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TRIM21 aggravates cardiac
injury after myocardial
infarction by promoting M1
macrophage polarization

Zhiqiang Li †, Xiangdong Liu †, Xingxu Zhang, Wenming Zhang,
Mengmeng Gong, Xiaoming Qin, Jiachen Luo, Yuan Fang,
Baoxin Liu* and Yidong Wei*

Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Shanghai, China
Macrophage polarization followed by myocardial infarction (MI) is essential for

wound healing. Tripartite motif-containing protein 21 (TRIM21), a member of

E3 ubiquitin ligases, is emerging as a mediator in cardiac injury and heart failure.

However, its function in modulating post-MI macrophage polarization remains

elusive. Here, we detected that the levels of TRIM21 significantly increased in

macrophages of wild-type (WT) mice after MI. In contrast, MI was ameliorated

in TRIM21 knockout (TRIM21-/-) mice with improved cardiac remodeling,

characterized by a marked decrease in mortality, decreased infarct size, and

improved cardiac function compared with WT-MI mice. Notably, TRIM21

deficiency impeded the post-MI apoptosis and DNA damage in the hearts of

mice. Consistently, the accumulation of M1 phenotype macrophages in the

infarcted tissues was significantly reduced with TRIM21 deletion.

Mechanistically, the deletion of TRIM21 orchestrated the process of M1

macrophage polarization at least partly via a PI3K/Akt signaling pathway.

Overall, we identify TRIM21 drives the inflammatory response and cardiac

remodeling by stimulating M1 macrophage polarization through a PI3K/Akt

signaling pathway post-MI.

KEYWORDS

myocardial infarction, macrophage polarization, inflammation, tripartite motif-
containing protein 21, DNA damage
Introduction

Myocardial infarction (MI) is the most common cardiovascular disease, with high

morbidity and mortality (1, 2). Revascularization in the acute phase of MI is a primary

therapy to reduce cell death. Despite early intervention after MI to improve acute survival

rates, the long-term prognosis of these patients remains poor (3). The irreversible
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cardiomyocyte death triggers an excessive inflammatory

response, with the recruitment of immune cells, which can

precipitate adverse remodeling and heart failure (HF) (4).

After MI, abundant macrophages are recruited to the injury

site and peak at day 3 post-MI (5). These initially infiltrated

macrophages exhibit a proinflammatory phenotype (M1

macrophages) that promotes inflammatory response and clears

the necrotic debris. Then macrophages polarized into a

reparative phenotype (M2 macrophages) that accelerates the

extracellular matrix deposition and scar formation (6, 7).

Imbalanced macrophage polarization extends inflammatory

reaction, resulting in impaired wound healing and adverse

ventricular remodeling (8–11). Thus, revealing the underlying

mechanism of macrophage polarization after MI allows a better

understanding of the pathogenesis of MI and provides novel and

improved therapeutic targets.

Tripartite motif-containing protein 21 (TRIM21) is a

member of the tripartite motif protein family (TRIMs), which

contains E3 ubiquitin ligases (12). Extensive evidence has

established the crucial role of TRIM21 in a wide range of

biological processes, such as the innate immune response,

carcinogenesis, and cell autophagy (13–15). Genetic deficiency

of TRIM21 protects mice from transverse aortic constriction

(TAC)-induced cardiac oxidant response damage (16). It has

also been confirmed that TRIM21 regulates macrophage

polarization in bone marrow-derived macrophages (BMDMs)

(17). However, the effects of TRIM21 in post-MI macrophage

polarization and macrophage-related cardiac repair responses

are not fully established.

In the present study, we explored the role of TRIM21 during

the post-MI inflammatory response and clarified the molecular

mechanisms whereby TRIM21 regulates macrophage

polarization via the PI3K/Akt pathway.
Methods and materials

Data sources

The gene expression data of monocyte-derived macrophages

(MDMs) and bone marrow-derived macrophages (BMDMs)

treated with lipopolysaccharide (LPS) were obtained from the

Expression Omnibus Gene (GEO) website (http://www.ncbi.

nlm.nih.gov/geo/) , which provides high‐throughput

sequencing data freely. The dataset GSE147310 based on

platform GPL16791 (18) and GSE158889 based on platform

GPL13112 (19) were retrieved and are publicly available. In

dataset GSE147310, 10 MDM samples from healthy donors with

or without LPS treatment for 18 hours were analyzed (5

unstimulated vs. 5 LPS stimulated). For dataset GSE158889, 6

BMDM samples treated with or without LPS/IFNg for 12 hours

were selected (3 untreated vs. 3 LPS/IFNg treated). The TRIM

family gene expression profile was extracted using the R
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language for differentia l ly expressed gene (DEGs)

identification. The top 25 DEGs in the TRIMs family were

visualized in R language. Common and unique upregulated

TRIMs gene sets were identified via Venn diagrams (http://

bioinformatics.psb.ugent.be/webtools/Venn/).
Mice

C57BL/6J wild-type (WT) mice were purchased from Vital

River Laboratory Animal Technology Co. Ltd. (Beijing, China).

