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Renin-angiotensin system: The
underlying mechanisms and
promising therapeutical target
for depression and anxiety

Sizhu Gong and Fang Deng*

Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
Emotional disorders, including depression and anxiety, contribute considerably

to morbidity across the world. Depression is a serious condition and is

projected to be the top contributor to the global burden of disease by 2030.

The role of the renin-angiotensin system (RAS) in hypertension and emotional

disorders is well established. Evidence points to an association between

elevated RAS activity and depression and anxiety, partly through the

induction of neuroinflammation, stress, and oxidative stress. Therefore,

blocking the RAS provides a theoretical basis for future treatment of anxiety

and depression. The evidence for the positive effects of RAS blockers on

depression and anxiety is reviewed, aiming to provide a promising target for

novel anxiolytic and antidepressant medications and/or for improving the

efficacy of currently available medications used for the treatment of anxiety

and depression, which independent of blood pressure management.
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1 Introduction

Emotional disorders, including depression and anxiety, contribute considerably to

morbidity across the world (1). Anxiety disorders are the most common class of disorders

listed in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-

V), which are complex interactions between biological, psychological, temperamental,

and environmental factors (2). As a group, anxiety disorders represent a heterogeneous

group of illnesses that are characterized by excessive fear and anxiety, hypervigilance, and

related behavioral disturbances (3). Furthermore, anxiety is one of the most common

comorbid disorders with major depressive disorder (MDD) (4, 5). A large psychiatric

cohort study has reported that depression preceded anxiety in 18% of such comorbid
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cases, while in 57% of the cases anxiety preceded depression (5).

Comorbid anxiety and many core depression symptoms may be

caused by hyperactivity of the hypothalamic-pituitary-adrenal

(HPA) axis combined with amygdala dysfunction (4). The

amygdala is a key element of anxiety circuitry and produces

behavioral responses associated with fear and anxiety by

integrating information from sensory inputs in the cortex and

thalamus (6). Similarly, some neuroimaging studies have

reported enhanced amygdala glucose metabolism and

activation in patients with depression (7), and that depression-

associated anxiety is accompanied by an increase in amygdala

volume (8). First-degree relatives of individuals with anxiety

have an increased risk of developing anxiety disorders or

depression (9). Importantly, however, only 40–70% of patients

with depression respond to pharmacological treatment and

therapies often have a delayed onset (10), and anxiety

associated with depression often leads to reduced responses

and decreased compliance with pharmacotherapy (6).

Consequently, emotional disorders are a serious public health

issue, and identifying novel targets for their treatment is worthy

of further attention.

The role of the renin-angiotensin system (RAS) in

hypertension and emotional disorders is well established.

Evidence points to an association between elevated RAS

activity and depression and anxiety, partly through the

induction of neuroinflammation, stress, and oxidative stress

(11). Importantly, blocking RAS can have anti-inflammatory

and anti-oxidative stress effects, providing a theoretical basis for

future treatment of anxiety and depression. Captopril and

enalapril (angiotensin-converting enzyme inhibitors; ACEIs)

may rapidly improve depressive moods in hypertensive

patients (12). This has sparked significant interest in RAS

targets. The evidence for the positive effects of RAS blockers

on depression and anxiety is reviewed here to evaluate a

promising target for novel anxiolytic and antidepressant

medications. Furthermore, this knowledge may aid the

improvement of the efficacy of currently available medications

used for the treatment of anxiety and depression, which are

independent of blood pressure management.
2 Overview of RAS

RAS-blockers or RAS inhibitors are classes of medications

that block the renin-angiotensin axis, primarily inhibiting

angiotensin (Ang) II activity. Examples include ACEIs and

selective Ang II type 1 receptor blockers (ARBs) (13). The

most common ACEIs include captopril, enalapril, lisinopril,

perindopril, ramipril, and imidapril. The most common ARBs

include losartan, irbesartan, candesartan, telmisartan, and

valsartan. As effective first-line antihypertensive medications,

ACEIs and ARBs have been shown to minimize the risk of

cardiovascular and renal events as well as mortality (14). These
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mechanisms of action impact their effects on other pathways

