72h and 30d (Figures 10A–J).
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FIGURE 7

Predictive model (A) The Nomogram chart is constructed by multivariate logistic regression, which scores patients according to the gene value,
and then predicts the risk of death. (B) The ROC curve of the nomogram in the training set: the larger the AUC value, the better the prediction
performance. (C) The calibration curve of the nomogram in the training set: the higher the degree of coincidence with the diagonal line, the
better the prediction performance. (D–I). ROC curves of TBSA, hospital time, inhalation injury, Baux, age, and ABSI in the validation set (J) The
calibration curve of the nomogram in the validation set. (K) ROC curve of the nomogram in the validation set. (L, M). In the decision curve of
the validation set’s nomogram, the risk cutoff value is the horizontal axis, and the larger the vertical axis, the better the prediction performance.
Nomoram’s risk score has the best predictive power.
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Discussion

Infection and sepsis are the leading causes of death in burn

patients who are often accompanied by viral infections,

especially those with immunosuppression (31). However, the
Frontiers in Immunology 12
diagnostic, therapeutic, and prognostic value associated with the

virus remains underestimated because burn patients are

accompanied by fever, damaged skin structure, and immune

system disturbances, which makes the virus infection less

noticeable (3).
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FIGURE 8

Immune analysis grouped by different risk scores (A) Comparison of 22 immune cells between different risk score groups. The vertical axis
represents the proportion of immune cells. Cells with P < 0.05 were considered to be different between groups. (B) Comparison of immune cell
and immune function scores between different risk score groups. The vertical axis is the rating. Cells with P < 0.05 were considered to be
different between groups. (C) Comparison of immune checkpoint-related gene expression between different risk score groups. The vertical axis
represents the gene expression level. Genes with P < 0.05 were considered to be different between groups. (D) Key genes, correlation analysis
with T cell number and function. In the bottom left plot, blue represents a positive correlation, and red is a negative correlation. P > 0.05 is
drawn as “×” in the upper right corner. Correlation coefficients > 0.4 and P < 0.05 are highlighted with red lines. P < 0.05:*, P < 0.01:**, P <
0.001:***. (E, F). In the results of GSEA, different colors represent enriched pathways, and ES > 0 indicates that the genes of the low-risk group
are enriched in this pathway, and ES < 0 means that the genes of the high-risk group are enriched in this pathway.
TABLE 2 Univariate and multivariate logistic regression for risk score and clinical features.

Variables Univariate analysis Multivariate analysis

P OR 95% CI P OR 95% CI

Risk_score 0.049 2.324 (1.003-5.383) 0.024 6.286 (0.88-44.9)

INJURY_INHALATION 0.887 1.154 (0.161-8.274) – – –

TBSA 0.024 1.054 (0.986-1.127) – – –

HOSPITAL TIME 0.696 1.003 (0.989-1.017) – – –

SEX 0.999 – – – – –

AGE 0.622 0.947 (0.761-1.177) – – –

HOURS POST INJURY 0.212 0.987 (0.967-1.008) – – –

Baux 0.503 1.069 (0.88-1.299) – – –

ABSI 0.823 1.258 (0.169-9.357) – – –
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In this study, we performed a machine learning algorithm,

consensus clustering, with hallmarks (related to HSV, CMV,

HPV, VZV, and EBV) to divide burn patients into two virus

molecular patterns (C1 vs. C2). In follow-up studies, significant
Frontiers in Immunology 13
differences in enrichment analysis, the ratio of immune cells, and

clinical features were found between C1 and C2. It means there

are different viral infection response profiles between C1 and C2

patients. In the C1 group, genes were significantly enriched in
A
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FIGURE 9

Drug network and molecular docking. (A) Compounds that may act on CD69 and SATB1 genes are predicted in the network analysis database.
The compounds with therapeutic effects are selected by the red squares. (B–D) Molecular docking of CD69 and JQ1, decitabine and
cyclosporine compounds. The protein structure of CD69 is in green, and the structure of the compound and its hydrogen-bonding site with
CD69 is on the right.
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TABLE 3 Main parameters of molecular docking of key genes and compounds, including binding energies and hydrogen bonding and
hydrophobic interaction sites.