TRIM21 heterozygote knockout (TRM21+/-) mice were

generated as described previously (20). TRIM21 HZ mice were

crossed with WT mice and then crossed back to obtain

homozygous TRIM21 knockout (TRIM21-/-) mice. All animal

protocols were approved by the Ethics Committee of Shanghai

Tenth People’s Hospital of Tongji University School of Medicine

(Permit Number: SHDSYY-2020-1734), conforming to the Care

and Use of Medical Laboratory Animals Guidelines (Ministry of

Health, P. R. China, 1998).
MI model

The establishment of the MI model was conducted in

accordance with a previous description (21). Briefly, weight-

matched mice (~8 weeks) were anesthetized by inhaling

isoflurane (1-2%) and intubated with tracheal intubation. The

skin between the third and fourth intercostal spaces on the left

side of the mice was cut, and the muscle and pericardium were

separated layer by layer. The left anterior descending artery

(LAD) was carefully exposed and ligated with an 8-0 silk thread

immediately at the lower edge of the left atrial appendage. After

the operation, the chest was sutured with soluble stitches. Sham

mice were operated on with the same procedure without ligation

of the LAD. Heart tissues were collected at 1,3,5 and 7 days after

MI for subsequent experiments.
Echocardiography

After anesthet iz ing mice with 1–2% isoflurane,

echocardiography was conducted at 5 weeks with Vevo 2100

system (VisualSonics, Toronto, Canada) using an 18-30 MHz

transducer. The left ventricle parasternal long axis and mid

papillary muscle short axis were recorded for an average of 5

cardiac cycles. The left ventricular ejection fraction (LVEF),

fractional shortening (FS), interventricular septal end-diastole

(IVSd), interventricular septal end-systole (IVSs), left ventricular

internal diameter end diastole (LVIDd) and left ventricular

internal diameter end-systole (LVIDs) were measured by a

blinded operator.
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Cell culture and adenovirus infection

The murine macrophage cell line RAW264.7 was obtained

from ATCC (Manassas, VA, USA) and maintained in

Dulbecco’s modified Eagle medium (DMEM) containing 10%

fetal bovine serum (FBS) and 1% penicillin/streptomycin at 37°C

in a humidified 5% CO2 atmosphere. LV-TRIM21 and LV-green

fluorescent protein (GFP) were produced by GenePharma

(Shanghai, China) and used according to the manufacturer’s

introductions. RAW264.7 cells were infected with LV-TRIM21

and LV-GFP at a multiplicity of infection (MOI) of 100 particles

per cell for 12 hours. The PI3K inhibitor, LY294002, was

purchased from Beyotime (Shanghai, China).
BMDMs preparation and polarization

BMDMs were isolated from femurs and tibias of female mice

(~6 weeks) as previously described (22). DMEM containing 10%

FBS (Gibco, Gaithersburg, USA) and 20 ng/mL of macrophage

colony-stimulating factor (MCSF, Sino Biological Inc, Beijing,

China) was used to differentiate BMDMs. BMDMs were stained

with F4/80 (1:200 dilution Abcam, Cambridge, MA, USA) with

>90% positive staining to examine the extraction efficiency.

Lipopolysaccharide (LPS, 10 ng/mL, Beyotime) was used to

stimulate the BMDMs into M1 macrophages at 7 days.
Primary cardiac fibroblasts isolation

Hearts were isolated from neonatal mice, minced into small

pieces, and digested with collagenase II for 4 times 10 minutes

each. Cells were collected by centrifugation and strained through

a 70 mm filter. After being plated on 6-cm dishes for 1 hour,

adherent cells were maintained in DMEM supplemented with

20% FBS in a humidified atmosphere at 37 °C and 5% CO2.
Wound-healing scratch assay

Cardiac fibroblast migration was analyzed using a wound-

healing scratch assay. After synchronizing overnight in DMEM

containing low serum medium (0.1% FBS), we used a sterile

pipette tip to create a linear scratch and cells were treated with

different conditioned mediums from RAW264.7 for 24 h.

Wound area changes were quantified at 0 and 24 h by Image J.
RNA-Seq

Total RNA from BMDMs of WT (n=3) and TRIM21-/-

(n=3) mice treated with 10 ng/mL LPS for 12 hours was
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extracted with TRIzol and sequenced with an Illumina

HiSeqTM 2500. We analyzed DEGs using the limma R

package with absolute log fold change >1.5 and p-value<0.05.

