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Virus-like particles containing a
prefusion-stabilized F protein
induce a balanced immune
response and confer protection
against respiratory syncytial
virus infection in mice

Jin Luo, Huan Qin, Lei Lei †, Wange Lou, Ruitong Li
and Zishu Pan *

State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
Respiratory syncytial virus (RSV) is a serious respiratory pathogen in infants and

young children worldwide. Currently, no licensed RSV vaccines are available. In

this study, we explored stable prefusion conformation virus-like particles (Pre-F

VLPs) as RSV vaccine candidates. RSV fusion (F) protein mutants were

constructed to form stabilized Pre-F or postfusion (Post-F) configurations.

VLPs containing Pre-F or Post-F protein were generated using a recombinant

baculovirus (rBV)-insect cell expression system. The assembly and

immunological properties of Pre-F or Post-F VLPs were investigated. Pre-F

and Post-F VLPs contained antigenic sites Ø and I of pre- and postfusion

conformations, respectively. Compared with Post-F VLPs, immunization with

Pre-F VLPs elicited upregulation of IFN-g, IL-2 and IL-10 and downregulation of

IL-4 and IL-5 cytokine production in mice. A high percentage of CD25+ Foxp3+

cells or a low percentage of IL-17A-producing cells among CD4+ T cells was

observed in the lungs of mice vaccinated with Pre-F VLPs. Importantly,

immunization with Pre-F VLPs induced a high level of RSV neutralizing

antibody and a balanced immune response, which protected mice against

RSV infection without evidence of immunopathology. Our results suggested

that Pre-F VLPs generated from rBV-insect cells represent promising RSV

vaccine candidates.

KEYWORDS

respiratory syncytial virus, virus-like particles, vaccine, prefusion F protein, postfusion
F protein, baculovirus insect cell expression system
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Introduction

Human respiratory syncytial virus (RSV) was ascertained

as a leading cause of bronchiolitis in infants as early as 1956 (1,

2). RSV infection causes a substantial disease burden in infant,

immunocompromised, and elderly populations (3–5). Natural

RSV infection does not induce sustained immunity, and

repeated infections occur throughout life (6, 7). Therefore, it

is particularly urgent to develop effective treatments and

vaccines for RSV infection. Despite extensive efforts, no

licensed RSV vaccines are available. Vaccination with

formalin-inactivated RSV (FI-RSV) in the 1960s led to

vaccine-enhanced disease (VED) upon RSV challenge (8–10),

thus impeding RSV vaccine development. Intensive

invest igat ion showed that VED exhibited a strong

relationship with the exaggerated Th2-type immune response

and the poorly neutralizing antibodies upon RSV infection

(11–14). Therefore, induction of a Th1-biased, balanced

immune response and high neutralizing antibody production

are critical for an effective RSV vaccine (15).

The RSV fusion (F) and attachment (G) glycoproteins

presented on the virions are the major targets for RSV

vaccine candidates (16–19). The F glycoprotein, which

induces high neutralizing antibody titres and specific cellular

immunity, provides immune protection and cross-protection

against different RSV strains (20, 21). Crystal structures of both

prefusion (Pre-F) and postfusion (Post-F) forms provided

structural insights into the antigenicity of RSV F protein (22,

23), demonstrating that vaccines based on the Pre-F

configuration represent promising next-generation vaccine

candidates (24–26). A Pre-F form of the F protein contains

an antigenic site Ø, which is not present in its Post-F

conformation (27). Specific monoclonal antibodies directed

to site Ø exhibited good RSV neutralizing ability (22). The

engineered Pre-F protein exhibited enhanced physical and

antigenic stability relative to DS-Cav1 (28, 29). A stabilized

Pre-F protein elicited significantly increased neutralizing

antibody titres compared with the Post-F form in animals,

suggesting that a stable Pre-F protein represents a promising

strategy for RSV vaccine candidate (27, 30–32).

Virus-like particles (VLPs) are effective, safe and promising

vaccine platforms (33, 34). VLPs are genetically engineered

complexes of multiple copies of protein antigens in a virus-like

structure; VLPs lack viral genetic material and therefore cannot

replicate (35, 36). Commercial VLP-based licensed vaccines are

available against human papilloma and hepatitis B viruses (36).

RSV glycoproteins presented as VLPs are highly immunogenic

and confer protection against RSV infection (37–40). In the

present study, we produced and characterized VLPs containing

the stable prefusion and postfusion forms of the RSV F protein

using an rBV-insect cell expression system. Immune responses

and protection against RSV challenge induced by these VLPs

were investigated in BALB/c mice.
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Materials and methods

Cells, viruses, and preparation of
ultraviolet (UV)-inactivated virus
and antibodies

HEp-2 and Vero cells were obtained from the China Center

for Type Culture Collection (CCTCC; Wuhan, China) and

grown in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% foetal bovine serum (FBS, Gibco),

100 IU of penicillin, and 100 mg/ml streptomycin at 37°C and

5% CO2. The respiratory syncytial virus (RSV) A2 strain was

maintained in our laboratory. Spodoptera frugiperda 9 (Sf9)

cells were obtained from the American Type Culture

Collection (ATCC, Rockville, MD, USA) and cultured at 27°

C in SF-900 II serum-free medium (SFM) (Invitrogen, USA),

100 IU penicillin and 100 mg/ml streptomycin. RSV was

propagated in HEp-2 cells, and virus titres were quantified in

Vero cells. RSV purification and inactivation by UV light was

performed as previously described (18, 39). Briefly, RSV-

infec ted HEp-2 ce l l s were sonica ted , c lar ified by

centrifugation (1,200 × g for 30 min at 4°C) and

concentrated by ultracentrifugation (120,000 ×g at 4°C for 6

h). The resultant precipitate was resuspended in phosphate-

buffered saline (PBS) for RSV titration. For RSV purification,

the resultant precipitate was resuspended in 10% sucrose in

PBS; layered on top of a discontinuous sucrose gradient

composed of 2 ml of 60%, 45%, and 30% sucrose (in PBS);

and then centrifuged at 160,000 × g in a SW28 rotor for 2 h.

