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signature based on macrophage
cell marker genes to predict
recurrent miscarriage by
integrated analysis of single-cell
and bulk RNA-sequencing
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Recurrent miscarriage (RM) is a chronic, heterogeneous autoimmune disease that

has serious social and personal consequences. No valid and reliable diagnostic

markers or therapeutic targets for RM have been identified. Macrophages impact

the innate immune system and can be used as diagnostic and prognostic markers

for many diseases. We first collected 16 decidua and villi tissue samples from 5

normal patients and 3 RMpatients for single-cell RNA sequencing data analysis and

identified 1293 macrophage marker genes. We then screened a recurrent

miscarriage cohort (GSE165004) for 186 macrophage-associated marker genes

that were significantly differentially expressed between RMpatients and the normal

pregnancy endometrial tissues, and performed a functional enrichment analysis of

differentially expressed genes. We then identified seven core genes (ACTR2,

CD2AP, MBNL2, NCSTN, PUM1, RPN2, and TBC1D12) from the above

differentially expressed gene group that are closely related to RM using the

LASSO, Random Forest and SVM-RFE algorithms. We also used GSE26787 and

our own collection of clinical specimens to further evaluate the diagnostic value of

the target genes. A nomogram was constructed of the expression levels of these

seven target genes to predict RM, and the ROC and calibration curves showed that
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our nomogram had a high diagnostic value for RM. These results suggest that

ACTR2 and NCSTN may be potential targets for preventative RM treatments.
KEYWORDS

recurrent miscarriage, single-cell RNA-sequencing, bulk RNA-sequencing,
macrophage, maternal fetal interface
Introduction

Recurrent miscarriage (RM), defined as the loss of two or

more pregnancies, is a critical obstetric disease that has a

prevalence of 1-2% (1). Possible causes of RM include

antiphospholipid syndrome, genetic susceptibility, abnormal

uterine structure, chronic endometritis and environmental

factors. The etiology of 50% of RM cases is unknown (2).

Maternal fetal interface immune status plays an important role

during normal pregnancy by establishing maternal immune

tolerance to the fetus and ensuring the dynamic balance of the

immune microenvironment. Prior studies have shown that

immune imbalance at the maternal fetal interface is related to

the pathogenesis of RM, but the exact mechanism behind this

relationship is still unclear (3).

Immune cells at the maternal fetal interface during early

pregnancy include NK cells, macrophages, T cells, B cells and

dendritic cells. Macrophages are the second most abundant

subpopulation of immune cells in the decidua (4). Their

unique phenotype and heterogeneity make them very

important to the establishment and maintenance of pregnancy.

Multiple studies have shown that RM is related to abnormalities

in immune tolerance at the maternal fetal interface, thereby

affecting embryo implantation and development and resulting in

a miscarriage (5). Immunomodulators used clinically include

glucocorticoids, cyclosporine A and hydroxychloroquine.

However, the use of any of these drugs needs further

confirmation due to imperfections in immune mechanism-

related research (6, 7).

Macrophages are essential to the establishment and

maintenance of a pregnancy as they are involved in a variety

of processes, including vascular remodeling, immune tolerance,

regulation of immunity by maternal meconium lymphocytes

and the onset of labor (8–12). Macrophages are divided into 2

subtypes: pro-inflammatory M1 and anti-inflammatory M2.

Numerous studies have shown that the ratio of M1/M2

macrophages in the decidual tissue of patients with

unexplained RM is significantly increased compared with

women with healthy pregnancies during the first trimester

(13). Metaphase macrophages (dMF) account for 20-25% of

the metaphase leukocyte population during early pregnancy (14)

and are involved in vascular remodeling, inducing the apoptosis
02
of damaged cells, removing apoptotic cell debris and eliminating

invading pathogens (15). M1macrophages can affect trophoblast

invasion and migration, which can lead to pregnancy failure (16,

17). It has been reported that dMF may be polarized to the M2

subtype during early pregnancy to maintain that pregnancy (18),

while macrophages polarized to the M1 subtype may promote

RM (19). Some prior works have shown that adverse pregnancy

outcomes can be reversed via macrophage polarization

regulation, which is a potential target for drugs seeking to

maintain pregnancies (20, 21). Further studies are needed to

clarify the role of macrophages in maternal fetal interface

immune tolerance.

The development of single-cell sequencing technology has

permitted the study of the diversity of cell types, the specific

molecular characteristics of the lineage and differentiation stage,

and the functional interaction between cell types, which are

required for the study of cell heterogeneity at the maternal fetal

interface (8). Published literature on the maternal fetal interface

has systematically described the relevant cell types (22–25).

Single-cell sequencing has also played an irreplaceable role in

the study of the etiology of RM. It has the advantage of searching

for cell heterogeneity, some studies have indicated the immune

heterogeneity of decidua and the potential pathogenic immune

variations of RM (26–29). The present study established the cell

map of the maternal fetal interface during early pregnancy, then

proposed a prediction model for the diagnosis and treatment of

unexplained RM by combining with the results of second-

generation sequencing, permitting further exploration of the

relationship between immune cells and unexplained RM.
Materials and methods

Data collection

In this study, single-cell RNA sequencing data were collected

from decidual and villi samples from five women who

underwent elective termination of normal pregnancies without

a history of miscarriages and three women with RM at the First

Affiliated Hospital of Guangxi Medical University. The inclusion

criteria for RM participants were: (1) no fetal heart pulsation or

fetal heartbeat stop using Doppler ultrasound at 7–9 weeks of
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gestation; and (2) a history of two or more failed pregnancies

from an unknown cause. The exclusion criteria were: (1) fetal

chromosomal karyotype abnormality of the villi; (2) patients

with uterine anatomic disorders; and (3) patients with endocrine

disorders (6 for single‐cell RNA sequencing). Decidual tissue

and chorionic villi tissue from the same patient were collected

separately, and a part of the chorionic villi tissue was sent for

cytogenetic analysis. Informed consent was obtained from each

patient before surgery. Ethical approval was obtained from the

ethics committee of the First Affiliated Hospital of Guangxi

Medical University. We also obtained 2 RM-related microarray

datasets (GSE165004 and GSE26787) from the Gene Expression

Omnibus (GEO) database. The GSE165004 (N=24; P=24)

dataset was used to identify the core genes associated with

RM, and the GSE26787 (N=5; P=5) dataset was used to

further validate the expression profile of the signature genes.