The overall distribution and DEGs were visualized with volcano

map and heatmap, respectively. Enrichment of biological

pathways was conducted by the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis.
Masson trichrome and H&E staining

After 35 days of MI, heart tissues were obtained from 1 mm

below the ligation to the apex, cut into sections (5 mm thickness),

and embedded with paraffin. The infarcted area was detected

with Masson Trichrome with hematoxylin and eosin (H&E)

staining kit (Solarbio, Beijing, China) following the

manufacturer’s instructions. The images were recorded with a

microscope (Olympus, Tokyo, Japan), and the infarcted size was

calculated with ImageJ software.
Immunofluorescence staining

Heart tissues and macrophages were fixed and permeabilized

with 4% paraformaldehyde containing 0.1% Triton X-100 for

10 min at 4°C. After blocking with 5% bovine serum albumin

(BSA) for 30 min, the slides were then incubated with primary

antibodies against TRIM21 (1:100 dilution, Santa Cruz, CA,

USA), F4/80 (1:200 dilution Abcam), g-H2AX (1:200 dilution,

Abcam), iNOS (1:200 dilution, Cell Signaling Technology, CST,

Danvers, MA, USA), and Arg1 (Proteintech Group, Chicago, IL,

USA) at 4°C overnight and Alexa Fluor 488/594-conjugated

secondary antibodies for 1 hour at room temperature. Apoptosis

cells were stained with a terminal deoxynucleotidyl transferase-

mediated dUTP nick end labeling (TUNEL) apoptosis detection

kit (Roche, Mannheim, Germany). Nuclei were stained with

DAPI. Images were obtained with fluorescence microscopy, and

positive cells and the relative mean fluorescent intensity of six

random fields were analyzed with Image J.
RNA isolation and quantitative real-time
polymerase chain reaction

Total RNA from the heart tissue homogenates and cells was

extracted with TRIzol reagent (Invitrogen, Carlsbad, CA), and

reverse transcription was performed with the PrimeScript RT

Reagent Kit (Takara Biotechnology, Dalian, China).

Quantitative real-time polymerase chain reaction (qRT-PCR)

was completed with Hieff® qPCR SYBR Green Master Mix (No

Rox) (Yeasen, Shanghai, China) in a LightCycler 480 Real-time

PCR System (Roche) according to the manufacturer’s

introduction. Primer sequences used in the study are shown in
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https://doi.org/10.3389/fimmu.2022.1053171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1053171
Supplement Table 1. All calculations of relative target gene

expression were conducted by the 2-DDCt method with

normalization to GAPDH expression (23).
Western blot

Proteins from LV tissues and cells were extracted in RIPA

buffer and quantified with a BCA protein assay kit. Then, the

extracts were separated with SDS-PAGE and transferred to a

PVDF membrane (Millipore, Billerica, MA, USA). Next, the

membrane was blocked with 5% nonfat milk containing 0.1%

PBST for 1 hour at room temperature and subsequently

incubated with primary antibodies overnight at 4°C. After

washing with PBST and incubating with the appropriate

secondary antibody, the bands were visualized using ECL

Western Blotting Detection Reagent (Tanon, Shanghai, China).

Primary antibodies used in the study are listed as follows:

TRIM21 (Abcam), F4/80 (Abcam), Bcl-2 (CST), Bax (CST), g-
H2AX (Abcam), iNOS (CST), and Arg1 (Proteintech Group,

Chicago, IL, USA) phosphatidylinositol 3 kinase (PI3K, CST), p-

PI3K (CST), protein kinase B (AKT, CST), p-Akt (CST), b-actin
(CST), Vinculin (Santa Cruz) and glyceraldehyde-3-phosphate-

dehydrogenase (GAPDH, CST).
Statistical analysis

Data are presented as means ± standard deviations. Data

normality was determined by the Shapiro-Wilk test. Analysis

between two groups was conducted with two-tailed Student’s t-

tests, whereas data from three or more groups were compared

using one-way ANOVA followed by the Bonferroni post hoc test.

Nonparametric data were analyzed with the Mann-Whitney U

test from 2 groups or the Kruskal-Wallis test with the Dunn post

hoc test from multiple groups. Kaplan–Meier method and log-

rank test were applied to analyze the survival rate changes. All

analyses were performed with GraphPad Prism 7.0 (Graph Pad

Prism Software, Inc, San Diego, CA) and SPSS 20.0 (SPSS Inc.,

Chicago, IL, USA). A two-sided P value<0.05 was considered

statistically significant. (*P<0.05, **P<0.01, and ***P<0.001).
Results

TRIM21 expression is highly increased in
the infarct area after MI and in
macrophages exposed to LPS

TRIMs family has been proven to mediate the functions of

macrophage and inflammatory response (24–28). To this end,

we first searched two GEO databases of macrophages stimulated
Frontiers in Immunology 04
with LPS (Supplement Figure 1). We found that the TRIM21

expression was increased in both GEO databases (Figures 1A, B).