The visible virus band between the 30% and 45% sucrose layers

was collected for subsequent assays. For virus inactivation,

0.5 ml of a purified RSV suspension (106 PFU/ml) in a 35-mm

petri dish was irradiated with ultraviolet (UV) light for 40 min,

and the efficacy of UV inactivation was examined by

determining the infectivity of inactivated RSV in Vero cells

using a plaque assay. Mouse anti-F monoclonal antibody

(mAb) clone 131-2A (Millipore, Temecula, USA), human

anti-F mAb clone D25 (Cambridge Biologics, Boston, USA),

goat anti-mouse IgG coupled to horseradish peroxidase (HRP)

(Abclonal, Wuhan, China), and goat anti-human IgG coupled

to HRP (Abclonal) were used in VLP binding assays.
Construction of plasmids and
recombinant baculoviruses

The Pre-F and Post-F forms of RSV F protein (GenBank:

ACO83301.1) were prepared as previously described (29, 41, 42).

To obtain the stable prefusion F conformation protein, the site

mutations N67I, S215P, and D486N were introduced into the F

fragment. Then, the sequence encoding the T4 fibritin trimerization

domain (foldon, SAIGGYIPEAPRDGQAYVRKDGEWVLLSTFL)

was inserted into the position at amino acids 513 to 514 of the F
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sequence. Subsequently, the P27 (amino acids 110-136) of the F

protein was substituted with the linker (GSGSGRS) to generate a

prefusion-stabilized F construct with the transmembrane (TM) and

cytoplasmic domains (CT) in the F514-574 location (Figure 1A).

Similarly, the stable postfusion F form was constructed by deleting

the sequence encoding amino acids 137 to 146 of the F protein. The

sequence encoding the Pre-F, Post-F conformation, or IAV M1

gene (GenBank: ACP44152.1) was codon optimized for insect

codon usage and synthesized by Sangon Biotech (Shanghai, China).

The Pre-F fragment was PCR-amplified using primers Pre-

F/F and Pre-F/R with the EcoR I and Xbal I enzyme sites. The

amplified product was digested with EcoR I and Xbal I and

cloned into the EcoR I/Xbal I-digested pFBDM vector under the

control of the promoter polyhedrin (pH) to generate the plasmid

pFBDM-Pre-F. Similarly, the Post-F fragment or IAV M1 gene

was amplified using primers Post-F-F/R or M1-F/R with the

EcoR I and Xbal I enzyme sites and cloned into the pFBDM to

generate the plasmid pFBDM-Post-F or pFBDM-M1,

respectively. All specific primers used are listed in Table 1.

The identities of the plasmid constructs were verified by

sequencing and subsequently used to generate recombinant

baculovirus rBV-RSV-Pre-F, rBV-RSV-Post-F, or rBV-IAV-

M1, as previously described (17, 43). In brief, the plasmids

pFBDM-Pre-F, pFBDM-Post-F, and pFBDM-M1 were

transformed into competent E. coli DH10 MultiBac cells to

generate recombinant bacmids. The resultant bacmid DNA

was separately transfected into Sf9 insect cells to obtain the

corresponding recombinant baculovirus designated rBV-RSV-

Pre-F, rBV-RSV-Post-F, or rBV-IAV-M1.
Production and purification of
chimeric VLPs

The RSV Pre-F VLPs and Post-F VLPs were produced by

Sf9 cells coinfected with rBV-RSV-Pre-F and rBV-IAV-M1 or

rBV-RSV-Post-F and rBV-IAV-M1 (MOI=1 for each rBV).

rBV-infected Sf9 cells were cultured in SF-900 II SFM at 27°C

for 3 days. Then, the cultured Sf9 cells were collected by
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centrifugation and lysed and frozen once at -80°C, and the

cell lysates were clarified at 5000 rpm for 30 min. The VLP-

containing supernatant was centrifuged at 60000×g and 4°C for

4 h, and the pellets were collected and resuspended in

phosphate buffer (0.15 M NaCl, 0.05 M phosphate, pH 7.2).

The protein samples were purified using HiPrep Sephacryl S-

500 HR (GE Healthcare, Freiburg, Germany) in phosphate

buffer at a flow rate of 0.5 ml/min as recommended by the

manufacturer. Purified VLPs were quantified using the

Bradford protein assay kit (Sangon Co., Ltd.) according to

the manufacturer’s instructions.
SDS−PAGE, Western blot analysis and
electron microscopy observation

The expressed proteins were characterized by SDS−PAGE,

western blotting and electron microscope observation as

previously described (44). In brief, the prepared samples were

separated on 12% polyacrylamide gels and stained with

Coomassie blue R250 or transferred onto PVDF membranes

for western blot analysis using a mouse anti-F mAb clone 131-

2A (Millipore) or a mouse anti-M1 mAb clone 36H4 (Immune

Tech, New York, USA). The purified RSV Pre-F or Post-F VLPs

adsorbed onto copper grids were negatively stained with 2%

phosphotungstic acid and observed with a transmission electron

microscope (JEM-2100, JEOL, Tokyo, Japan).
Immunization and challenge of mice

Specific-pathogen-free (SPF) female BALB/c mice (Wuhan

University Center for Animal Experiments) aged 6-8 weeks old

were intramuscularly (i.m.) immunized thrice at 2-week

intervals with 10 mg VLPs in 100 ml (45, 46). For the UV-RSV
control, mice were immunized i.m. with 1×105 PFU of purified