and receptors, which may have therapeutic implications. For

example, ACEIs inhibit RAS activation by preventing the

conversion of Ang I to Ang II, resulting in reduced activation

of both Ang II type 1 (AT1/AT1) receptors and Ang II type 2

(AT2/AT2) receptors (15). Moreover, ACEIs prevent the

degradation of Ang-(1–7) by angiotensin-converting enzyme

(ACE), thereby the level increased due to a build-up caused by

the lack of degradation of Ang-(1–7) (15). Additionally, ACEIs

block the degradation of bradykinin, leading to activation of the

b-2 receptor and promotion of nitric oxide (NO) release with

vasodilatory and tissue-protective effects (13). One study showed

that ACEIs rapidly ameliorate depressive behaviors via the

bradykinin-dependent activation of the target of the

rapamycin complex (10). Unlike ACEIs, ARBs block RAS by

antagonizing the binding of Ang II to the AT1 receptor and

activating the AT2 receptors, thus producing insufficient Ang II

to elevate Ang-(1–7) level (16). High levels of Ang-(1–7) reduce

anxiety and depression behaviors, providing positive benefits

(see below). RAS blockers shift the balance to increase

circulating levels of Ang-(1–7), this may contribute to shunt

the ACE/Ang II/AT1 pathway toward the ACE2/Ang-(1–7)/

MasR pathway providing beneficial effects on mood

disorders (17).

Although RAS is widely acknowledged as a cardiovascular

circulation hormonal system, it is found in a variety of organs,

including the brain. The RAS is composed of two pathways that

are mutually antagonistic that maintain the balance through

angiotensin-converting enzyme 2 (ACE2): the classical pathway

angiotensin-converting enzyme/angiotensin II/angiotensin II

type 1 receptor (ACE/Ang II/AT1R) and the non-classical

pathway angiotensin-converting enzyme 2/angiotensin- (1–7)/

Mas receptor (ACE2/Ang-(1–7)/MasR).
2.1 Classical pathway: ACE/Ang II/AT1R

The classical pathway contains renin, angiotensin (Ang) II,

angiotensin-converting enzyme (ACE), angiotensin II type 1

receptor (AT1R/AT1R), and angiotensin II type 2 receptor

(AT2R/AT2R). Renin is an aspartyl protease typically produced in

the juxtaglomerular cells of the kidney, and it cleaves

angiotensinogen (ATN, an inactive peptide formed and secreted

by the liver) to produce angiotensin I (Ang I). Ang I has few

physiological effects and produces Ang II as a substrate for ACE.

Ang II exerts several physiological effects: constriction of blood

vessels, stimulation of aldosterone secretion, and release of

catecholamines. Ang II acts by binding to the AT1R and AT2R.

When Ang II activates the AT1 receptor, it causes neurotoxicity,

such as vasoconstriction, pro-inflammatory, apoptotic, and anti-

diuresis. Furthermore, increased circulating levels of Ang II disrupt

blood-brain barrier (BBB) integrity, allowing circulating Ang II to
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access the brain parenchyma and trigger the AT1R directly,