Next, we tested TRIM21 expression in MI tissues. Interestingly,

with the permanent ligation of LAD, the mRNA and protein

levels of TRIM21 were abundantly expressed in the infarct area

on day 3 after MI and decreased to normal levels on day 7 after

MI (Figures 1C, D). To confirm this finding, we conducted

double immunofluorescence staining for TRIM21 and F4/80

(macrophage marker) in the infarcted hearts and observed that

TRIM21+ F4/80+ cells 4- to 5.5-fold higher in the MI group

(Figure 1E). These observations indicate that TRIM21 might

play a role in macrophage-regulated inflammation after MI. To

verify this hypothesis, we explored the expression of TRIM21 in

vitro using BMDMs treated with LPS (Figure 1F). After exposure

to LPS, inducible nitric oxide synthase (iNOS) levels were

gradually increased, suggesting the successful inducement of

M1 macrophages. Similarly, the mRNA and protein expression

of TRIM21 was also increased in a time-dependent manner

(Figure 1G, H). These data indicate that the expression of

TRIM21 in macrophages is closely associated with MI.
TRIM21 deficiency improves infarct size
and cardiac function after MI

To investigate the function of TRIM21 post-MI, we

generated TRIM21 global knockout mice (TRIM21-/-) with the

TALEN technique (Supplementary Figure 2A). The TRIM21

construct interrupted by TALEN was detected with a digestion

assay and the cloned polymerase chain reaction (PCR) product

sequence. We also used western blot to ensure the successful

depletion of TRIM21 in the heart tissues (Supplement

Figures 2B, C). The mortality in TRIM21-/- mice was

significantly reduced than WT mice after LAD ligation,

especially from 1 to 7 days. After 5 weeks of MI, 7 of 13 WT

mice (54%) versus 11 of 16 TRIM21-/- mice (69%) survived

(Figure 2A). Measurements of cardiac function were collected

for TRIM21-/- and WT mice at 5 weeks after MI. Under normal

conditions, loss of TRIM21 did not induce any morphological or

functional changes compared to Sham animals (WT-Sham

group). However, LVEF in the WT group was severely

reduced post-MI, whereas the LVEF in TRIM21-/- mice was

significantly preserved. Similarly, the functional deterioration

reflected by FS, IVSd, IVSs, LVIDd, and LVIDs was also

significantly improved after MI in the TRIM21-/- group

compared with WT group (Figures 2B, C). Consistent with

functional data, TRIM21-/- mice exhibited less irregular

morphology, broken fibers, inflammatory cells, and infarct size

than WT mice, corroborated by H&E and Masson staining at 35

days in post-MI (Figure 2D). These data suggest that TRIM21 is

closely associated with cardiac injury in MI and that the absence

of TRIM21 improves cardiac function after MI.
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TRIM21 deficiency attenuates cell
apoptosis and DNA damage

We next explored whether TRIM21 deficiency altered cell

apoptosis and DNA damage in the scar areas. TUNEL staining
Frontiers in Immunology 05
revealed that TRIM21-/- hearts had substantially decreased

apoptotic cells on day 3 post-MI (Figure 3A). As expected, the

ratio of Bcl-2/Bax was markedly exaggerated in TRIM21-/- mice

compared to WT hearts in the infarcted area. (Figure 3C).

Moreover, we observed increased DNA damage and higher
frontiersin.or
A
B

D

E

F G

H

C

FIGURE 1

Increased TRIM21 expression after MI and in macrophages by LPS. (A) Comparison of upregulated DEGs in GSE147310 and GSE158889
microarray indicates the intersecting gene of TRIM21. (B) TRIM21 expression treated with or without LPS in GSE147310. Relative TRIM21 mRNA
(C) and protein (D) levels in the infarcted areas of heart tissues following MI at day 1, 3, 5, and 7, as compared with Sham group. n = 2 mice/
group pooled from 3 independent experiments. (E) Representative Masson Trichrome staining (left) and immunostaining (right) of TRIM21 (red),
F4/80 (green) and DAPI (blue) in the hearts of sham and MI groups (3 days after MI). Scale bar: 20 mm. n = 2 mice/group pooled from 3
independent experiments. (F) Representative images of BMDMs stimulated by PBS and LPS. Relative iNOS and TRIM21 mRNA (G) and protein
(H) levels in BMDMs with LPS treatment for 1h, 3h, 6h, 12h, and 24h as compared with control group. Data are representative of 3 independent
experiments. n = 3 sets of cells/group. *P<0.05, **P<0.01, and ***P<0.001.
g
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protein levels of the DNA damage maker (g-H2AX) after MI.