UV-RSV in 100 ml (18). For the PBS control, mice were

inoculated i.m. with 100 ml PBS. Blood was collected by tail

vein puncture during preimmunization and at 2 weeks after the
BA

FIGURE 1

Construction of recombinant baculoviruses and expression of proteins in Sf9. (A) Schematic representation of the recombinant baculovirus
vectors used in the present study. pH, polyhedrin promoter of baculovirus; (B) Coexpression of the RSV F and H1N1 M1 proteins in Sf9 cells. Sf9
cells were infected with the indicated rBVs, harvested at 3 days postinfection (p.i.) and subjected to Western blot analysis using a mouse
monoclonal anti-RSV F antibody and a mouse polyclonal anti-H1N1 M1 antibody. M, Molecular marker; Lane 1, rBV-RSV-Pre-F/M1; Lane 2, rBV-
RSV-Post-F/M1; Lane 3, Sf9 cells.
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final immunization for antibody detection, and splenocytes were

isolated for cytokine detection.

For histological analysis, mice were intranasally (i.n.)

challenged with 3×106 PFU of RSV A2 in 100 ml at 2 weeks

after the final immunization. The whole lungs of three mice were

harvested on Day 4 following RSV challenge, immersed in 4%

paraformaldehyde, embedded in paraffin and sectioned. The

tissue sections were stained with haematoxylin and eosin

(H&E) for routine evaluation and with periodic acid-Schiff

(PAS) staining of amylase-treated tissue for observation of

mucus secretion. The lung inflammation scores were defined

as previously described (16, 44), where 0 indicates no

inflammation, 1 indicates minimal inflammation, 2 indicates

mild inflammation, 3 indicates moderate inflammation, and 4

indicates marked inflammation. Mucus hypersecretion scores in

airways were defined as follows: 1-no mucus detectable, 2-rare

mucus, 3-moderate mucus accumulation, 4-severe mucus

production (47).
ELISA

Virus-specific IgG, IgG2a, and IgG1 antibodies in mouse

sera were determined by enzyme-linked immunosorbent assay

(ELISA) using RSV as the coating antigen (18, 48). Briefly, each

well of a 96-well plate was coated with 100 ml of purified

inactivated RSV (1×105 PFU/well). Serial dilutions of mouse

sera in PBS/Tween-20 (PBS-T) containing 1% BSA were added

to the wells and incubated at 37°C for 1 h. An HRP-conjugated

goat anti-mouse IgG, IgG2a, or IgG1 mAb (Abclonal) was used

as the secondary antibody.

Cytokine concentrations in the splenocytes or lung

homogenates were quantified by ELISA as previously

described (17). Regarding splenocyte cytokines, splenocyte

suspensions were prepared from the spleens of experimental

mice using Mouse 1×Lymphocyte Separation Medium (Dakewe

Biotech, Beijing, China) according to the manufacturer’s

protocol. Splenocytes (1×106) were cultured in a 24-well

culture plate (Corning, NY, USA) in the presence or absence
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of 105 PFU of purified UV-RSV. The culture plate was

maintained in a 5% CO2 incubator at 37°C for 72 h, and the

supernatants were then collected and stored at -80°C for

subsequent assays. For lung cytokine detection, lung tissues

were collected on Day 4 postchallenge (p.c.) and homogenized.

After centrifugation, the supernatants were collected and stored

at -80°C for the subsequent assay. Th1 (IFN-g, IL-2), Th2 (IL-4,
IL-5), IL-10 and IL-17A cytokines present in the supernatants

were quantitatively measured using commercially available

ELISA kits (Bio Legend, Camarillo, CA, USA).

Antibody binding to purified VLPs was performed as

previously described (49). Briefly, equivalent amounts of Pre-F

or Post-F VLPs were added directly to the microtiter wells (1 mg
of total VLP protein in 100 ml) and incubated at 37°C for 16 h.

After washing thrice with PBS, different concentrations of

selected antibody (anti-F131-2A or anti-F D25) were added to

each well and then incubated for 2 h at room temperature (RT).

After three washes in PBS, the secondary antibody (goat anti-

mouse IgG-HRP or goat anti-human IgG-HRP) diluted with

PBS containing 1% BSA was added to each well (100 ml/well) and
then incubated at RT for 1 .5 h . TMB (3 ,3 ’ , 5 ,5 ’ -

tetramethylbenzidine; Sigma) substrate in a 100 ml volume was

added to each well. After 15 to 20 min of incubation at RT, the

reaction was stopped by adding 100 ml of 2 M H2SO4 to each

well, and the optical density at 450 nm was measured using an

ELISA reader (Multidkan MK3; Thermo Fisher Scientific).
RSV immunoplaque and neutralization
antibody assays

RSV neutralizing antibody titres were determined by a

plaque reduction assay as previously described (18, 39).

Briefly, mouse sera were inactivated at 56°C for 30 min and

then serially diluted 2-fold in DMEM. Purified RSV was diluted

to approximately 100 PFU in 100 ml and added to the diluted

sera in 100-ml aliquots. The virus-serum mixture or a virus-

DMEM control was incubated at 37°C for 1 h. Then, the mixture

was added to prewashed Vero cells in 24-well plates. After 2 h of
TABLE 1 Oligonucleotides in specific primers for the construction of recombinant plasmids.