As these two public datasets were obtained from public

databases, no ethical approval was required.
Cell isolation

Decidual and placental tissue were washed in phosphate-

buffered saline with 100 IU/mL penicillin/streptomycin and

sheared into tiny pieces. Decidual tissue were digested with

collagenase type IV (0.5 mg/ml, Invitrogen) for 30 min while

the resultant villous tissue was enzymatically digested with

EDTA (Sigma) while stirring at 37°C for 9 min. The

disaggregated cell suspension was passed through 70 and 40

µm mesh sieves (Biologix), centrifuged, and resuspended in 3

mL of red blood cell lysis buffer (Invitrogen) for 3 min to exclude

any remaining red blood cells. The pelleted decidual cells

and placental cells were resuspended in PBS and used for

single‐cell 3′‐cDNA library preparation followed by the 10×

Genomics Chromium Single‐Cell 3′ reagent kit using the

manufacturer’s instructions.
Identification of macrophage marker
genes via scRNA-seq analysis

Single‐cell libraries were sequenced with an Illumina

NovaSeq 6000 using 150 nt paired‐end sequencing. The gene

expression matrix was generated using CellRanger v3.1.1, and

raw data were further processed with R (version 3.5.2). The

quality control steps were as follows: (1) the number of

identifiable genes in a single cell was between 500 and 7500,

(2) the proportion of mitochondrial gene expression in a single

cell was less than 20%, and (3) the total number of Unique

Molecular Identifiers (UMIs) in a single cell was less than 50000.

Data were normalized using the “normalizedata” function in the
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Seurat R package. Graph-based clustering was performed based

on the gene expression profile of the cells using the “findclusters”

function in Seurat (clustering resolution = 0.5, k-nearest

neighbor = 10). After filtration, a total of 66078 cells were left

for subsequent analysis. The CCA method was used to eliminate

the batch effect of different samples. Graph-based clustering was

performed according to the gene expression profile of cells using

the “findclusters” function in Seurat (clustering resolution = 0.5,

k-nearest neighbor = 10). t-distributed random neighbor

embedding (t-SNE) was then performed using the “Run tsne”

function. Cell clusterings was demonstrated using t-SNE-1 and

t-SNE-2. Differentially expressed genes (DEGs) were calculated

for each cluster using the Wilcoxon-Mann-Whitney test using

the “FindAllMarkers” function in the Seurat package. To identify

the marker genes for each cluster, we used cut-off thresholds

adjusted for p-values < 0.01 and |log2 (fold change) > 1. We used

the “SingleR” R package for automated annotation of cell types

to annotate the cell subgroups.
Identification of macrophage marker
genes associated with RM

By using the limma R package (30), the GSE165004 dataset

(containing 24 healthy individuals and 24 RM patients) was used

to screen genes that were significantly differentially expressed

between the RM group and the normal group (Screening label:

False Discovery Rate criterion (FDR) < 0.05). All differentially

expressed genes were intersected with macrophage marker genes

to identify the macrophage markers associated with RM.
Functional enrichment analysis of
differentially expressed genes

The ClusterProfiler R package (31) was used to perform a

biological functional enrichment analysis of differentially

expressed genes with Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG). FDR was used

to performmultiple test corrections with a threshold set at <0.05.

GO categories were analyzed for biological processes only (BP).
Selection of feature genes

Three machine learning algorithms: LASSO, Random Forest

and SVM-RFE (32), were used to screen signature genes.

Differentially expressed macrophage marker genes were

initially assessed by least absolute shrinkage and selection

operator (LASSO) Cox proportional hazards regression using

the “glmnet” R package. The value of the penalty parameter (l)
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corresponding with the lowest partial likelihood deviance was

used to select the best model via 10-fold cross-validation (33).

Genes with non-zero beta coefficients were retained. A random

forest algorithm was used to rank the importance of marker

genes associated with RM, and genes with an importance greater

than 0.25 were used for subsequent analyses. SVM-RFE was used

to further screen for signature genes, with the top 12 genes by

average ranking retained for subsequent analyses. Genes

identified using LASSO, random forest and SVM-RFE were

intersected to obtain our signature genes. ROC curves were

used to assess the efficacy of those signature genes to distinguish

the RM samples. We also tested the diagnostic value of the

signature genes in GSE26787.
Construction of a protein-protein
interaction network

GeneMANIA (http://www.genemania.org) is a website for

building protein-protein interaction (PPI) networks (34),

which can generate gene function predictions and locate

genes with comparable effects. Physical interaction, co-

expression, co-localization, gene enrichment analysis, genetic

interaction and locus prediction are some of the bioinformatics

methods used by network integration algorithms. In this study,

GeneMANIA was used to analyze the PPI networks of our

signature genes. The ClusterProfiler R package (31) was used to

perform a GO and KEGG enrichment analysis of interacting

proteins, FDR<0.05 was used to screen for significantly

enriched pathways, and the top 10 most significant signaling

pathways were presented.
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RNA extraction and quantitative reverse‐
transcriptase polymerase chain reaction
analyses

Total RNA was extracted from fresh-frozen decidual

samples obtained from the RM (n = 5) and normal (n = 5)

groups using TRIzol (Takara, Japan) according to the

manufacturer’s protocol. The RNA was then reverse-

transcribed into cDNA using the Prime Script RT reagent Kit

(Takara, Japan). The real‐time PCR system used RR420A TB

Green™ Premix Ex Taq™ (Tli RNaseH Plus) (Takara, Japan).