CD69 SATB1

Score
(kcal/mol)

hydrogen
bonding

hydrophobic interaction Score
(kcal/mol)

hydrogen
bonding

hydrophobic
interaction

Acetaminophen 142.1 ALA136 GLU139
ARG138

TYR191 HIS141 ARG134 ASN178 262 SER117 LEU118
VAL99
LEU100

Cyclosporin -5.2 ARG138 ARG134
ASN130

HIS141 ARG138 ASN178 -3.8 GLU97
PHE98
VAL76
VAL99
LEU10
MET113

VAL101
ALA114

Decitabine -5.6 HIS141 ARG138
ASN178

ARG134 GLY137 LYS133 -3.6 LEU100 LEU118
SER117
GLU97
MET73

JQ1 -6.4 – HIS141 GLU139 ARG138 ARG134
LYS133

23.6 NONE SER117
LEU118
GLU97
MET73
LEU100
MET73

NickelSulfate -1 – ARG138 GLY137 ARG134 TYR135 -1 NONE ALA114
VAL99
CYS78
VAL79
GLU97
ALA96
Frontiers in Imm
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FIGURE 10

Validation of key gene expression. (A–E) Relative expression levels of key genes grouped by microarray at different periods (0-24h, 24-72h, 72h-
7d, 7d-30d, >30d). The ordinate is the relative expression level, and the abscissa is the gene. Red bars are burn patients, and blue are normal
controls. (F–J) Relative expression levels of key genes in PCR groups at different periods. P < 0.05:*, P < 0.01:**, P < 0.001:***, P>0.05: ns.
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INTESTINAL_IMMUNE_NETWORK_FOR_IGA_

PRODUCTION. The immune capacity of the intestinal mucosa

is significantly reduced after burns. First, burns can lead to

severe dysbiosis of the intestinal microbiota, reducing beneficial

bacteria and increasing opportunistic pathogens (32). Secondly,

the function of the intestinal mucosal barrier was damaged after

burns, and bacteria invaded the blood from the intestine to

induce sepsis (33). CMV latency occurs within the bone marrow,

mainly within the monocyte/granulocyte progenitor cells (34),

and the rate of CMV reactivation in burn patients varies from

55% to 71% (35). CMV infection reduces the immune response

and exacerbates susceptibility to this bacteria (36). Our

experimental results reveal the possibility of interaction

between viral infection and intestinal mucosal immunity, and

it will be interesting to explore further whether viral infection

can exacerbate intestinal mucosal immune abnormalities.

“T_CELL_RECEPTOR_SIGNALING_PATHWAY” has

been enriched in C1 groups. In addition, plasma cells, Tregs,

monocytes, neutrophils, CD8 T cells, CD4 T cells, NK cells, and

dendritic cells were different between VRGMPGs. After severe

burns, the immune system fluctuates violently, which can

generally be summarized as excessive activation of innate

immune cells causing extensive inflammatory responses and

immunosuppression caused by impaired adaptive immune cell

function and apoptosis (37). Innate immune cells such as

monocytes, neutrophils, and dendritic cells are increasing. Still,

in patients with TBSA > 40%, and the ability of monocytes to

migrate was damaged (38), the ability of neutrophils to

phagocytosis and chemotaxis was reduced (39). The ability of

dendritic cells to phagocytosis and antigen presentation was

decreased (40).

Furthermore, the activation of adaptive immune response

was inhibited. T cells’ landscape after burn decreased

proliferation, increased apoptosis, and decreased secretion of

cytokines, thereby inhibiting adaptive immunity (41, 42). In

WGCNA and differential expression analysis, we obtained 133

VRDEGs significantly associated with T cell proliferation and

differentiation. In GO terms, VRDEGs were mainly enriched in

lymphocyte differentiation, T cell activation, and T cell

activation. In KEGG analysis, VRDEGs were mainly enriched

in the TCR signaling pathway, Th1, Th2, and Th17

differentiation, and viral protein interaction with cytokine and

cytokine receptors. Inhibition of proliferation of T cells

(especially Th cells) was a major feature of adaptive immune

dysfunction after burns (43). T cells were one of the key cells

against VZV infection (44), and viral infection reshapes T cell

phenotype (45). Immunosuppression after burns increases the

risk of VZV infection, and severe viral infection further weakens

immune function and leads to death (31, 46). Inhibition of T cell

also increased the risk of HSV infection. HSV induced the down-

regulation of Toll-like receptor (TLR)-mediated nuclear factor-

kB (NF-kB) cytokine production, which enhances further viral

replication, and such patients are more susceptible to bacterial
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infections (4, 47). Different T cell-related pathways in two

VRGMPs may be both the cause and the result of viral

infection, and these mechanisms are worthy of further study.