Primer Nucleotide sequence (5′ - 3′) Enzyme

PreF-F CGGAATTCGCCACCATGGAACTGCTGA EcoR I

PreF-R GCTCTAGATTAGTTTGAGAAAGCGATGTTGTTGATTCC Xbal I

PostF-F CGGAATTCGCCACCATGGAGTTGCTA EcoR I

PostF-R GCTCTAGATTAGTTACTAAATGCAATATTATTTATACCAC Xbal I

M1-F CGGAATTCGCCACCATGAGCCTGCTGACCGAGGTGGAGACCTAC EcoR I

M1-R GCTCTAGATCACTTGAAACGCTGCATCTGCAC Xbal I

RSV N-F GGTGGAGAAGCAGGATTCTACCATATATTG For qRT−PCR

RSV N-R CTGTATTCTCCCATTATGCCTAGGCC
fr
Underlined sequences represent restriction enzyme sites. Bolded regions indicate Kozak coding sequences.
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incubation, the mixture was removed, and 1 ml of

methylcellulose overlay (1 volume of 2 ×DMEM containing

4% FBS, 2% penicillin streptomycin, and 1 volume of 2%

methylcellulose) was added to each well. The plates were

incubated at 37°C for 3 to 5 days, and the plaques were

stained as previously described (39). The neutralization titre

was defined as the log2 of the reciprocal of the highest dilution of

serum that reduced the virus titre by 50%.
Quantitative real-time (qRT)-PCR

RSV load in the lung was quantified by qRT−PCR (18). Total

RNA of lung tissues was extracted using RNA Pure reagent

(Aidlab, Beijing, China) and reverse transcribed into cDNA

using a reverse transcription kit (Toyoba, Osaka, Japan)

according to the manufacturer’s instructions. RSV N gene

copies were quantified using 2×SYBR green master mix

(Novoprotein, Shanghai, China) in a 7500 Real-Time PCR

System (Applied Biosystems, USA). The qRT−PCR primer

sequences are listed in Table 1.
Flow cytometry

Cytokine staining was performed as previously described (13,

18, 50). Lung cells were surface-stained withmAbs specific to CD4-

FITC (Clone RM4-5) and CD25-APC (Clone PC61) (BioLegend,

San Diego, CA). After fixation and permeabilization, the cells were

intracellularly stained with PE-labelled anti-mouse Foxp3 (Clone

MF-14) or IL17AmAb (Clone TC11-18H10.1) (BioLegend). Then,

the stained cells were analyzed by flow cytometry (Beckman

Coulter CytoFlex, USA). Data were analysed using CytoFlex

software and are presented as the percentage of CD25+ Foxp3+

cells or IL17A-producing cells among CD4+ T cells. All gating

strategies are specified in the Supplementary Figure S1.
Statistical analysis

Comparisons of various groups were accomplished by

Student’s t tests or analysis of variance (ANOVA) followed by

the Tukey test or nonparametric Kruskal−Wallis test. A P value

of less than 0.05 was considered statistically significant.
Results

Preparation and characterization of
chimeric VLPs

Recombinant baculovirus was constructed as described in

the Materials and Methods section (Figure 1A). Pre-F or Post-F
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VLPs were produced by Sf9 cells infected simultaneously with

rBV-RSV-Pre-F and rBV-IAV-M1 or rBV-RSV-Post-F and

rBV-IAV-M1, respectively. After 72 h of culture, the resultant

supernatants of infected Sf9 cells were harvested for analysis of F

and M1 expression by western blotting. The data showed that

the engineered Pre-F, Post-F or IAV M1 protein could be

expressed efficiently from infected Sf9 cells and that the

expected molecular weights of RSV F (~63 kDa) and IAV M1

(~28 kDa) proteins were successfully detected (Figure 1B). SDS

−PAGE analysis showed that the prepared VLPs contained

highly pure F and M1 proteins (Figure 2A). Spherical self-

assembling VLPs ~50-100 nm in diameter were observed

under an electron microscope (Figure 2B). These data

demonstrated that VLPs were successfully generated from

rBV-infected Sf9 cells.

Previous studies and clinical observations in human sera

demonstrated that RSV neutralizing antibodies are specific to

the prefusion structure (22, 24, 26). To characterize the RSV Pre-

F or Post-F form in the VLPs, the characteristic antigenic sites Ø

and I based on the Pre-F and Post-F conformations were

detected using the specific mAbs D25 and 131-2A,

respectively. The data showed that mAb D25 bound effectively

to VLPs containing Pre-F conformation with antigenic site Ø

(Figure 2C, left). In contrast, mAb 131-2A bound strongly to

VLPs containing the Post-F conformation with antigenic site I

(Figure 2C, right). The results identified that the VLPs generated

from rBV-Sf9 cells contained specifically antigenic sites Ø and I

of the Pre-F and Post-F conformations, respectively.
Antibody and cytokine responses in mice
induced by Pre-F and Post-F VLPs

RSV-specific IgG, IgG2a, and IgG1 concentrations in the sera of

immunizedmice were detected by ELISA. Compared with the Post-

F VLPs, the Pre-F VLPs induced significantly increased RSV-

specific IgG and IgG2a antibody levels (P < 0.05), but a similar

IgG1 antibody level was observed (P > 0.05) (Figure 3A).

Vaccination with the Pre-F VLPs and Post-F VLPs elicited Th1-

dominant responses with median IgG2a/IgG1 ratios of 1.22 and

1.13, respectively; in contrast, immunization with UV-RSV resulted

in a Th2-biased response with an IgG2a/IgG1 ratio of 0.94

(Figure 3B). Vaccination with Pre-F VLPs induced a higher ratio

of IgG2a antibodies than vaccination with UV-RSV or Post-F VLPs.

Sera of vaccinated mice exhibited stronger binding ability with the

corresponding VLPs (Supplementary Figure S2). Analysis of RSV

neutralizing antibody (NAb) in the sera of vaccinated mice showed

that although both Pre-F VLPs and Post-F VLPs induced RSVNAb

production, Pre-F VLPs elicited significantly increased RSV NAb

levels compared with Post-F VLPs (P < 0.01) (Figure 3C).