The Primer-BLAST online tool (https://www.ncbi.nlm.nih.gov/

tools/primer-blast/index.cgi?LINK_LOC=BlastHome) was used

to design primers and assess primer specificity. Primer lengths

were set between 20 bp and 25 bp, GAPDH was selected as an

internal reference gene, the total volume of fluorescent

quantitative PCR amplification was 20ul, the primers used in

this study are listed in Table 1. Relative fold changes in gene

expression were calculated using the 2−DDCt method and

normalized with respective controls.
Gene set enrichment analysis

In order to analyze the signaling pathways impacted by the

signature genes, single-gene GSEA enrichment analysis was

performed on the signature genes (35). We downloaded the

“c2.cp.kegg.v11.0.symbols” gene set from the MSigDB database

(http://software.broadinstitute.org/gsea/msigdb) (36) as a

reference gene set for GSEA analysis. To achieve a normalized

enrichment score for each analysis, gene set permutations were
TABLE 1 Primers used in this study.

Primer Name Prime (5’to3’) Length (bp)

ACTR2-F AGTTGGGTTCAGGGAAATGGG 21

ACTR2-R CAAGGGACAAACGATAAATGCTC 23

CD2AP-F AAAAGAAGAAGACAGTGCCAACC 23

CD2AP-R AATGGAGTCAGGAAAGCAGTTGT 23

MBNL2-F TCATACCCCACCAAACAAAGTC 22

MBNL2-R GAAGTCTGGCAAAATCTAGGCAC 23

NCSTN-F TGGGCAATGGTTTGGCTTAT 20

NCSTN-R CAGGTGGCAGTGCTGATGAC 20

PUM1-F TGAAGAACGGTGTTGACTTAGGG 23

PUM1-R TGGTTGCTGGTTGGATTTGC 20

RPN2-F CGAGCCAGACAACAAGAACG 20

RPN2-R CCTCAGGGAACTTGATGACCAC 22

TBC1D12-F GCCCTCGTCTACCTCACTATCC 22

TBC1D12-R CATTCCTCAAAGTATTTCACCTCCA 25

GAPDH-F GGAGTCCACTGGCGTCTTCA 20

GAPDH-R GTCATGAGTCCTTCCACGATACC 23
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set at 1,000 times and FDR < 0.05 was considered a significantly

enriched signaling pathway.
Modeling and testing of a RM diagnostic
nomogram

We created a nomogram for the diagnosis of RM using the

rms R package. A risk score was calculated based on the

expression of individual core genes, with the total risk score

defined as the sum of all individual gene risk scores. The

diagnostic value of the nomogram for RM was assessed using

decision tree, calibration and ROC curves.
Gene set variation analysis

GSVA is an unsupervised and non-parametric gene set

enrichment method that permits the use of gene expression

profiles to assess associations between biological pathways and

gene features (37). We downloaded 50 hallmark gene sets from

the MSigDB database (http://software.broadinstitute.org/gsea/

msigdb) (36) to serve as reference gene sets. We used the

ssGSEA function in the GSVA package to calculate the GSVA

score for each gene set in different samples. The Limma package

was then used to compare differences in the GSVA scores of

different gene sets between the normal and disease groups.
Analysis of immune cell infiltration and
immune-related pathways

Sixteen immune cells and 13 immune-related pathway gene

sets were obtained from the annex of the reference (38). Using

these 29 gene sets and gene expression matrices as input files,

single sample gene set enrichment analysis (ssGSEA) was

performed on all samples using “gsva” R (39). Infiltration

scores for 16 immune cells and the activity of 13 immune-

related pathways were calculated for all samples.
Tumor immune single-cell hub
database analysis

The TISCH database includes 2045746 cells from 79

databases from tumor patients and healthy donors. These

datasets were processed uniformly to permit the analysis of

immune cell components at the single cell and annotated cluster

levels. This work used datasets from TISCH to characterize the

expression distribution of genes within different cell types at the

single-cell level.
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Prediction of the drug sensitivity of
target genes

The Drug Signature Database (DSigDB) was used to screen

for key drugs that can target specific genes. A publicly available

web database obtained from the Enrichr web server (https://

maayanlab.cloud/Enrichr/), the DSigDB database provides

association information for drugs and their target genes and is

used to perform gene set enrichment analysis (GSEA). We

identified drug candidates for the possible treatment of RM

based on a statistical threshold of p-value < 0.05 and drug targets

> = 2.
Statistical analysis

Categorical variables were compared between different risk

groups using the Wilcoxon t-test. Univariate and multivariate

Cox regression analyses were used to calculate the prognostic

value of macrophage CMGS and different clinicopathologic

features. p<0.05 was defined as significant for all calculations.

Benjamini-Hochberg adjusted p-values for multiple testing were

calculated using the R function “p.adjust”. R software version

4.1.0 (http://www.R-project.org) was used for data analysis and

graph generation.
Results

Single‐cell atlas at the maternal fetal
interface in normal and RM samples

We obtained 16 human first-trimester decidual and villi

samples from 5 normal patients and 3 RM patients using 10×

Genomics, with decidual and villi samples collected from the

same patient (Figure 1A). Following computational quality

control and graph‐based clustering using the Seurat package

(40), 112528 high-quality cells were subjected to further analysis.