However, the number of g-H2AX+ cells and the expression of g-
H2AX were lower in the infarcted zone of TRIM21-/- hearts

compared to that observed in sham-operated mice (Figures 3B,

C). These data reveal that TRIM21 deficiency may protect against

post-MI-related cell apoptosis and DNA damage processes.
TRIM21 deficiency suppresses the
production of proinflammatory factors
and M1 macrophage polarization in vivo

To clarify the impact of TRIM21 on macrophage

polarization, we analyzed the expression of macrophage
Frontiers in Immunology 06
phenotype markers in TRIM21-/- hearts. The number of F4/

80+iNOS+ cells was significantly attenuated in the TRIM21-/-

mice as compared with WT-MI hearts (Figure 4A). In contrast,

F4/80+Arg1+ M2 macrophages were increased in the TRIM21-/-

group compared with WT mice post-MI (Figure 4C). Moreover,

the mRNA levels of M1 biomarkers iNOS, TNF-a, and IL-6 were
significantly decreased in TRIM21-/- mice, while the levels of M2

biomarkers Arg1, Ym-1, and IL-10 were markedly increased in

TRIM21-/- compared with WT mice on day 3 post-MI

(Figures 4B, D). Similar protein expression patterns of iNOS

and Arg1 were observed in the WT and TRIM21-/- heart tissues

post-MI (Figure 4E). These data indicate that TRIM21 deficiency

accelerates M2 macrophage polarization with reduced M1

polarization in post-MI hearts.
A

B

D

C

FIGURE 2

TRIM21 deficiency alleviates MI-induced changes in the cardiac structure and preserves cardiac function. (A) Survival rates after MI in WT and
TRIM21 knockout (TRIM21-/-) mice. (B) Representative echocardiographic images of WT mice and TRIM21-/- mice 3 days after sham operation or
LAD ligation. (C) Quantification of the left ventricular ejection fraction, left ventricular fractional shortening, left ventricular end-systolic internal
diameter, and end-diastolic internal diameter. For (B, C), n = 7–11 mice/group pooled from 2 independent experiments. (D) Representative H&E
staining and Masson Trichrome staining of the cardiac tissue sections of WT mice and TRIM21-/- mice 3 days after sham operation or LAD ligation.
Scale bar: 1 mm. Data are representative of 3 independent experiments. n = 2 mice/group. *P<0.05, **P<0.01.
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Effects of TRIM21 overexpression on
macrophage polarization in vitro

To determine the molecular link between TRIM21 and

macrophage polarization in more detail, we subjected TRIM21

lentivirus (LV-TRIM21) to overexpress TRIM21 in LPS-

stimulated RAW264.7 macrophages (Figure 5A). Western blot

and qRT-PCR confirmed that LV-TRIM21 transfection

significantly increased the expression of TRIM21 (Figure 5B).

As shown in Figure 5C, LPS elicited upregulation of iNOS+ cells

in LV-GFP-stimulated RAW264.7 was significantly increased by

TRIM21 overexpression. Similarly, LPS stimulation markedly

increased the protein levels of iNOS, and TRIM21

overexpression significantly promoted iNOS levels compared

with the LV-GFP-transfected controls (Figure 5D). Contrary to

the observation in the TRIM21-/- mice, TRIM21 overexpression

significantly increased the mRNA levels of M1 biomarkers iNOS,
Frontiers in Immunology 07
TNF-a, and IL-6 (Figure 5E) with LPS exposure. Therefore,

these findings suggest that TRIM21 is responsible for the M1

polarization of macrophages.
TRIM21 regulates the PI3K/Akt pathway
in vivo and in vitro

To verify the exact mechanism of TRIM21 in macrophage

polarization, we performed RNA-seq of LPS-stimulated

BMDMs isolated from WT and TRIM21-/- mice. As shown in

Figure 6A, TRIM21 deficiency increased 81 genes and decreased

170 genes in LPS-treated BMDMs compared to the WT group.

The DEGs between the control and LPS group is presented as a

heatmap in Figure 6B. KEGG function analysis indicated that

differentially down-regulated genes were highly enriched in the

PI3K-Akt signaling pathway, pathways in cancer, focal adhesion,
A

B

C

FIGURE 3

TRIM21 deficiency decreased MI-induced apoptosis and DNA damage. (A) Immunofluorescence staining and positive cell-count results of
TUNEL in the heart tissues. (B) Representative double-fluorescent immunostaining images of g-H2AX and a-actinin. The positive g-H2AX (g-
H2AX+) cell areas were quantified (right). (C) Bcl-2, Bax, and g-H2AX protein expressions at day 3 post-MI in the infarct zone isolated from WT
and TRIM21-/- mice. For A-C, data are representative of 3 independent experiments. n = 2 mice/group. *P<0.05, **P<0.01, and ***P<0.001.
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calcium signaling pathway, regulation of actin cytoskeleton,

Rap1 signaling pathway, cytokine and cytokine receptor,

ECM-receptor interaction, and human papillomavirus

infection (Figure 6C). Concerning that the PI3K-Akt signaling

pathway is associated with M1 macrophage polarization and
Frontiers in Immunology 08
TRIM21 expression (29, 30), we then focused on the PI3K-Akt

signaling pathway.