producing oxidative stress and brain inflammation (18). AT2R is

activated by Ang II and may counterbalance AT1R neurotoxic

effects and determine a neuroprotective role in RAS activation, such

as vasodilation, diuresis, anti-fibrosis, antihypertensive, and

cognitive improvement. AT2R activation is important in blunting

the negative effects of AT1R, such as neuroinflammation and

oxidative stress (19). However, evidence shows that AT1 receptors

predominate in adult tissues and AT2 receptors predominated in

the developing brain (20).
2.2 Non-classical pathway:
ACE2/Ang-(1–7)/MasR

The non-classical axis is neuroprotective and composes

angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas

receptor axis (ACE2/Ang-(1–7)/MasR). The non-classical axis

exerts neuroprotective effects, such as promoting the release of

NO and promoting anti-inflammatory, anti-fibrotic, and

vasodilatation effects. In the brain, all components of the

ACE2/Ang-(1–7)/MasR axis are expressed. ACE2 correlates

with AT1R and Ang II levels and ACE2 overexpression results

in the downregulation of AT1R and increases the expression of

AT2R and MasR. As a homologous enzyme of ACE, ACE2 is

found in the hippocampus and cerebral cortex that cleaves Ang

II to produce Ang-(1–7), which activates the Mas receptor and

produces an inverse regulation of the ACE/Ang II/AT1 pathway

(21, 22). Ang-(1–7) generated in the rat hippocampus has been

reported (23). As for the Mas receptor, it was a G protein-

coupled receptor specific for Ang-(1–7), which is expressed in

brains and other different organs, including the hippocampus,

amygdala, and cortex (21).
3 The relationship between RAS and
depression/anxiety

In addition to the systemic RAS, all the components of the RAS

independently exist in the brain involving the pathophysiology of

depression and anxiety. Hyperactivation of the ACE/Ang II/AT1R

classical pathway accelerate the disease process via activated AT1R,

while AT2R plays a protective role (24). We will discuss the

evidence and mechanisms of RAS involvement in depression and

anxiety in this part (Figure 1A) (Table 1).
3.1 ACE/Ang II/AT1R and
depression/anxiety

Angiotensinogen is the glycoprotein precursor of angiotensin

II. Voigt et al. were the first time to describe transgenic rats with
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low brain angiotensinogen behavioral phenotype as characterized

by increased anxiety-related behaviors (41). Subsequently, studies

showed low angiotensinogen concentration in the brain leads to

anxiety-like behaviors accompanied by a depression-like

state (25).

Ang II was previously discovered as a pro-hypertensive factor

present in areas of the brain associated with cardiovascular and

has recently been found to be associated with motor activity,

anxiety, learning, and memory (20). Additionally, increased Ang

II level is significantly associated with depression, anxiety,

hyperactivity of the HPA axis, and stress (28, 42). For instance,

treatment with Ang II for 14 consecutive days had significant

anxious-like behaviors and bidirectional synaptic plasticity

impairment, and increase expression of GABAARa1 (g-
aminobutyric acid A receptor) (27). Administered Ang II for 3

weeks induced cognitive impairment and anxiety-like behaviors as

shown by spending less time in the four center squares in the open

field tests (OFT) (26). Telmisartan and imipramine reversed

chronic Ang II infusion-induced behavioral changes, including

changes in TST and forced swimming test (FST) (28). Losartan

microinjects into the hippocampus CA1 region showed an

anxiolytic-like effect in bilateral olfactory bulbectomy rats (OBX,

rat model of depression), indicating the involvement of Ang II in

the pathogenesis of anxiety by activating AT1R (42). Whereas

microinjections Ang II (0.1,0.5,1.0µg) into the CA1 hippocampal

area, at a dose of 0.1µg shows some anxiolytic effects manifested as

an increasing number of entries into the open arms in the elevated

plus maze (EPM) (29). The results are inconsistent with previous

studies, but there may be anxiolytic and anxiety effects of Ang II in

a dose-related U-shaped manner.

Furthermore, hyperactivation of AT1a receptors is associated

with promoting anxiety-like behaviors in the brain (31). Deletion

of AT1a receptors (AT1a−/−) from the paraventricular nucleus

(PVN) attenuated anxiety-like behaviors in rodents as manifested

by increased time spent in the open arms of the EPM (31).

Further, (AT1a−/−)mice reduced flight behavior in the elevated T-

maze test (a model of anxiety and panic) and diminished fear

responses despite threat levels (30).