These cells consisted of 36219 cells from normal decidua and

25582 cells from RM decidua, 25303 cells from normal villi and

25424 cells from RM villi. After unsupervised graph-based

analysis using SingleR software (41), we automatically

annotated the cell clusters and identified 15 cell types

(containing 28 subclusters) assigned on the basis of known

marker genes and literature evidence, and cells in cluster 0 and

11 were defined as macrophage cells (23, 25) (Figures 1B, C;

Supplementary Table 1). We then extracted dNK cell, T cell,

macrophage, monocyte and B cell populations related to the

immune mechanism of RM and regrouped them based on the

expression of known marker genes for further analysis

(Figures 1D, E).
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Identification and functional enrichment
analysis of differentially expressed
macrophage-associated genes

To investigate the role of macrophage-associated genes in

the pathogenesis of RM, we used the expression profiles of 24

normal and 24 recurrent miscarriage specimens from the

GSE179996 cohort for subsequent analysis. A total of 1,293

macrophage-associated marker genes were obtained via the

single-cell sequencing screening of 1,384 macrophage-

associated genes, which were intersected with genes from the
Frontiers in Immunology 06
GSE179996 expression profile. Differential expression analysis of

the GSE179996 dataset revealed that 90 macrophage marker

genes were significantly down-regulated and 96 macrophage

marker genes were significantly up-regulated in the disease

group (Figures 2A, B). Detailed information is listed in

Supplementary Table 2. GO enrichment analysis of these

differentially expressed macrophage-associated genes revealed

that they impacted negative regulat ion of prote in

phosphorylation, the type I interferon signaling pathway and

the immune response to viruses (Figure 2C). KEGG enrichment

analysis of these differentially expressed genes revealed that the
A B

D

E

C

FIGURE 1

Single-cell RNA-sequencing analysis identifies maternal fetal interface marker genes (A) Flowchart depicting the overall design of the single-cell
RNA-sequencing analysis. (B) t-SNE plot of 112528 cells from five normal samples and three RM samples. dM, decidual macrophages; dNK,
decidual NK cells; DSC, decidual stromal cells; EVT, extravillous trophoblast; VCT, villous cytotrophoblast; Mo, Monocytes; Endo, endothelial
cells; SCT, syncytiotrophoblast; DC, dendritic cells; RBC, red blood cells; PV, perivascular cells; Epi, epithelial glandular cells; F, fibroblasts. (C)
Dotplot map showing the expression of classical cell type‐specific marker genes in each cluster. (D) t-SNE plot of the five main immune cell
types. (E) t-SNE plot showing the expression of the marker genes of the five cell types noted above.
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main signaling pathways involved were endocytosis, human

cytomegalovirus infection, the Apelin signaling pathway and

Th17 cell differentiation (Figure 2D).
Screening for signature genes using
the LASSO, random forest and SVM-
RFE algorithms

Three algorithms (LASSO, Random Forest and SVM-RFE)

were used to screen for the core signature genes associated with

RM progression. With respect to SVM-RFE, classifier error was

minimized when the number of features was 12, containing

CD2AP, NCSTN, APPL1, ACTR2, PTMS, TBC1D12, ATF6,

MBNL2, RPN2, MTMR6, MAFG and PUM1 (Figures 3A, B).

With respect to the LASSO algorithm, after ten cross-
Frontiers in Immunology 07
validations the best lambda was 0.004. The value of penalty

parameter (l) corresponding with the lowest partial likelihood

deviance was used to select 17 signature genes: ACTR2, APPL1,

ARL8A, ARMCX3, CD2AP, CSDE1, ITGB2, MBNL2, NCSTN,

OAS1, PML, PTMS, PUM1, RPN2, SLC43A3, SPPL2A and

TBC1D12 (Figure 3C). Twenty feature genes with relative

importance >0.345 were identified using the random forest

algorithm, including NCSTN, RPN2, CD2AP, ACTR2, CISD2,

ETF1, CSDE1, MBNL2, ARL8A, PUM1, NF1, BNIP2,

BLOC1S1, ZFYVE16, USF2, ZSWIM6 SPG21, TBC1D12,

ARMCX3 and CMIP (Figures 3D, E). Seven shared feature

genes from the LASSO, Random Forest and SVM-RFE

algorithms were identified: ACTR2, CD2AP, MBNL2,

NCSTN, PUM1, RPN2 and TBC1D12 (Figure 3F); The

functional annotation of these genes in the NCBI database is

shown in Table 2.
A

B

DC

FIGURE 2

Identification of macrophage-related differentially expressed genes. (A) Heat map of the top 50 DEG. (B) Volcano plot of DEG. (C) GO
enrichment analysis of DEG. (D) KEGG enrichment analysis of DEG.
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TABLE 2 Functional annotation of feature genes.

Primer Name Ensembl_Gene_id Functional annotation

ACTR2 ENSG00000138071 Actin related protein 2

CD2AP ENSG00000198087 CD2 associated protein

MBNL2 ENSG00000139793 Muscleblind like splicing regulator 2

NCSTN ENSG00000162736 Nicastrin

PUM1 ENSG00000134644 Pumilio RNA binding family member 1

RPN2 ENSG00000118705 Ribophorin II

TBC1D12 ENSG00000108239 TBC1 domain family member 12
Frontiers in Immunology
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D
E

F

C

FIGURE 3

Feature gene selection. (A, B) Biomarker signature gene expression validation via support vector machine recursive feature elimination (SVM–

RFE) algorithm selection. (C) Adjustment of feature selection in the minimum absolute shrinkage and selection operator model (LASSO). (D)
random Forest error rate versus the number of classification trees. (E) The top 20 relatively important genes. (F) Three algorithmic Venn diagram
screening genes.
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Diagnostic efficacy and external
validation of signature genes in RM

Six signature genes (ACTR2, CD2AP, MBNL2, PUM1, RPN2

and TBC1D12) were expressed at significantly lower levels in RM

samples, while NCSTN had a significantly higher expression level

(Figure 4A). The estimated diagnostic performance of the seven

signature genes in the prediction of RM in the GSE179996 cohort

using AUC values, which were 0.986 for ACTR2 (Figure 4B),

0.990 for CD2AP (Figure 4C), 0.908 for MBNL2 (Figure 4D),

0.986 for NCSTN (Figure 4E), 0.862 for PUM1 (Figure 4F), 0.958

for RPN2 (Figure 4G) and 0.889 for TBC1D12 (Figure 4H). We

selected the GSE26787 dataset to externally validate the diagnostic

value of these seven signature genes in the progression of
Frontiers in Immunology 09
recurrent miscarriage, which produced AUC values of 0.880 for