We first investigated the expression of the PI3K/Akt

pathway in vivo. Expression of p-PI3K and p-Akt protein was

significantly increased at 3 days after MI, whereas TRIM21
frontiersin.org
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FIGURE 4

TRIM21 deficiency mediates macrophage polarization in the infarct infarcted zone at day 3 post‐MI. Representative double-fluorescent
immunostaining images of F4/80 and iNOS (A) and F4/80 and Arg1 (C). The double‐positive iNOS and F4/80 (iNOS+/F4/80+) areas of M1
macrophages and Arg1 and F4/80 (Arg1+/F4/80+) M2 macrophages were quantified (right) Scale bar:50 mm. (B) Gene expression of iNOS, TNF-a,
and IL-6 in heart tissues isolated from infarct border zone at day 3 after MI. n = 2 mice/group pooled from 3 independent experiments. (D) Gene
expression of Arg1, Ym-1, and IL-10 in heart tissues isolated from infarct zone at day 3 after MI. n = 2 mice/group pooled from 3 independent
experiments. (E) iNOS and Arg1 protein expression at day 3 post-MI in the infarct zone isolated from WT and TRIM21-/- mice. n = 2 mice/group
pooled from 3 independent experiments. *P<0.05, **P<0.01, and ***P<0.001.
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depletion suppressed p-PI3K and p-Akt levels in MI hearts

(Figure 7A). Next, we examined the levels of p-PI3K and p-

AKT in RAW264.7 cells treated with LPS. In contrast to

observation in vivo, TRIM21 overexpression further increased

the levels of p-PI3K and p-Akt with LPS stimulation compared

with LV-GFP-transfected controls (Figure 7B). We further used

a PI3K inhibitor, LY294002, to suppress the expression of PI3K

and p-PI3K. Treatment with LY294002 reversed the elevated p-

PI3K and p-Akt levels induced by TRIM21 overexpression

(Figure 7C). In line with this, M1 macrophage polarization

marker levels induced by TRIM21 overexpression were

eliminated with the inhibition of P13K (Figure 7D). On a

functional level, we performed a wound-healing scratch assay

to assess the effects of TRIM21 overexpression in RAW264.7

cells on the migration of cardiac fibroblasts. Macrophages were

exposed to LPS after TRIM21 overexpression with or without

PI3K inhibitor for 12 h, and the conditioned medium was

collected. Notably, conditioned medium from TRIM21-

overexpression RAW264.7 cells decreased the effects in

stimulating cardiac fibroblast migration. Blocking PI3K by

adding PI3K inhibitor to the culture medium alleviated the

function of TRIM21 overexpression (Figure 7E). Therefore,

these data indicate that TRIM21 promotes M1 macrophage

polarization and macrophage-related function partly via the

PI3K/Akt pathway.
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Discussion

During the MI process, a host of M1 macrophages infiltrate

into infarcted areas and provoke the initial inflammatory

response. Appropriate inflammation after MI is critical for

heart repair. However, an excessive inflammatory response

collectively inflicts damage on cardiac remodeling. We present

evidence that implicates the effects of TRIM21 in macrophage

polarization post-MI. We determine that TRIM21expression

peaks in the infarcted heart on day 3 after MI. Loss of

TRIM21 protected the heart from MI-related cardiac

dysfunction, cell apoptosis, DNA damage, and inflammatory

response. Instead, inhibition of PI3K/Akt pathway alleviates M1

phenotype in TRIM21 overexpression macrophages, suggesting

that TRIM21 influence macrophage polarization by the PI3K/

Akt pathway after MI.

Tripartite motif-containing proteins (TRIMs) are a large

family of E3 ubiquitin ligases containing three highly conserved

domains, namely a RING (Really Interesting New Gene) finger,

one or two B -box domains, and a coiled-coil domain (31).

TRIMs family contains more than 70 members and participates

in multiple cellular cascades, including the immunity response,

tumor progression, and autophagy (14, 32–34). Recently, the

effects of TRIMs on myocardial ischemia were explored. For

example, the upregulation of TRIM44 by non‐coding RNA
A

B

D E

C

FIGURE 5

TRIM21 overexpression induces macrophage polarized into M1 phenotype in RAW264.7 cells. (A) Representative images of RAW264.7 cells
transfected with lentivirus targeting the TRIM21 gene (LV-TRIM21) or negative lentivirus (LV-GFP). The protein levels of TRIM21 and Flag (A) and
the mRNA of TRIM21 (B) in RAW264.7 cells. (C) Representative images of iNOS staining in LPS-stimulated RAW264.7 cells transfected with LV-
TRIM21 or LV-GFP. Scale bar: 200 mm. (D) The protein level of iNOS and mRNA levels of iNOS, IL-6 and TNF-a (E) in LPS-stimulated RAW264.7
cells transfected with LV-TRIM21 or LV-GFP. For (A-E), data are representative of 3 independent experiments. n = 3 sets of cells/group. *P<0.05,
**P<0.01, and ***P<0.001.
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hypoxia‐inducible factor 1a (HIF1A) ‐antisense RNA 2 (HIF1A‐

AS2) is associated with cardiac cell apoptosis, migration, and

invasion in hypoxia-treated human cardiomyocytes (35).