Chronically infused intracerebroventricular (i.c.v.) AT2

receptors agonist evokes anxiolytic-like effects (32). Treatment

with selective AT2 receptor antagonist PD123319 decreased the

open arms exploration in EPM and changed the pattern of

swimming during the FST (33). AT2 receptor-deficient mice

increased anxiety-like behaviors, which can be reversed by

captopril, and show no depression-like behaviors compared to

wild-type mice, providing a theoretical basis for ACEIs for the

treatment of emotional disorders (35). Recently, it was reported

that the modulatory role of the AT2 receptor in the development

of depressive-like behavior (43). Administration of AT2R

antagonist PD123319 into the prefrontal cortex reversed the

antidepressant effect of losartan (34), indicating AT2R has

positive effects on depression and anxiety.
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3.2 ACE2/Ang-(1–7)/MasR and
antidepressant/anxiolytic effect

Walther was the first to discover that the ACE2/Ang-(1–7)/

MasR pathway is associated with the development of anxiety,

demonstrating that upregulating ACE2 significantly improved

anxiety-like behaviors (40). ACE2 is essential for maintaining

the balance between ACE2/Ang-(1–7)/Mas receptor and the

ACE/Ang II/AT1R pathway. The main function of ACE2 is to

inhibit ACE activity by decreasing Ang II bioavailability and

increasing Ang-(1–7) levels. Thus, the overexpression of ACE2

not only is related to the upregulation of AT2R and Mas
Frontiers in Immunology 04
receptors but also to the downregulation of AT1R and ACE

(44). Elevated ACE2 activity decreases anxiety-like behaviors

and inhibits stress-induced activation of the HPA axis in male

mice (45). However, in female mice, increasing ACE2 expression

only produces anxiolysis without reversing HPA axis activity

(45). Consistent with the effect, central administration of

diminazen aceturate to mice, an ACE2 activator reduces

anxiety-like behaviors in EPM (36).

Ang-(1–7) is associated with reduced depressive and anxious

behaviors as a selective non-competitive antagonist of Ang II at type

1 Ang II receptors (46). Overexpression of circulation Ang-(1–7)

produced anxiolytic-like effects have been found in transgenic rats
B

C

A

FIGURE 1

(A) The overview of RAS and the role of the RAS in the pathophysiology of anxiety and depression. Notes: The blue dashed line pointed to the
positive effects, such as antidepressant-like and anxiolytic effects. Two key regulatory pathways: the classical axis ACE/Ang II/AT1 receptor
pathway and the non-classical pathway ACE2/Ang-(1–7)/Mas receptor pathway. Under physiological conditions, the two pathways regulated
each other and maintained a dynamic balance. Ang II aggravated oxidative stress and inflammation response by activating AT1R to upregulate
the ACE/Ang II/AT1R pathway, promoting the development of emotional disorders. Ang II activated non-classical pathways by activating AT2R
and MasR, producing antidepressant-like and anxiolytic effects. Thus, the beneficial effects of RAS blockers may be due to inhibiting oxidative
stress and inflammation by directly targeting Ang II and its AT1 receptor. Other potential targets of anxiolytic drugs include renin, ACE2, AT2
receptors, and Mas receptors. (B) RAS and oxidative stress in depression and anxiety Notes: The pro-inflammatory effects of Ang II were largely
mediated by increased oxidative stress. During inflammation, Ang II activated AT1R to promote the oxidative stress process by increasing NADPH
oxidase and iNOS activity in the BBB and PVN, resulting in an accumulation of ROS and NO and ultimately aggravating emotional disorders.
Antioxidant enzyme activity was decreased during oxidative stress, which was prevented by RAS blockers and antioxidants. Furthermore, Ang II
directly increased ROS generation and triggered lipid peroxidation, inhibited by RAS inhibitors and antioxidants. (C) HPA and RAS. Notes: The
type of stress caused HPA axis activation and increased the downstream hormones such as CRH, ACTH, and GC, eventually promoting anxiety
and depression. Stress increased Ang II levels, which in turn raised the expression of CRH mRNA, induced the release of ACTH and GC, and
enhanced the stimulatory effects of CRH through AT1R located in the pituitary and PVN. The absence of AT2 receptor transcription enhanced
the AT1 receptor expression in brain areas and was involved in regulating the HPA axis, which was associated with anxiety and depression.
Pretreatment with RAS blockers attenuated neuroendocrine responses, preventing the development of stress-induced anxiety/depression-like
behaviors. (C) RAS and oxidative stress in depression and anxiety. Notes: The pro-inflammatory effects of Ang II were largely mediated by
increased oxidative stress. During inflammation, Ang II activated AT1R to promote the oxidative stress process by increasing NADPH oxidase and
iNOS activity in the BBB and PVN, resulting in an accumulation of ROS and NO and ultimately aggravating emotional disorders. Antioxidant
enzyme activity was decreased during oxidative stress, which was prevented by RAS blockers and antioxidants. Furthermore, Ang II directly
increased ROS generation and triggered lipid peroxidation, inhibited by RAS inhibitors and antioxidants.
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TABLE 1 The relationship between RAS components and depression/anxiety.