ACTR2 (Figure 5A), 0.840 for CD2AP (Figure 5B), 0.720 for

MBNL2 (Figure 5C), 0.960 for NCSTN 0.960 (Figure 5D), 1.000

for PUM1 (Figure 5E), 0.920 for RPN2 (Figure 5F) and 1.000 for

TBC1D12 (Figure 5G).
Experimental validation of signature
gene expression

To validate the expression of the signature genes implicated

RM, 10 healthy human meconium samples and 10 meconium

samples from recurrent miscarriages were collected for clinical

specimen validation. The expression patterns of the 7 signature
A B

D E

F G H

C

FIGURE 4

Diagnostic efficacy of the target genes in the prediction of RM. (A) Box plots showing the mRNA expression of the target genes in stable and
unstable atherosclerotic plaque specimens in the GSE165004 dataset. (B–H) ROC curves estimating the diagnostic performance of the target
genes (B) ACTR2, (C) CD2AP, (D) MBNL2, (E) NCSTN, (F) PUM1, (G) RPN2 and (H) TBC1D12 in the prediction of atherosclerotic plaque
progression in the combined GSE165004 datasets. ***p < 0.001.
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genes were consistent between the GSE165004 dataset and

the clinical specimens, further suggesting that they

had good diagnostic value in the prediction of RM

progression (Figure 6).
Signaling pathways involved in signature
genes

The differences between RM patients and healthy controls

within 50 HALLMARK signaling pathways were further

investigated using ssGSEA. Two HALLMARK signaling

pathways were significantly up-regulated in RM patients:

KRAS_SIGNALING_DN and BILE_ACID_METABOLISM

(Figure 7A). Pathways significantly down-regulated in RM

patients included: KRAS_SIGNALING_UP, ANGIOGENESIS,
Frontiers in Immunology 10
UV_RESPONSE_DN, MYC_TARGETS_V1, MTORC1_

SIGNALING, UNFOLDED_PROTEIN_RESPONSE,

APICAL_SURFACE, INTERFERON_ALPHA_RESPONSE,

NOTCH_SIGNALING and TGF_BETA_SIGNALING

(Figure 7A). We also analysed the correlations of seven

signature genes with 50 HALLMARK signaling pathways.

ACTR2 was associated with a number of genes, including

NOTCH_SIGNALING, KRAS_SIGNALING_UP, INTER

FERON_GAMMA_RESPONSE and ANGIOGENESIS. Several

HALLMARK signaling pathways including ANGIOGENESIS

were significantly positively correlated with these genes

(Figure 7B). In contrast, NCSTN was significantly negatively

correlated with multiple HALLMARK signaling pathways

including UV_RESPONSE_DN, UNFOLDED_PROTEIN_

RESPONSE, TGF_BETA_SIGNALING, KRAS_SIGNALING_

UP and INTERFERON_GAMMA_RESPONSE (Figure 7B).
A B

D E F

G

C

FIGURE 5

External verification of the RM predictive value of the target genes. (A–G) ROC curves estimating the diagnostic performance of the target
genes (A) ACTR2, (B) CD2AP, (C) MBNL2, (D) NCSTN, (E) PUM1, (F) RPN2 and (G) TBC1D12 in the prediction of a RM in the GSE26787 datasets.
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To provide more clarity on the impact of the signature genes

on the progression of RM, we performed single-gene GSEA

enrichment analysis. Both ACTR2 and CD2AP are involved in

the complement and coagulation cascades, DNA replication, the
Frontiers in Immunology 11
Hedgehog signaling pathway and the protein export signaling

pathways. The signaling pathways impacted by RPN2 mainly

include basal cell carcinoma, the complement and coagulation

cascades, DNA replication and protein export (Figures 8A, B).
A B

FIGURE 7

Correlation between hub genes and the 50 HALLMARK signaling pathways. (A) Comparison of the 50 HALLMARK signaling pathways between
the RA group and healthy controls. (B) Correlation between the target genes and the 50 HALLMARK signaling pathways. *p < 0.05, **p < 0.01,
***p < 0.001 0.05. 0.05 < p < 0.2. NS, no significance.
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C

FIGURE 6

Expression validation of ACTR2 between normal and RM tissues. (A) ACTR2, (B) CD2AP, (C) MBNL2, (D) NCSTN, (E) PUM1, (F) RPN2 and (G)
TBC1D12, "**p < 0.01, ***p < 0.001.
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MBNL2 is involved in the following signaling pathways:

ascorbate and aldarate metabolism, the complement and

coagulation cascades, DNA replication and protein export

(Figure 8C). NCSTN is involved in the following signaling

pathways: fatty acid biosynthesis, glycosaminoglycan

degradation and mineral absorption (Figure 8D). PUM1 is

involved in the following signaling pathways: DNA replication,

the Hedgehog signaling pathway and mismatch repair

(Figure 8E). RPN2 is involved in the following signaling

pathway: Basal cell carcinoma, complement and coagulation

cascades, DNA replication, and protein export (Figure 8F);

The main signaling pathways impacted by TBC1D12 include

beta-alanine metabolism, the complement and coagulation
Frontiers in Immunology 12
cascades, the H coagulation cascades and histidine

metabolism (Figure 8G).
Characterized gene interaction network
analysis

To assess the regulatory relationships between the signature

genes, we constructed co-expression networks and protein

interaction networks. The GSE165004 dataset was used to

analyze the co-expression relationships between the signature

genes. NCSTN expression was negatively correlated with that of

the other six signature genes, while the expression levels of the
A B

D E

F G

C

FIGURE 8

GSEA identifies the signaling pathways that are impacted by the target genes. (A–G) The main signaling pathways that are significantly enriched
by the high expression of the target genes in the GSE165004 dataset. (A) ACTR2, (B) CD2AP, (C) MBNL2, (D) NCSTN, (E) PUM1, (F) RPN2 and (G)
TBC1D12.
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other six signature genes were positively correlated with one

another (Figure 9A). To analyze the protein interaction network

of the seven signature genes, we created a PPI network using the

GeneMANIA database (Figure 9B). GO/KEGG analysis was

performed on 20 genes to further investigate the function of

the signature genes, demonstrating that all 20 co-expressed

genes were mainly involved in KEGG signaling pathways

(Figure 9C), including protein processing in the endoplasmic

reticulum, Epstein-Barr virus infection, viral arcinogenesis,

bacterial invasion of epithelial cells, the cell cycle and the

FoxO signaling pathway (Figure 9D).
Construction and testing of a signature
gene-based line graph for predicting RM