TRIM72 levels are increased in MI and are positively related

to Global Registry of Acute Coronary Events (GRACE) scores

(36). Moreover, TRIM72 deficiency exacerbates ischemia-

reperfusion injury (I/R)-induced myocardial damage, and

overexpression of TRIM72 alleviates cardiac dysfunction after

MI (37, 38). TRIM33 aggravates I/R-related reactive oxygen

species (ROS) and cardiac damage by promoting glutathione

peroxidase 1 (glutathione peroxidase 1, GPX1) ubiquitination

and proteasome-dependent degradation (39). However, the role

of TRIMs family in regulating macrophage polarization after MI

remains unclear.

Cardiomyocyte apoptosis is a major contributor to cardiac

dysfunction after MI (40–42). TRIM21 levels are increased in

various diseases and are associated with cell apoptosis. For

instance, enhanced TRIM21 expression was found in HT22

hippocampal neurons with oxygen-glucose deprivation/

reoxygenation (OGD/R) stimulation (43). Depletion of
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TRMI21 al leviated OGD/R-induced cel l apoptosis ,

inflammation, and oxidative stress in HT22 cells. We

speculated whether TRIM21 could mediate the cell apoptosis

process in the heart. As confirmed by TUNEL staining, cell

apoptosis in TRIM21-/- mice were dramatically reduced

compared with that in WT mice. This was also determined by

the increased Bcl-2/Bax protein ratio. In addition, MI induces

reactive oxygen species (ROS) production and DNA damage,

which culminates in cell necrosis and inflammatory response

(44, 45). In the present study, we found that DNA damage in the

infarcted heart of TRIM21-/- mice was significantly decreased

after MI, as indicated by the DNA damage maker, g-H2AX.

Consistent with our findings, it was also proven that g-H2AX

was reduced after TAC in TRIM21-/- mice, which indicated

attenuation of oxidative stress by TRIM21 loss (16). Guha et al.

identified that UV radiation-induced DNA damage enhanced

TRIM21 expression, which further triggered the proteasomal

degradation of HuR (46, 47). With the development of cell

apoptosis and DNA damage after MI, cardiac structure and

function were disrupted. In line with these findings, we revealed
A

B

C

FIGURE 6

RNA-seq results of LPS-treated BMDMs with or without TRIM21 depletion (A) Volcano plot of DEGs between WT and TRIM21-/- in BMDMs
treated with LPS for 12 h. Red color indicates genes that are upregulated and blue color indicates downregulated genes. (B) Heatmap of color-
coded expression levels of DEGs. (C) Top 10 KEGG down regulated signaling pathways.
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that TRIM21 depletion improves scar formation, cardiac

function, and mouse survival. These data indicate that

TRIM21 is an essential regulator after MI.

Macrophage polarization is a critical but poorly understood

process in the proinflammatory phase of MI (48). Following MI,

the depletion of macrophages causes increased necrotic cells,

neutrophil accumulation, and reduced collagen deposition,

leading to infarct expansion (49, 50). For instance,

interruption of C-C chemokine receptor 2 (CCR2), AXL

receptor tyrosine kinase, and small mothers against

decapentaplegic 3(Smad3) signaling delayed macrophage

polarization from M1 to M2 phenotype macrophages,

resulting in an excessive inflammatory response and adverse

ventricular remodeling (9, 10, 51). TRIM21(Ro52/SS-A) is a

target autoantigen that plays a critical role in several systemic

autoimmune diseases, infectious diseases, and viral-induced

cardiac injuries (8, 14, 34, 52). Recently, Brauner et al. found

that TRIM21 was associated with the stability of atherosclerotic

plaques (53). TRMI21-/- mice fed a high-fat diet developed larger
Frontiers in Immunology 11
plaques with more clotting substances, which further increased

the stability of the plaque. Moreover, TRIM21 is more

abundantly expressed in macrophages than that in monocytes,

suggesting that it may play a critical role in initiating the

proinflammatory response in macrophages (54). Similarly, we

determined that the expression of TRIM21 in macrophages was

markedly increased and peaked at 3 days after MI.

Bioinformatics analysis from human MDMs and mice

BMDMs is consistent with our findings. Consistent with these

results, toll-like receptor 3 (TLR3) and TLR4 ligands can induce

the upregulation of TRIM21 in human THP1-derived

macrophages (55). Indeed, TRIM21 deficiency results in

decreased proinflammatory macrophages and subsequent

accumulation of reparative phenotype macrophages in

infarcted hearts. As expected, the overexpression of TRIM21

established a conversed result in vitro. Consistent with our

results, the expression of iNOS and IL6 in BMDMs derived

from TRIM21-/- mice was also significantly reduced (17).