To investigate cellular immune responses, we examined Th1-

type (IFN-g and IL-2) and Th2-type (IL-4 and IL-5) cytokines in

the splenocyte supernatants of vaccinated mice. In the PBS-treated
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group, both Th1-type (IFN-g and IL-2) and Th2-type (IL-4 and

IL-5) cytokines displayed very low concentrations. Compared

with the VLP-vaccinated groups, significantly increased levels of

Th1-type and Th2-type cytokines were induced by UV-RSV.

However, in the VLP-vaccinated mice, the levels of the

cytokines IFN-g and IL-2 were only reduced approximately 1.4-

fold, and the levels of the cytokines IL-4 and IL-5 were reduced

~2-fold and ~ 4-fold, respectively (Figure 4). Importantly,

compared with Post-F VLPs, vaccination with Pre-F VLPs

induced significantly increased Th1 type and decreased Th2-

type cytokine production (Figure 4). Without RSV stimulation,

both Th1-type and Th2-type cytokines were almost undetectable

(Figure 4). Our data demonstrated that Pre-F VLPs elicited a

mixed Th1/Th2 response with Th1-biased cellular immunity

to RSV.
Frontiers in Immunology 06
CD4+ T-cell subsets and cytokine
profiles in the lungs of vaccinated mice
following RSV infection.

Distinct CD4+ T-cell subsets and Th2-type cytokines play

crucial roles in RSV vaccine-enhanced immunopathology (13, 14,

47, 51). We further investigated CD4+CD25+Foxp3+ Treg and IL-

17A-producing CD4+ T-cell subsets and the representative

cytokines in the lungs of vaccinated mice following RSV

challenge. The data showed that the percentage of

CD4+CD25+Foxp3+ Treg cells in VLP-vaccinated mice was

significantly increased compared to that in UV-RSV-immunized

mice (P <0.001) (Figure 5A). In contrast, significantly decreased IL-

17A+-producing CD4+ T cells were observed in VLP-vaccinated

mice compared to UV-RSV-immunized mice (P < 0.01)
B

C

A

FIGURE 2

Purification and characterization of Pre-F VLPs and Post-F VLPs. (A) Purified proteins were subjected to 12% SDS−PAGE and stained with
Coomassie blue. M, Molecular marker; Lane 1, Pre-F VLPs; Lane 2, Post-F VLPs. (B) Electron microscopic analysis of Pre-F VLPs and Post-F
VLPs. Scale bar, 100 nm. (C) Monoclonal antibody specifically binding to purified VLPs. Pre-F and Post-F VLPs containing equivalent amounts of
F protein, as determined using mAb D25 or mAb 131-2A as the primary antibody and goat anti-human IgG-HRP for D25 (left) or goat anti-
mouse IgG-HRP for 131-2A (right) as the secondary antibody, respectively. Antibodies and sites are indicated in the figure. OD, optical density.
B CA

FIGURE 3

VLPs elicited humoral immune responses in mice. Groups of five BALB/c mice were inoculated with 10 mg of Pre-F VLPs, Post-F VLPs, 1×105

PFU of purified UV-inactivated RSV or 100 ml PBS following i.m. inoculation. Mice in all groups received a booster twice in 2-week intervals with
the same amount of inoculum. Sera were collected at 2 weeks after the final immunization to determine RSV-specific IgG, IgG2a, and IgG1
titres via ELISA (A, B) and neutralization antibody (NAb) titres via the neutralization assay (C). Data are expressed as the GMT (geometric mean
titre) of five mice. P values were calculated with one-way ANOVA or Student’s t test followed by the Tukey test. ***P < 0.001; **P < 0.01; *P <
0.05; ns, not significant.
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(Figure 5B). In particular, a significantly increased percentage of

CD4+CD25+Foxp3+ Treg cells (P < 0.01) (Figure 5A) and a

significantly decreased amount of IL-17A+-producing CD4+ T

cells (P < 0.05) (Figure 5B) were observed in mice vaccinated

with Pre-F VLPs compared to mice vaccinated with Post-F VLPs.

Similar concentrations of the pulmonary cytokines IFN-g, IL-2, IL-5
and IL-17A were observed in mice vaccinated with Pre-F compared

with Post-F VLPs Figure 5C. Importantly, significantly decreased

concentrations of the Th2-type cytokines IL-4 (P < 0.05) and IL-5

(P < 0.001) and significantly increased production of the Treg cell-

related cytokine IL-10 (P < 0.01) were observed in VLP-vaccinated

mice compared to UV-RSV-immunized mice Figure 5C.

Interestingly, compared to Post-F VLPs, vaccination of Pre-F

VLPs elicited significantly decreased IL-4 (P < 0.01) and

increased IL-10 secretion (P < 0.05) (Figure 5C). Our results

indicated that Pre-F VLPs elicited balanced Treg/Th17 responses

in vaccinated mice upon subsequent RSV infection.
Pulmonary viral load and pathology in
mice vaccinated with VLPs following
RSV infection

To investigate the immune protection induced by the VLPs,

the RSV load in the lungs of vaccinated mice was quantified on
Frontiers in Immunology 07
Day 4 p.c. by qRT−PCR. As a control, the high RSV N gene copy

numbers (~ 106 copies/100 ng total RNA) were detected in the

lungs of PBS-treated mice, whereas very low RSV N gene copy

numbers (~ 103 copies) (approximate background value of test)

were observed in the lungs of mice vaccinated with VLPs

(Figure 6A), demonstrating that vaccination with Pre-F VLPs

or Post-F VLPs effectively inhibited RSV replication in the lungs

of mice.