RASComponent Compounds Species Mode of
Administration

Measure
Method

Main Findings Reference

ATN Low ATN TGR Anxiety/depression-
like behaviors↑

(25)

Ang II UMS rats 21 days OFT Anxiety-like
behaviors↑
Cognition↑

(26)

Adult C57 mice 14 days Anxiety-like
behaviors↑
Synaptic plasticity↓

(27)

Adult male C57BL/6 21 days TST
FST

Depressive−like
behaviors↑
HPA axis↑

(28)

Male SD rats Microinjected into
hippocampal CA1 0.1µg

EPM Anxiolytic-like (29)

AT1R (AT1A−/−)
mice

ETM Anxiolytic
Fear responses↓

(30)

(AT1A−/−)
mice in PVN

EPM
OFT

Anxiolytic (31)

AT2R Agonist
Novokinin

Male Wistar rats with
T1DM

ICV EPM
TMRA

Anxiolytic
Cognition↑
Spatial memory↑

(32)

Antagonist
PD123319

Male Wistar rats Microinjected into MeA
(100 nL/side)

EPM
FST

Anxiety-like
behaviors↑

(33)

Antagonist
PD123319

Male Wistar rats and
female C57BL/6 mice

FST Anxiety-like
behaviors↑

(34)

AT2R-deficient mice EPM
OFT

Anxiety-like
behaviors↑

(35)

ACE2 Male mice overexpressing
ACE2

EPM Anxiolytic (36)

Activator
diminazen
aceturate

C57BL/6 mice EPM Anxiolytic (36)

Ang-(1–7) Adult male TGR
(ASrAOGEN)

1µmol/µL EPM
FST

Anxiolytic
Anti-depressant

(25)

Adult male Wistar rats EPM Anxiolytic (37)

TGR rats (mRen2)27 1µL EPM
FST
NSF

Anxiolytic
Antidepressant

(38)

Adult male SD rats 0.5mg in 0.5mL OFT
EPM

Anxiolytic (39)

Mas Mas-deficient rats EPM Anxiety-like
behaviors↑

(40)

Antagonist
A-779

Male Wistar rats Microinjected into MeA
(100 nL/side)

EPM
FST

Anxiety-like
behaviors↑

(33)