Survival and TBSA were significantly correlated with VRGMPs.

The above findings illustrated that VRGMPs were associated

with abnormal immune function in patients, and related

the rapeu t i c t a rge t s and prognos t i c marke r s had

important prospects.

We identified the 64 hub genes related to viral infection

based on the PPI network. Further, through RF, LASSO, and

logistic analysis, we developed a nomogram composed of two

key genes, CD69 and SATB1. We confirmed that the nomogram

was an independent prognostic value in multivariate logistic

analysis. TBSA, ABSI, and Baux were often used to assess the

severity and prognosis of burn patients (48, 49). Some

researchers have also constructed prognostic models related to

age, gender, length of hospital stay, and inhalation injury.

Although these indicators have good prognostic value, they are

often evaluated at the time of admission and cannot dynamically

track the progression of burns. Changes in immune function

cannot be reflected. In both training and validation sets, the

AUC values of the nomogram are significantly higher (0.82 and

0.75) than those of TBSA, ABSI, and Baux, and the calibration

curve shows the good performance of the nomogram. The DCA

curve showed that the prognostic value of the nomogram was

significantly better than any other clinical feature.

Patients could be divided into high- and low-risk groups

based on the median risk score calculated from the nomogram as

a cutoff. We found that CD4+T cell and CD8+T cell expression

were lower in the high-risk group, which is consistent with

previous findings. In addition, we also found significant

differences in immune checkpoint gene expression between

different risk groups. Immune checkpoint therapy was of great

value in improving patient immune function and has been

extensively studied in sepsis but is still unclear in severe burns.

PD-L1 expression was upregulated in neutrophils and

monocytes after severe burn, as was PD-1 co-inhibitory

receptor expression on T cells (50, 51), which may be an

important mechanism of T cell suppression. Increased IFN-g
in burn patients may be associated with increased PD-1/PDL1

expression in similar sepsis (52, 53). Anti-PD-L1 antibody

therapy improves T cell suppression and survival in burnt

mice (54). PD-1 and CTLA-4 were also a co-suppressor

involved in T cell suppression in sepsis. Preclinical studies

have shown that bacterial sepsis leads to increased expression

of CTLA-4 on CD4+ and CD8+ T cells, and anti-CTLA-4

treatment exhibits dose-dependent reductions in CD4+ and

CD8+ T lymphocyte apoptosis and improved survival (51, 55).

BTLA, another immune checkpoint inhibitor, has been

associated with increased morbidity and mortality in

preclinical studies (56). Increased BTLA expression on

circulating CD4+ T cells in sepsis patients was associated with

nosocomial infection. In a CLP mouse model of sepsis, BTLA
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knockout mice had reduced bacterial numbers, reduced organ

damage markers, and improved survival (57). Immune

checkpoint inhibitors have enormous value in treating burn

patients with immunosuppression and sepsis. However, the

current clinical efficacy is still not good, which is related to the

lack of effective targets (58). Our study identified potential

immune checkpoint genes in burn patients with different

VRGMPs, such as CD28, CD86, CD276, ICOS, TIGIT, and

TNFSF4, which were of great value for the development of

new immunotherapy targets.

Immunosuppression is mainly manifested by enhanced

innate immunity, such as excessive activation of neutrophils,

and weakened adaptive immune responses, such as T cell

apoptosis in burn patients. CD69 and SATB1 were significantly

differentially expressed between burn patients and healthy

adults. Our correlation analysis showed that its expression

pattern had an important relationship with gd T-cells, CD4/8

T cells, Th2 cells, and T cell co-inhibition.