We further investigated pathological injury in the lungs of

vaccinated mice after RSV infection. The data showed that

mice immunized with UV-RSV exhibited severe lung

pathology, including extensive lymphocyte infiltration

around the blood vessels and alveolar hemorrhage. In

contrast, mice vaccinated with VLPs displayed signs of mild

inflammation in the lungs. Importantly, mice vaccinated with

Pre-F VLPs presented similar histological features to naive

mice in the lungs (Figure 6B). After RSV infection, the average

inflammation severity scores of vaccinated mice were in the

following order: UV-RSV > PBS > Post-F VLPs > Pre-F VLPs

(Table 2). Data from PAS staining showed that overt

inflammation and mucus hypersecretion (black arrows) were

observed in the lungs of UV-RSV-immunized mice and mild

mucus accumulation was observed in the lungs of Post-F VLP-

immunized mice (Figure 6C). However, no mucus secretion

was observed in the lungs of mice vaccinated with Pre-F VLPs,
B

A

FIGURE 4

VLPs elicited cellular immune responses in mice. Spleen cells were isolated at 2 weeks after the last immunization and stimulated with 1×105 PFU of
purified UV-inactivated RSV. The supernatants were collected after 72 h of incubation, and Th1 cytokines (IFN-g and IL-2) (A) and Th2 cytokines (IL-4
and IL-5) (B) concentrations were measured by ELISA. All data are presented as the mean values (± SD) from five mice in each group. P values were
calculated with one-way ANOVA or Student’s t test followed by the Tukey test. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
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B

C

A

FIGURE 5

Cellular immune responses in the lungs of vaccinated mice induced by RSV challenge infection. Mice were immunized i.m. thrice and
challenged i.n. with RSV 2 weeks after the final immunization. Lungs were harvested on Day 4 p.c. The percentage of CD25+ Foxp3+ Treg cells
(A) or IL-17A (B) in CD4+ T cells from the lungs was measured by flow cytometry with specific antibody staining. (C) Th1 cytokine (IFN-g & IL-2),
Th2 cytokine (IL-4 & IL-5) and the cytokines IL-10 and IL-17A concentrations were measured by ELISA. Data are presented as mean values ±
SDs for six mice in each group. Pairwise comparisons of values were performed using one-way ANOVA or Student’s t test followed by the
Tukey test. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant.
B

C

A

FIGURE 6

RSV load and histopathological analysis of lung tissues from vaccinated mice upon RSV challenge. Mice were immunized i.m. thrice and
challenged i.n. with RSV 2 weeks after the final immunization. Lungs were harvested on Day 4 p.c. (A) RSV copy numbers in lung tissues were
measured by qRT−PCR. Data are presented as mean values ± SDs for six mice in each group. Pairwise comparisons of values were performed
using one-way ANOVA followed by the Tukey test. ***P < 0.001; **P < 0.01; *P < 0.05; ns, not significant. (B, C) Representative
histopathological section of lung from immunized mice at Day 4 after RSV challenge by haematoxylin-eosin (H&E) (B) and periodic acid-Schiff
(PAS) staining (C) for each experimental group.
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which was similar to the characteristics of naive mice. These

results revealed that vaccination with Pre-F VLPs induced

effective protection against RSV infection without enhanced

pulmonary immunopathology in mice.
Discussion

A licensed vaccine for RSV is not currently available despite

the fact that RSV is the major cause of lower respiratory tract

infections in children. Vaccine-enhanced immunopathology has

significantly hampered the development of an RSV vaccine.

Previous studies have shown that poorly neutralizing

antibodies, a Th2-biased immune response and distinct CD4+

T-cell subsets correlate with VED upon RSV infection (12, 13,

47, 52) and that high neutralizing antibody levels correlate with

the prevention of disease severity and a lower risk of infection (6,

53, 54). Therefore, induction of a high-affinity neutralizing

antibody and a balanced immune response should be

preferentially considered for the design of a safe and effective

RSV vaccine (18, 55).

Experimental studies and clinical observations in human

sera demonstrated that RSV neutralizing antibodies are

specific to the prefusion structure (22, 24, 26). Structure-

based design of vaccines showed that a highly stable

prefusion F conformation would be a promising subunit

vaccine candidate against RSV (27, 29). Following

immunization of mice, VLPs containing the stabilized Pre-F

configuration from Newcastle disease virus (NDV) induced

significantly higher neutralizing antibody titres than the Post-

F VLPs or wild-type F VLPs after a single immunization (49).

As a well-known tool for the production of subunit vaccines,

the rBV-Sf9 insect cell expression system has been widely

employed (56–58). VLPs containing the RSV F protein
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generated by rBV-Sf9 cells confer effective protection against

RSV infection (37, 38). In the present study, we successfully

produced influenza M1-based VLPs containing RSV Pre-F or

Post-F configuration using the rBV-Sf9 cell expression system.

We further characterized the assembly and immunological

properties of these VLPs. Our results confirmed that the Pre-F

and Post-F VLPs generated from rBV-Sf9 cells displayed

specific antigenic sites Ø and I, respectively. The antigenic

site Ø was the crucial target site recognized by RSV-

neutralizing antibodies, and the postfusion form of the F

protein led to the lack of specific epitopes Ø (22, 26, 27).

Antigenic site I was more pronounced on Post-F, and site I-

directed antibodies are typically nonneutralizing (59). Our

results demonstrated that Pre-F VLPs elicited significantly

increased RSV-specific neutralizing antibody titres compared

to PostF VLPs or UV-RSV. The high level of Pre-F specific

antibodies in human sera play an important role in alleviating

antibody-dependent disease enhancement (60–62).