A-779 C57BL/6 mice EPM Anxiety-like
behaviors↑

(36)
F
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ATN, angiotensinogen; UMS, unpredictable mild stress; OFT, open field test; FST, forced swim test; TST, tail suspension test; EPM, elevated-plus-maze; ICV, intracerebroventricular; AT2R,
AT2 receptors; AT1R, AT1 receptors; AT1aR, AT1a receptors; PVN, paraventricular nucleus; ↓, means decreased; ↑, means increased; TGR(ASrAOGEN), transgenic rats with low brain
angiotensinogen; TGR, transgenic rat; (AT1A−/−), AT1A receptor knockout mice; ETM, elevated T-maze; TMRA, T-maze rewarded alternation test; T1DM, type 1 diabetes mellitus; MeA,
medial amygdaloid nucleus; IP/i.p., intraperitoneally; LDB, light-dark box; NIH, novelty-induced hypophagia; NSF, novelty suppressed feeding; VCT, vogel conflict test; MasR, Mas
receptors; ACEI, angiotensin-converting enzyme inhibitors; ARB, angiotensin II receptor blockers.
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(37), which were manifested by increasing the percentage of time

spent and frequency of entries in the open arms and decreasing

stretching in closed arms of the EPM (38, 47). In addition,

overexpression of Ang-(1–7) reverses the increase in heart rate

associated with emotional stress and demonstrates less anxious

behaviors in transgenic rats (48). Low angiotensinogen levels in the

brain lead to anxiety-like behaviors and depression-like behaviors,

while intracerebroventricular administration of Ang-(1–7), selective

serotonin reuptake inhibitor fluoxetine, enalapril (ACEI) attenuated

behavioral changes in transgenic hypertensive rats, as shown by

spending a lower percentage of time in the open arms of EPM and

decreasing immobility time in FST (25, 38).

Centrally injecting the MasR antagonist reverses the ACE2

and Ang-(1–7)-induced anxiolytic effects, indicating the

anxiolytic effects of ACE2/Ang-(1–7)/MasR pathway due to

activate Mas receptors (36, 47). Pre-treatment with A779 (a

selective Mas receptor antagonist) enhances the anxiety-like

effects (38), showing decreases open arms exploration in the

EPM and changes the pattern of swimming during the forced

swim test (33). MasR-deficient mice influence hippocampal

synaptic plasticity and exhibit increased anxiety behaviors in

EPM (40). Taken together, the upregulation of the ACE/Ang II/

AT1R pathway accelerates the process of the emotional disorder

and the non-classical axis ACE2/Ang-(1–7)/MasR has

neuroprotective effects on emotional disorders.
3.3 RAS blockers-induced
mood-elevating effects

ACEIs and ARBs have been shown to have protective and

potential therapeutic benefits in mood disorders (49)(Table 2).

Saavedra et al. proposed that Ang II expression is associated with

mood disorders and that reducing brain Ang II levels might

decrease anxiety and depression in animal models (57). For

example, treatment with captopril had significant antidepressant

activity as shown by the forced swim-induced behavioral despair

(immobility) test in mice. In addition, it reversed escape deficits

in the learned helplessness model (55, 58). Studies in rodents

injected with losartan systemically and locally to the anterior

prefrontal cortex and medial amygdaloid nucleus have shown

antidepressant effects as evidenced by decreased immobility time

in the FST (33, 34).

Chronic administration of the ACEI perindopril has

anxiolytic effects on rats (56). Chronic cerebral hypoperfusion

induces ACE/Ang II/AT1R overexpression in the hippocampus

and causes anxiety. Candesartan and perindopril attenuate

anxiety-like behavior and improve memory impairment by

downregulating the ACE/Ang II/AT1R pathway and

upregulating the ACE2/Ang-(1–7)/MasR pathway in the

hippocampus (52). Ang II-induced rats spent significantly less

time in the open arms of the elevated plus maze (EPM), this

effect was abolished by the administration of valsartan and
Frontiers in Immunology 06
losartan (53, 59). Losartan effectively attenuated hyperactivity

and anxiogenic behaviors in mice as seen in the EPM, social-

interaction tests, and open field tests (OFT) (51) (50). Moreover,

telmisartan treatment prevented diet-induced anxiety-like

behaviors in behavioral tests (54).
4 Potential mechanisms of RAS
blockers-induced antidepressant/
anxiolytic effects

4.1 RAS-related gene and development
of depression

The main RAS-related gene polymorphisms are found in the

angiotensinogen gene, ACE, and the angiotensin 1 receptor

gene, which have alleles associated with high levels of Ang II,

high ACE activity, and elevated Ang II response, respectively.