We constructed a RM diagnostic column line graph model

(Figure 10A) using the “Rms” R package for the signature genes

(ACTR2, CD2AP, MBNL2, NCSTN, PUM1, RPN2, and

TBC1D12), and assessed its predictive power using calibration
Frontiers in Immunology 13
curves. The calibration curves showed minimal differences

between true and predicted RM risk, indicating that the bar

graph RMmodel was very accurate (Figure 10B). Decision curve

analysis (DCA) suggested that patients could benefit from such

nomograms (Figure 10C). The correctness of the model was also

confirmed using ROC curve analysis (Figure 10D).
Association of signature genes with
immune cell infiltration in RM patients

The association of immune infiltration between RM patients

and healthy controls was further investigated in the GSE165004

dataset using the ssGSEA algorithm. When the results excluded

immune cell types that were not statistically significant,

Type_I_IFN_Reponse, Treg, Parainflammation, MHC_class_I

and Macrophages were significantly down-regulated in RM

patients while T_helper_cells were significantly up-regulated in

RM patients compared with healthy controls (Figure 11A). We

then analysed correlations between the signature genes and
A B

DC

FIGURE 9

Co-expression and interaction analysis of the target genes. (A) Target gene co–expression network in GSE165004. (B) Target gene co–
expression network in GeneMANIA database. (C) GO analysis of co–expressed genes. (D) Co–expressed gene KEGG analysis. *p < 0.05.
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immune cells and immune-related functions. ACTR2 was

significantly negatively correlated with T_helper_cells, but

significantly positively correlated with a variety of other

immune cells and immune-related pathways (Figure 11B). In

contrast, NCSTN was significantly positively correlated with

T_helper_cells and negatively correlated with multiple other

immune cells and immune-related pathways (Figure 11B). Treg

was significantly negatively correlated with NCSTN and

significantly positively correlated with the six other signature

genes, T_helper_cells was significantly positively correlated with

NCSTN and significantly negatively correlated with the six other

signature genes, ACTR2 was significantly positively correlated

with macrophages and NCSTN was significantly negatively

correlated with macrophages (Figure 11B).
Validation of ACTR2 and NCSTN
expression using the TISCH database

ACTR2 andNCSTNwere significantly associated with immune

infiltration in RM patients. When the expression levels of ACTR2

and NCSTN in 33 cell types at the single cell level were analyzed

using the TISCH database, it was found that both ACTR2 and

NCSTN had the highest expression levels in mono/macro cells
Frontiers in Immunology 14
across multiple tumor datasets (Figures 12, 13), and had increased

expression in mono/macro cells. ACTR2 was expressed in CD8Tex,

CD8T, DC, neutrophils, Tproli CD4Tconv, Treg, malignant,

endothelial, fibroblasts, B, NK, Mas and Plasma cells (Figure 12).

Similar to ACTR2, NCSTN had higher expression levels in

malignant, fibroblasts, endothelial, Tprolif, CD8Tex, CD8T,

CD4Tconv, Treg, DC, Plasma, B and NK cells (Figure 13).
Identification of drug candidates

To facilitate the development of future RM therapies, we

performed drug target enrichment analysis using the 7 RM key

genes. Table 3 lists the 17 drug candidates that were evaluated.

Irinotecan could target four RM key genes (MBNL2, TBC1D12,

PUM1 and CD2AP), while the other six candidates

(Alsterpaullone, Camptothecin, Chlorzoxazone, GW-8510,

POTASSIUM and (-)- Epigallocatechin) could target 3

different RM key genes. The remaining 10 drug candidates

(Verteporfin, Strophanthidin, Uranium, Azacitidine, Etifenin,

Staurosporine, Neostigmine, Meclofenoxate, Captopril and

Tyrphostin) could target 2 different RM key genes, while

ciclosporin, a common drug used to manage RM clinically,

could target MBNL2 (p = 0.023).
A B

D
C

FIGURE 10

Construction and validation of a RM diagnostic column line graph model. (A) Column line graphs were used to predict the occurrence of RM.
(B) Calibration curves assessed the predictive power of the column line graph model. (C) DCA curves were used to assess the clinical value of
the column line graph model. (D) ROC curves assessed the clinical value of the column line graph model.
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Discussion

Recurrent miscarriage (RM) is a common reproductive

complication that affects 1-3% of women during their

reproductive years (42). Substantial progress has recently been

made in the study of pathologic factors associated with RM.

Immune factors have been of particular interest. A large number

of studies have reported an association between immune cells

and RM, in particular the role of macrophages. Macrophages

account for 20–25% of all metaphase leukocytes at the

implantation site and play an important role in regulating the

maternal immune microenvironment by linking the adaptive

and innate immune systems (14). Abnormal macrophage

infiltration at the maternal-fetal interface has been associated

with RM (43–45). Macrophages polarize into M1/M2 subtypes

under specific circumstances; M1 macrophages produce pro-

inflammatory cytokines and regulate the inflammatory response

while M2 macrophages promote tissue remodeling and repair

(29). Early reports suggest that metaphase macrophages (dMF)

may polarize into the M2 subtype during a normal pregnancy

(18), In contrast, macrophages during complicated pregnancies,
Frontiers in Immunology 15
such as RM or pre-eclampsia, polarize into the M1 subtype and

mediate the inflammatory response (19, 44).