Similarly, inhibition of TRIM21 inhibited M1polarization in
A

B
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E
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FIGURE 7

TRIM21 regulates macrophage polarization by the PI3K/Akt pathway. (A) The protein levels of TRIM21, p-PI3K, PI3K, p-AKT and AKT on day 3
post-MI in the infarct zone isolated from WT and TRIM21-/- mice. (B) The protein levels of TRIM21, p-PI3K, PI3K, p-AKT and AKT in LPS-
stimulated RAW264.7 cells transfected with LV-GFP or LV-TRIM21, (C) and in LV-GFP and LV-TRIM21 group treated with LY294002 or PBS after
LPS exposure. (D) The protein levels of iNOS (left) and mRNA levels of iNOS, TNF-a, and IL-6 (right) in LV-GFP and LV-TRIM21 group treated
with LY294002 or PBS. (E) Representative images and quantified results of gap closure of cardiac fibroblast cultured in conditioned medium
from LV-GFP and LV-TRIM21 macrophages treated with LY294002 or PBS macrophages after LPS exposure. For (A-E), data are representative of
3 independent experiments. n = 3 sets of cells/group. *P<0.05, **P<0.01, and ***P<0.001.
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LPS-stimulated BV2 microglia cells (56). These data indicate

that TRIM21 exerts a substantial impact on macrophage

polarization after MI.

We further uncover that TRIM21-regulated macrophage

polarization might be due to the PI3K/Akt pathway by RNA-Seq

(Figure 8). The PI3K/Akt pathway plays a vital role in regulating

macrophage survival, migration, and proliferation (57–59).

Phosphatase and tensin homolog (PTEN) suppress PI3K

activation by converting phosphatidylinositol-3,4-triphosphate

(PIP3) into phosphatidylinositol-3,4-biphosphate (PIP2), and

PTEN absence increases PI3K/Akt activity and inhibits LPS-

induced macrophage response (60). Moreover, the relationship

between TRIM21 and PI3K/Akt pathway has been proven before.

Lee et al. confirmed that Akt phosphorylated PFKP and suppressed

TRIM21-mediated degradation of PFKP, which promoted cancer

progression (61). Our results show that the ratio of p-PI3k/PI3K

and p-Akt/Akt increased in LPS-stimulated macrophages, which

was further increased by overexpressing TRIM21. Similarly, the

depletion of TRIM21 decreased the expression of p-PI3k and Akt.

Furthermore, we found that LY294002, a PI3K-specific inhibitor,

downregulated iNOS expression induced by TRIM21

overexpression, consistent with the results reported in previous

studies (62, 63). These data indicate that TRIM21 regulates M1

polarization of macrophages at least partly via the P13K/

Akt pathway.

In conclusion, our results suggest that TRIM21 is an

upstream regulator of macrophage polarization into the M1
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phenotype via the PI3K/Akt signaling pathway after MI, which

provides a novel therapeutic target in treating post-MI-related

inflammatory injury.

Limitations

In the present study, we determined how TRIM21 regulates

proinflammatory macrophage function post-MI. First,

concerning that the process of inflammation is complex and

varied and we performed TRIM21 loss in global KO mice, the

interaction between TRIM21 in other inflammatory cells and

post-MI response in the infarct area was not discussed. For

example, TRIM21 depletion can promote Th17 differentiation,

resulting in stable atherosclerotic plaques (53). Then,

macrophage polarization might be regulated by numerous

signaling pathways. Based on the results of RNA-seq, we

determined several signaling pathways that might involve in

the process of TRIM21-regulated macrophage polarization.

However, our study only focused on the role of the PI3K/Akt

pathway, the mechanisms of TRIM21 in macrophage function

and polarization by other pathways in the heart remain

further explored.
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SUPPLEMENTARY FIGURE 1

Differentially expressed of TRIMs family in LPS-stimulated macrophages.

Heatmap shows the log10 (normalized counts +0.01) of TRIMs family
from (A) GSE147310 and (B) GSE158889 microarray. Top 25 differentially

expressed genes (DEG) in (C) GSE147310 and (D) GSE158889 microarray.

Red represents high expression, blue means low expression.

SUPPLEMENTARY FIGURE 2

Establishment and verification of TRIM21 knockout in mice. (A)Diagram of

the partial TRIM21 gene body showing the TALEN (Transcription
Activator-Like Effector Nuclease) target sites (top), and DNA sequences

of the cloned polymerase chain reaction products in WT, TRIM21-/- and

TRIM21 heterozygous (TRM21+/-) mice (bottom). (B) Agarose gel images
of digestion products from WT and TRIM21KO mouse tail digested with a

T7E1 assay. (C)Western blot assay shows the level of the TRIM21 protein in
the WT and TRIM21-/- hearts. Data are representative of 3 independent

experiments. n = 2 mice/group.
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