The ACE insertion/deletion (I/D) polymorphism determines

functional variations of the ACE gene that significantly

influence ACE plasma concentrations, which account for 30–

40% of the variation in plasma ACE levels (60). Baghai et al.

investigated the genetic association between 35 single-nucleotide

polymorphisms (SNPs) and an I/D polymorphism in the ACE

gene. They reported that carrying the T-allele is correlated with

higher ACE serum activity, in which the highest ACE activities

are found in patients homozygous for the T-allele, and the lowest

is noted in patients homozygous for the A-allele (61). This

research indicates that enhanced ACE activity is associated with

depressive symptoms and increased susceptibility to affective

disorders (61). In addition, a study based on the Iranian

population showed that high serum ACE activity is associated

with the pathogenesis of depression (62). The GG genotype of

the A2350G polymorphism is associated with MDD and exhibits

significantly higher serum ACE activity than AA or AG.

Furthermore, certain variants of the ACE gene, such as the D

allele, are more frequently noted in patients with affective

disorders and associated with a higher risk of affective

disorders (63). The D allele may be associated with the

severity of depression in DD genotypes carriers of ACE I/D

polymorphism (64).

In fact, in individuals with depression, the ACE I/D

polymorphism is significantly associated with HPA axis

hyperactivity. Patients with depression carrying the D/D

variant of the ACE gene show considerably greater activation

of the HPA axis (65). Cortisol secretion is increased in patients

carrying homozygous T-alleles, showing higher HPA axis

activity (61). In addition, the I/D polymorphism of the ACE

gene is associated with both late-life depression and cortisol

secretion (66).

Polymorphisms of the RAS-related gene variants have also

been associated with a higher risk of depression (67). Saab et al.
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collected buccal cells from 132 patients with major depression

and their first-degree relatives (case controls) in Lebanon (67).

Their study showed that the angiotensin receptor type 1

(A1166C) CC genotype is more common in patients with

depression, indicating that the CC genotype is significantly
Frontiers in Immunology
 07
associated with depression (p=0.036) (67). A population-based

cohort study found the ACE gene (rs1799752) is associated with

the incidence of major depression in older individuals in

followed up for over 12 years (68). Moreover, variation in the

angiotensin II type 1 receptor has been linked with depression
frontiersin.org
TABLE 2 Anxiolytic/anti-depressant effect of RAS blockers.

RAS Com-
ponent

Compounds Species Mode of Administration Measure
Method

Main
Findings

Reference

ARB Losartan Male RHR (Wistar strain
albino rats)

5, 10 mg/kg q.d. orally OFT
EPM
SIT

Anxiolytic (50)

Male SHR 15 mg/kg/d for 2 months oral
gavage

NORT
OFT

Cognition↑
Neuroplasticity↑

(51)

Male Wistar
rats

10 mg/kg, i.p. OFT Anxiolytic
Cognition↑

(43)

Male Wistar rats Microinjected into MeA (100 nL/
side)

FST Anti-depressant (33)

Male Wistar rats; female
C57BL6/j mice

10, 30, 45 mg/kg, i.p. FST Anti-depressant
Cognition↑

(34)

Candesartan Male SHR 1 mg/kg/d for 4 weeks intragastric
administration

OFT
NORT
MWM

Anxiolytic
Cognition↑

(52)

Valsartan Male Wistar rats 10 mg/kg orally OFT
EPM
CAR
Chimney test

Anxiolytic
Cognition↑

(53)

Telmisartan C57 mice with high-fat diet 8 mg/kg q.d. Oral gavage OFT
OPRT
Barnes maze