The rapid development of scRNA-seq technology has

allowed researchers to explore the molecular characteristics of

tumor-infiltrating immune cells in tumor microenvironment

(TME). However, most works to this end have focused on

adaptive immune cells. The role of innate immune cells has

not received sufficient attention, which may significantly affect

patient prognosis and response to treatment, especially with

respect to immunotherapy. Pan et al. used single cell sequencing

analysis to identify severe disruption of dNK cell polarization in

the setting of an unexplained recurrent spontaneous abortion

(URSA), whereas dNK cells normally interact with extravillous

trophoblasts to achieve immune tolerance polarization (29). Zhu

et al. used single-cell sequencing analysis to find proportionate

differences in NK cell and macrophage metaphases in patients

with recurrent spontaneous abortion (RSA) compared with

normal controls (46). Du et al. found that stromal cells were

the most abundant cell type in the meconium during early

pregnancy and that communication between stromal cells and

other cell types, such as over-activation of macrophages and NK
A B

FIGURE 11

Correlation between the hub genes and immunity. (A) Comparison of the ssGSEA scores of the immune cells and immune pathways between
the RM group and healthy controls. (B) Correlation between characteristic genes and immunity. *p < 0.05, **p < 0.01, ***p < 0.001. 0.05 < p <
0.2. NS, no significance.
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cells, was significantly impaired in patients with recurrent

spontaneous abortion (RSA) (47).

This study screened 186 macrophage marker genes

associated with recurrent miscarriage from the GSE165004

dataset, of which 90 were significantly upregulated in the

disease group and 96 were significantly downregulated in the

disease group (Figures 2A, B). Subsequent GO enrichment
Frontiers in Immunology 16
analysis revealed that all DEGs were enriched in signaling

pathways such as the negative regulation of protein

phosphorylation, type I interferon signaling pathway, and

defense response to viruses (Figure 2C), while KEGG

enrichment analysis showed that DEG was mainly involved in

endocytosis, human cytomegalovirus infection, the Apelin

signaling pathway, and Th17 cell differentiation (Figure 2D).
TABLE 3 Identification of RM drug candidates.

Drug P-value Odds Ratio Combined Score Drug Targets

Irinotecan 4.88E-04 19.68980021 150.1446587 MBNL2;TBC1D12;PUM1;CD2AP

Alsterpaullone 0.011055064 9.478342428 42.69866877 MBNL2;TBC1D12;PUM1

Camptothecin 0.011584032 9.306841046 41.49108607 MBNL2;TBC1D12;PUM1

Chlorzoxazone 0.007629886 10.93725643 53.32658862 ACTR2;RPN2;PUM1

GW-8510 0.007696558 10.9009324 53.05464254 MBNL2;TBC1D12;PUM1

POTASSIUM 0.022293962 7.162796834 27.24326379 MBNL2;TBC1D12;CD2AP

(-)-Epigallocatechin 0.029804748 6.349786932 22.3073575 MBNL2;TBC1D12;CD2AP

Verteporfin 0.003997787 28.05978648 154.9465424 NCSTN;RPN2

Strophanthidin 0.005850578 22.98362573 118.1637568 ACTR2;PUM1

Uranium 0.002989614 32.64628099 189.7601315 ACTR2;PUM1

Azacitidine 0.016801262 13.08600337 53.47335226 TBC1D12;PUM1

Etifenin 0.017560467 12.77495881 51.63772641 ACTR2;PUM1

Staurosporine 0.019811159 11.96043277 46.90295556 TBC1D12;PUM1

Neostigmine 0.019868958 11.94135802 46.79336577 ACTR2;PUM1

Meclofenoxate 0.023657885 10.84781997 40.61487591 ACTR2;NCSTN

Captopril 0.033293867 8.96440281 30.5003233 ACTR2;PUM1

Tyrphostin 0.010353604 16.98521739 77.62958757 TBC1D12;PUM1
FIGURE 12

ACTR2 distribution using TISCH scRNA seq database.
FIGURE 13

NCSTN distribution using TISCH scRNA seq database.
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These pathways may therefore be closely related to the

progression of RM.

This study used three machine learning algorithms (LASSO,

SVM-RFE, and Random forest) to identify seven macrophage

marker genes (ACTR2, CD2AP, MBNL2, NCSTN, PUM1,

RPN2, and TBC1D12) that were associated with RM in the

GSE165004 dataset. Most of these marker genes are associated

with progression or macrophage activity in patients with RM.

ACTR2, also known as actin-related protein 2, has been

previously implicated in the development of RM and is closely

associated with the development of lung cancer (48), liver cancer

(49) and primary thrombocythemia (50). CD2-associated

protein (CD2AP), a scaffolding protein that controls actin

dynamics, is closely associated with the development of

Alzheimer’s disease (51)、gastric cancer (52) and acute

promyelocytic leukemia (53). MBNL2 belongs to a family of

highly conserved RNA-binding proteins that drive cancer cell

proliferation and migration by regulating the expression of

hypoxia-inducible genes, such as VEGF-A, and variable

splicing (54); MBNL2 expression levels were significantly

negatively correlated with hepatocellular carcinoma tumor size

and stage, and MBNL2 overexpression in vitro and in vivo

inhibited the growth and invasion of hepatocellular carcinoma

cells (55); MBNL2 also regulates tumor cell proliferation and the

DNA damage response by stabilizing p21 (56). Nicastrin

(NCSTN) is the core subunit of g-secretase and is essential to

the intracellular transport and stability of g-secretase and the

recognition of g-secretase substrates (57). NCSTN is significantly

upregulated in breast cancer and induces epithelial-

mesenchymal transition (EMT) through Notch1 cleavage (58).