In our study, immunization with both Pre-F and Post-F

VLPs predominantly induced IgG2a isotype antibodies and Th1-

associated cytokines (IFN-g and IL-2) and significantly

decreased Th2-biased cytokine responses (IL-4 and IL-5)

compared with UV-RSV. For cytokine secretion in the lungs

of mice vaccinated with VLPs, significantly decreased IL-4, IL-5,

and IL-17A and increased IL-10 cytokines were observed

compared to UV-RSV. Importantly, compared with Post-F

VLPs, Pre-F VLPs elicited a significantly increased IgG2a/IgG1

ratio and high RSV neutralizing antibody levels and significantly

decreased IL-5 secretion. However, both Pre-F VLPs and Post-F

VLPs induced similar IFN-g and IL-4 cytokine levels (Figure 4).

We further tested the Treg and Th17 subsets in the lungs of

vaccinated mice. Compared to UV-RSV, vaccination with RSV F

VLPs upregulated the percentage of Treg (CD4+CD25+FoxP3+)

cells and downregulated the percentage of Th17 (CD4+IL-17A+)
TABLE 2 Histopathological scores of lungs from immunized mice on Day 4 following RSV challenge.

Histopathological scorea

Inoculum Alveolartissueb Peribronchial aggregationc Perivascular aggregationd Mucuse

Naive 0 0 0 1

PBS 2 ± 0.16 2.2 ± 0.16 2.27 ± 0.19 1.33 ± 0.09

UV-RSV 3.67 ± 0.09 3.67 ± 0.09 3.53 ± 0.09 2.6 ± 0.16

Pre-F VLPs 0.67 ± 0.09 0.73 ± 0.09 0.8 ± 0.16 1.13 ± 0.09

Post-F VLPs 1.33 ± 0.09 1.53 ± 0.25 1.53 ± 0.09 1.4 ± 0.16
fron
aThe lung inflammation severity scores were defined on a scale from 0 to 4 according to the H&E-stained sections as follows: 0-inflammation was not present, 1- minimal inflammation, 2-
mild inflammation, 3-moderate inflammation, and 4-marked inflammation. Scores of mucus production scale according to the PAS-stained sections as follows: 1-no mucus detectable, 2-
rare mucus, 3-moderate mucus accumulation, and 4-severe mucus accumulation. Data represent the mean values ± SDs (n = 3).
bAlveolar tissue: Pre-F VLPs vs. Post-F VLPs (p < 0.01).
cPeribronchial aggregation: Pre-F VLPs vs. Post-F VLPs (p < 0.05).
dPerivascular aggregation: Pre-F VLPs vs. Post-F VLPs (p < 0.05).
eMucus: Pre-F VLPs vs. Post-F VLPs (p > 0.05).
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cells. Significantly increased Treg cells and decreased Th17 cells

were observed in the lungs of mice vaccinated with Pre-F VLPs

compared with Post-F VLPs. During RSV infection, Treg cells

functionally regulate the immunological environment to avoid

excessive inflammatory T-cell responses and aid in limiting

inefficient Th2-type immune responses (55). Therefore, Treg

cells play a pivotal role in alleviating vaccine-enhanced

immunopathology in RSV infection (55, 63). In contrast, Th17

cells are functionally considered to exacerbate inflammatory

diseases, including chronic pulmonary obstruction, cystic

fibrosis, and asthma (64), and are involved in increasing

mucus secretion and reducing viral clearance (65). A current

study showed that vaccination with commercial PreF protein

formulated with a Th1/Th2-balanced adjuvant induced

suppression of RSV replication and inhibited airway

eosinophilia and mucus accumulation in mice (66).

Additionally, poor avidity and affinity maturation caused

nonprotective antibody development and Th2-associated

immunopathology (52). As expected, our results demonstrated

that a high neutralizing antibody level and a Th1/Th2-balanced

immune response were induced by Pre-F VLPs, resulting in

alleviation of pulmonary pathology and airway mucus secretion

in vaccinated mice.

VLPs containing RSV F and/or G proteins have been

intensively investigated using different vaccine platforms (18,

37, 39, 40, 44, 67). For NDV-RSV VLPs, the potential

contamination of mammalian DNA and other deleterious

factors from sera and/or cells require removal from VLPs (49,

68). The rBV-produced VLPs from serum-free insect cell

cultures are beneficial to VLP vaccine technology. RSV VLP

production utilizing the rBV-insect cell expression system is

FDA approved for human use, and the high levels of VLPs

generated from suspension cultures of insect cells will facilitate

large-scale vaccine production (57, 58, 69). Therefore, the work

presented in this study provides a novel, promising strategy for

the development of RSV vaccine candidates.
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et al. The multibac Baculovirus/Insect cell expression vector system for producing
complex protein biologics. Adv Exp Med Biol (2016) 896:199–215. doi: 10.1007/
978-3-319-27216-0_13

57. Trombetta CM, Marchi S, Montomoli E. The baculovirus expression
vector system: A modern technology for the future of influenza vaccine
manufacturing. Expert Rev Vaccines (2022) 21(9):1233–42. doi: 10.1080/
14760584.2022.2085565

58. Cox MMJ. Innovations in the insect cell expression system for industrial
recombinant vaccine antigen production. Vaccines (Basel) (2021) 9(12):1504.
doi: 10.3390/vaccines9121504

59. Goodwin E, Gilman MSA, Wrapp D, Chen M, Ngwuta JO, Moin SM, et al.
Infants infected with respiratory syncytial virus generate potent neutralizing
antibodies that lack somatic hypermutation. Immunity (2018) 48(2):339–49.e5.
doi: 10.1016/j.immuni.2018.01.005

60. Gorlani A, Forthal DN. Antibody-dependent enhancement and the risk of hiv
infection. Curr HIV Res (2013) 11(5):421–6. doi: 10.2174/1570162x113116660062

61. Capella C, Chaiwatpongsakorn S, Gorrell E, Risch ZA, Ye F, Mertz SE, et al.
Prefusion f, postfusion f, G antibodies, and disease severity in infants and young
children with acute respiratory syncytial virus infection. J Infect Dis (2017) 216
(11):1398–406. doi: 10.1093/infdis/jix489