CD69 is a member of the C-type lectin superfamily. Once

activated, CD69 acts as a co-stimulatory molecule for T cell

activation and proliferation. In burn patients, CD69 expression

was suppressed on ab T cells, but increased on gd T-cells in the

burn wound (59). The role of CD69 on T cell differentiation is

multifaceted. Activated gd T-cells can induce T cell subtypes to

differentiate into Th2 and Th17 (60), and Th17 can inhibit the

differentiation of Th1 cells, which may be an important factor in

the imbalance of Th1 and Th2 differentiation after burns, and

the imbalance of Th1 and Th2 differentiation is an important

cause of immunosuppression. CD69 significantly correlates with

immune disorders, making it important for prognostic

significance. In addition, CD69 is an important target in

regulating inflammation and immunity. Knockout of CD69

can effectively reduce the susceptibility to inflammation caused

by Th17 and play an important role for regulating immune

response (61). High expression of CD69 can promote the

inhibition of T cell function while blocking CD69 enhances the

immunity of T cells. In addition to mature T cells, CD69 is

indelibly expressed by immature thymocytes, natural killer (NK)

cells, monocytes, and neutrophils and is constitutively expressed

by mature thymocytes. Activated NK cells also highly express

CD69. Inhibiting NK cell function can reduce CD69 expression

and improve wound healing (62).

Similarly, high CD69 expression was found in hyper-activated

neutrophils, which mediate suppression of lymphocyte function

(63). CD69 is also associated with viral susceptibility. Activated

monocytes highly express CD69, and activated monocytes have a

higher viral load during virus infection than non-activated

monocytes (64). EBV-activated specific cytotoxic T lymphocytes

(CTL) highly express CD69 and can inhibit the proliferation of

lymphocytes (65). High expression of CD69 in burn patients is

associated with over-enhanced innate immunity and attenuated

adaptive immune response, and this correlation gives it the ability to

predict prognosis. At the same time, high CD69 expression is
Frontiers in Immunology 16
associated with viral infections and is a promising therapeutic

target that can improve immunosuppression in burn patients.

Special AT-rich binding protein-1 (SATB1) is a global

chromatin organizer capable of activating or repressing gene

transcription in mice and humans (66). The role of SATB1 is

pivotal for T-cell development and differentiation, with SATB1-

knockout mice being neonatally lethal and having dysregulation

of Th17 (67, 68). SATB1-dependent T cell activation is crucial

for the correct differentiation of T cell subtypes, and inhibition of

SATB1 can inhibit Treg cell activation and differentiation (69).

Apoptosis of T cells is an important factor leading to post-burn

immunosuppression, and immunosuppression-induced

infection leads to the death of patients (59). Our study found

that SATB1 was lowly expressed in burn patients, and the

expression level of SATB1 was significantly correlated with

prognosis, demonstrating the great prognostic value of SATB1.

SATB1 exhibits excellent prognostic value in many diseases due

to its close association with T cell development (66). However,

there is still no research in the field of burns. Our study identifies

the ability of SATB1 as a prognostic marker in burn patients, and

given its association with burn immunosuppression, we consider

the results to be of high confidence.

Further study will be promising. Furthermore, SATB1 is

proposed to suppress transcription of PDCD1, encoding the

immune checkpoint protein 1 (PD-1) (67). In patients with burn

sepsis, PD1 is highly expressed on immune cells, and reversing this

high expression is of great help in improving immune function. In

our findings, SATB1 is down-expressed in burn patients, and

reversing this underexpression is a promising immunotherapy.