NCSTN was also the response of colon cancer to chemotherapy

(59). PUM1 is also an RNA-binding protein that regulates gene

expression by binding to the mRNA of target genes. Previous

studies have shown that PUM1 expression is elevated in pre-

eclampsia and is associated with the proliferation and migration

of trophoblast cells (60). RPN2 is an important component of

the oligosaccharyltransferase complex and is responsible for the

N-glycosylation of many proteins (61). RPN2 was found to

promote the malignant progression of breast cancer (62), gastric

cancer (63) and colon cancer (64). RPN2 promotes docetaxel

resistance in breast cancer cells by mediating CD63 glycosylation

(65). TBC1D12 is a Rab11-binding protein that regulates

neuroectodermal growth in PC12 cells (66). These prior

associations further support that the macrophage marker

genes associated with RM identified in this study may provide

potential targets for laboratory experimental design to elucidate

the molecular mechanisms underlying RM progression.

To further illustrate the role of central genes in RM, we

performed GSEA analysis, which showed that the complement

and coagulation cascades were significantly enriched in the highly
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expressed subgroups of all of the target genes except for NCSTN

and PUM1. DNA replication was significantly enriched in the

highly expressed subgroups of ACTR2, CD2AP, PUM1 and

RPN2, and Hedgehog signaling pathway was significantly

enriched in the highly expressed subgroups of ACTR2, CD2AP,

and PUM1. Subsequent ROC analysis showed that all of the

central genes had potential diagnostic value in the clinical

management of RM. To further demonstrate the clinical

diagnostic value of these 7 genes, we collected 5 normal samples

and 5 recurrent miscarriage samples for validation. The

expression pattern of these 7 RM genes was consistent with that

of GSE165004, which further supports the diagnostic properties of

the 7 core genes for RM. To further elucidate the regulatory

mechanisms of the 7 central genes, we analysed the co-expression

profiles and interacting proteins of the seven central genes.

Positive co-expression patterns existed between all genes, except

for NCSTN, which was negatively co-expressed with all of the

other genes. We then determined that the seven central genes

enriched the function of 20 interacting proteins that were mainly

involved in the Notch signaling pathway, the response to

antibiotics and protein processing in the endoplasmic reticulum.

Finally, we determined that ACTR2 was positively associated with

several of the 50 HALLMARK signaling pathways, while NCSTN

was negatively associated with several pathways. These findings

suggest that ACTR2 may regulate RM progression mainly

through signaling pathway activation, while NCSTN affects RM

progression through pathway inhibition.

Since the seven core genes we identified belong to

macrophage marker genes, we speculated that they regulate

the progression of RM by modulating immune cell infiltration.

Macrophage infiltration was significantly lower in RM than in

normal samples. Correlation analysis showed that ACTR2 was

significantly positively correlated with macrophage infiltration

while NCSTN was significantly negatively correlated with

macrophage infiltration. When we analysed the expression

patterns of ACTR2 and NCSTN in different immune cells in

the TISCH database, we found that both ACTR2 and NCSTN

were highly expressed in macrophages/monocytes. Taken

together, these results suggest that ACTR2 and NCSTN may

influenc e th e p rog r e s s i on o f RM by r e gu l a t i ng

macrophage infiltration.

In order to induce the overall immune tolerance of the

mother to the fetus and maintain immune reactivity to all other

foreign antigens, the maternal immune system needs to be

adjusted. These changes involve different immune cells and

cytokines. This process, in addition to immunomodulation,

also involves the destruction of uterine tissue, vascular

remodeling and placental formation to jointly ensure the

establishment, maintenance, development and termination of

normal pregnancy (67). Many studies have shown that
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unexplained recurrent abortions are related to immune factors.

Immune-related abortion can be divided into autoimmune RM

and alloimmune RM. The former is primarily seen in the setting

of antiphospholipid syndrome, while the latter is the result of

abnormalities in the number and function of immune cells.

Macrophages, which account for 20-30% of all leukocytes in the

decidua, can promote endometrial receptivity, uterine spiral

artery remodeling and trophoblast invasion by secreting a

variety of cytokines, including Th1 cytokines secreted by M1

macrophages and Th2 cytokines secreted by M2 macrophages.

The expression balance of Th1/Th2 plays an important role in

inducing the maternal immune system to tolerate the fetus (68).

Immune imbalance at the maternal fetal interface can lead to

immune system activation and an inflammatory reaction.

Inflammatory signals induce the expression of relevant tissue

factors such as endothelial cells and monocytes, which further

trigger the procoagulant response and produce a systemic

hypercoagulable state. From the perspective of potential

genetic factors and epigenetics, polymorphisms and variations

in genes regulating coagulation function and immune function

may be potential contributors to RM (69, 70). Anticoagulation

and immunotherapy have been shown to improve the

reproductive outcome of patients with cellular immune

abnormalities and thrombosis (71), and aspirin and heparin

are widely used to reduce the risk of recurrent abortion in

women with antiphospholipid syndrome (72). Recent studies

have shown that low-dose aspirin can inhibit excessive or

persistent inflammation at the maternal fetal interface of RM

patients by reducing the level of HMGB1 protein expressed by

the serum and dec idual macrophages (73) , Some

immunosuppressants, such as cyclosporine A, can achieve a

therapeutic effect by regulating interactions between immune

cells and inducing Th2 type immune bias at the maternal fetal

interface, which are conducive to pregnancy maintenance (74,

75). In order to determine the potential of macrophages as drug

targets related to the treatment of recurrent abortions, we

screened the DSigDB database for clinical agents that

specifically target 7 key RM genes. These 7 candidates targeted

3 different key RM genes, of which Alsterpaullone is a commonly

used clinical agent for the treatment of RM. A previous analysis

revealed that ACTR2 was significantly associated with

macrophage infiltration in RM and could be a key molecular

target for future RM drug treatments. We also found that

ciclosporin, a key drug in the clinical treatment of RM, can

target MBNL2, providing a hint as to its molecular role in the

treatment of RM.

In conclusion, we identified and validated seven signature genes

using macrophage marker genes that can be used as diagnostic

markers for RM. Of these, ACTR2 was significantly positively

correlated with macrophage infiltration in RM, while NCSTN was
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significantly negatively correlated with macrophage infiltration in

RM. The interrelationship between these candidate genes and may

influence RM progression through macrophage regulation.
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