62. Ngwuta JO, Chen M, Modjarrad K, Joyce MG, Kanekiyo M, Kumar A, et al.
Prefusion f-specific antibodies determine the magnitude of rsv neutralizing activity
in human sera. Sci Transl Med (2015) 7(309):309ra162. doi: 10.1126/
scitranslmed.aac4241

63. Ruckwardt Tracy J, Bonaparte Kathryn L, Nason Martha C, Graham Barney
S. Regulatory T cells promote early influx of Cd8+ T cells in the lungs of respiratory
syncytial virus-infected mice and diminish immunodominance disparities. J Virol
(2009) 83(7):3019–28. doi: 10.1128/JVI.00036-09

64. Iwanaga N, Kolls JK. Updates on T helper type 17 immunity in respiratory
disease. Immunology (2019) 156(1):3–8. doi: 10.1111/imm.13006

65. Mukherjee S, Lindell DM, Berlin AA, Morris SB, Shanley TP, Hershenson
MB, et al. Il-17–induced pulmonary pathogenesis during respiratory viral infection
and exacerbation of allergic disease. Am J Pathol (2011) 179(1):248–58.
doi: 10.1016/j.ajpath.2011.03.003

66. Eichinger KM, Kosanovich JL, Gidwani SV, Zomback A, Lipp MA, Perkins
TN, et al. Prefusion rsv f immunization elicits Th2-mediated lung pathology in
mice when formulated with a Th2 (but not a Th1/Th2-balanced) adjuvant despite
complete viral protection. Front Immunol (2020) 11:1673. doi: 10.3389/
fimmu.2020.01673

67. Lei L, Qin H, Luo J, Tan Y, Yang J, Pan Z. Construction and immunological
evaluation of hepatitis b virus core virus-like particles containing multiple antigenic
peptides of respiratory syncytial virus. Virus Res (2021) 298:198410. doi: 10.1016/
j.virusres.2021.198410

68. Schmidt MR, McGinnes LW, Kenward SA, Willems KN, Woodland RT,
Morrison TG. Long-term and memory immune responses in mice against
Newcastle disease virus-like particles containing respiratory syncytial virus
glycoprotein ectodomains. J Virol (2012) 86(21):11654–62. doi: 10.1128/
JVI.01510-12

69. Vicente T, Roldão A, Peixoto C, Carrondo MJ, Alves PM. Large-Scale
production and purification of vlp-based vaccines. J Invertebr Pathol (2011) 107
Suppl:S42–8. doi: 10.1016/j.jip.2011.05.004
frontiersin.org

https://doi.org/10.1080/21645515.2017.1329069
https://doi.org/10.1016/j.virol.2003.08.003
https://doi.org/10.1016/j.antiviral.2016.05.001
https://doi.org/10.3390/vaccines7010021
https://doi.org/10.1016/j.vaccine.2018.10.032
https://doi.org/10.1016/j.vaccine.2018.10.032
https://doi.org/10.1371/journal.ppat.1004757
https://doi.org/10.1016/j.vaccine.2008.01.058
https://doi.org/10.1128/JVI.00384-15
https://doi.org/10.1007/s10753-014-9931-0
https://doi.org/10.1128/JVI.66.12.7444-7451.1992
https://doi.org/10.1038/nm.1894
https://doi.org/10.1016/s0022-3476(81)80829-3
https://doi.org/10.1016/S0264-410X(03)00355-4
https://doi.org/10.1128/JVI.01295-13
https://doi.org/10.1007/978-3-319-27216-0_13
https://doi.org/10.1007/978-3-319-27216-0_13
https://doi.org/10.1080/14760584.2022.2085565
https://doi.org/10.1080/14760584.2022.2085565
https://doi.org/10.3390/vaccines9121504
https://doi.org/10.1016/j.immuni.2018.01.005
https://doi.org/10.2174/1570162x113116660062
https://doi.org/10.1093/infdis/jix489
https://doi.org/10.1126/scitranslmed.aac4241
https://doi.org/10.1126/scitranslmed.aac4241
https://doi.org/10.1128/JVI.00036-09
https://doi.org/10.1111/imm.13006
https://doi.org/10.1016/j.ajpath.2011.03.003
https://doi.org/10.3389/fimmu.2020.01673
https://doi.org/10.3389/fimmu.2020.01673
https://doi.org/10.1016/j.virusres.2021.198410
https://doi.org/10.1016/j.virusres.2021.198410
https://doi.org/10.1128/JVI.01510-12
https://doi.org/10.1128/JVI.01510-12
https://doi.org/10.1016/j.jip.2011.05.004
https://doi.org/10.3389/fimmu.2022.1054005
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Virus-like particles containing a prefusion-stabilized F protein induce a balanced immune response and confer protection against respiratory syncytial virus infection in mice
	Introduction
	Materials and methods
	Cells, viruses, and preparation of ultraviolet (UV)-inactivated virus and antibodies
	Construction of plasmids and recombinant baculoviruses
	Production and purification of chimeric VLPs
	SDS&minus;PAGE, Western blot analysis and electron microscopy observation
	Immunization and challenge of mice
	ELISA
	RSV immunoplaque and neutralization antibody assays
	Quantitative real-time (qRT)-PCR
	Flow cytometry
	Statistical analysis

	Results
	Preparation and characterization of chimeric VLPs
	Antibody and cytokine responses in mice induced by Pre-F and Post-F VLPs
	CD4+ T-cell subsets and cytokine profiles in the lungs of vaccinated mice following RSV infection.
	Pulmonary viral load and pathology in mice vaccinated with VLPs following RSV infection

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