Bo t h CD69 and SATB1 may b e i n vo l v ed i n

immunosuppression in burn patients and are promising

therapeutic targets. In our study, CD69 and SATB1 interacted

with decitabine, Cyclosporine, and JQ1. Decitabine is a

chemotherapy drug used for hematological tumors. Studies

have shown that decitabine can inhibit pro-inflammatory

factors, which may help improve the excessive inflammatory

response in burns (70). In addition, decitabine can also regulate

the differentiation of T cell subtypes. Decitabine could

upregulate major histocompatibility complex class I-related

chains B and UL16-binding protein 1 expression, and

combination treatment involving gd T cell immunotherapy

and decitabine could be used to enhance the cytotoxic killing

of osteosarcoma cells by gd T cells (71). In general, its application

in burns is rare, and relevant research will be of great

significance. Cyclosporine is a potent immunomodulatory

agent with an increasing number of clinical applications. Its

major mode of action is inhibiting the production of cytokines

involved in the regulation of T-cell activation (72). Cyclosporine

can inhibit CD69-mediated T cell activation and maturation

(69), which may help regulate T cell differentiation disorders

(73). However, it should be noted that systemic administration

of cyclosporine can significantly suppress the immune response,

which in turn induces more serious infections (31). Therefore, it
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is necessary to develop more precise treatment methods to

explore further the therapeutic value of Cyclosporine in burn

patients with immunosuppression. The Bromo- and Extra-

terminal domain (BET) signaling pathway plays an important

role in cell proliferation, immune responses, and pro-

inflammatory events. The bromodomain inhibitor JQ1, a first-

in-class potent and selective inhibitor of the Bromodomain-

containing protein 4 (BRD4) signaling pathway, is widely used

for various diseases (74). In sepsis, JQ1 protects the intestinal

mucosal barrier and reduces levels of pro-inflammatory

cytokines IL6, IL1b and IL18 (75). Over-activation of Th17

can inhibit Th1 cells (impaired in burn immunosuppression),

while JQ1 impairs p300-mediated RORgt acetylation in human

Th17 cells (76), which is expected to enhance the differentiation

and proliferation of Th1 cells. However, JQ1 can also inhibit the

function of Th1 cells from secreting IFN-g (77). Therefore, the
recovery of immune function by JQ1 is complicated, and further

studies on its role in immunosuppression in burns are needed.

Viral infection in burn patients is often insidious and often

misdiagnosed clinically. However, viral infection can profoundly

affect the immune system of burn patients, but the crosstalk

between viral infection and the immune system is currently

unclear. Our study is the first to identify VRGMP in burn

patients by machine learning and fully explore the differences

in immune cells, immune scores, and enrichment pathways

between VRGMPGs. Our study found significant differences in

the activation and differentiation of T cells, especially Th cells,

between VRGMPGs, which may be vital clues for diagnosis,

treatment, and prognostic biomarkers. In addition, the

dysfunction of Th cells is of great significance in burn patients.

We believe that viral infection may affect the body’s immunity by

disturbing the function of Th cells, which promotes the

development of immunosuppression. Therefore, genes

associated with viral molecular patterns have important

prognostic and therapeutic value. We developed a reliable

nomogram based on VRGs with significantly better predictive

power than traditional burn indicators such as TBSA, ABSI,

and Baux.

Furthermore, we predicted by network analysis and molecular

docking that drugs targeting CD69 and SATB1 have important

links to immunosuppression in burn patients. Our study also has

certain limitations. First, although we identified genes associated

with prognosis, the samples lacked clinical information on whether

the patients were infected with the virus. If such information is

available, we can construct a transcriptome-based virus diagnostic

nomogram, which is important for discovering occult viral

infections. Second, our study found a correlation between T

cells, especially Th cells, and viral infection, but more cell and

animal experiments are needed to explore the exact mechanism,

which is useful for studying the mechanism between viral infection

and burn immunosuppression significantly. Finally, we fully
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evaluated the possibility of immune checkpoint target genes and

key genes as targets, which will greatly help the treatment of burn

immunosuppression if they can be verified in further experiments.

Overall, this study provides an overlooked perspective on post-

burn viral infection and fully discusses its potential to interact with

the immune system. We identified nomograms with strong

prognostic, and predictive power and developed related drug

targets, which have important guiding significance for future

research on burn virus infection.
Conclusion

We identified two VRGMPs in burn patients with

significantly different T-cell proliferation-differentiation-related

gene expression patterns and T-cell ratios. We constructed a

nomogram including CD69 and SATB1 with stronger prognostic

efficacy than common clinical indicators such as ABSI, TBSA,

and Baux. In addition, we identified possible immune

checkpoint inhibitor targets and immunotherapy drugs,

Cyclosporin, JQ1, and Decitabine.
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