Anxiolytic
CBF↑

(54)

Adult male C57BL/6 TST
FST

Anti-depressant (28)

AECI Captopril AT2R-deficient mice 0.1, 1.0 mg/kg, i.p. EPM
OFT

Anxiolytic (35)

Male Wistar A.F. rats 4, 8, 16, 32 mg/kg/day, i.p. Learned
Helplessness
Paradigm

Anti-depressant (55)

Enalapril Male RHR (Wistar strain
albino rats)

4 mg/kg q.d. orally OFT
EPM
SIT

Anxiolytic (50)

Perindopril Male SD rats 0.1, 1.0 mg/kg/d Water maze
EPM

Anxiolytic
Cognition↑
Spatial
memory↑

(56)

Male SHR 1 mg/kg/d for 4 weeks intragastric
administration

OFT
NORT
MWM

Anxiolytic
Cognition↑

(52)
FST, forced swim test; OFT, open field test; OBX, bilateral olfactory bulbectomy rats (a rat model of depression); SHR, spontaneously hypertensive rats; NORT, Novel-Object Recognition
Test; MWM, Morris Water Maze Test; SD rats, Sprague–Dawley rats; i.c.v., Intracerebroventricular; CAR, Conditioned Avoidance Responses; PFC, prefrontal cortex; RHR, renal
hypertensive rats; SIT, social interaction test; CBF, cerebral blood flow; OPRT, object place recognition test, TST, tail suspension test; FST, forced swimming test; MeA, medial amygdaloid
nucleus i.p., intraperitoneally; HBP, hypertensive patients.
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diagnosis and frontotemporal brain volumes (69). Two

haplotype-tagging SNPs, rs10935724 (p=0.0487) and

rs12721331(p=0.0082) showed statistically significant changes

in frequency between diagnostic cohorts (69).
4.2 RAS-related gene and depression
therapeutic outcome

Clinically, the ACE I/D polymorphism seems to influence

the therapeutic outcome in patients with depression, including

the onset of action of antidepressant pharmacotherapies and the

responses to selective serotonin reuptake inhibitors (SSRIs) (70),

which plays an important role in the individualized treatment of

depression. To investigate the impact of ACE2 gene variants on

the antidepressant efficacy of SSRIs, a randomized, controlled

trial was completed, involving 200 patients with newly diagnosed

depression who underwent fluoxetine or sertraline for 6 weeks,

along with ACE2 allele genotyping (71). The result showed that

the patients with GA and AA genotypes respond significantly

better to sertraline and confirm the role of G8790A in response

to some SSRIs (71). Elevated levels of substance P are associated

with mood symptoms, such as depression (72) and treatment

with substance P receptor antagonists has antidepressant

properties (73). DD allele carriers possessing higher ACE

activity can promote the degradation of substance P, which

may be related to having a positive impact on antidepressant

treatment efficacy (63, 72). Another study conducted a survey

among 313 patients with depression receiving various

antidepressant treatments and found patients with the D/D

and I/D genotypes have shorter hospitalization durations and

better treatment outcomes than those with the I/I genotype (74).

Surprisingly, when the 313 patients were classified by sex, the

ACE I/D polymorphism only influences the therapeutic

outcome in women with major depression, not men. This may

be due to the sex-dependent influence of the ACE I/D

polymorphism on therapeutic outcomes in antidepressant

therapies through the influence of gonadal hormones (74).

Based on this study, the D allele has a beneficial effect on the

onset of therapy for depression and can be used as a predictor of

faster onset of different antidepressant treatments, but the I-

allele seemed to have a delayed effect on therapy (74). Another

study enrolled 273 patients with MDD who received various

antidepressant treatments and assessed the severity of

depression with the Hamilton Depression Scale-17 (HAMD)

before and after 4 weeks of therapy (75). That study revealed that

patients carrying the D allele respond better to antidepressant

treatment than those carrying other genotypes (75). More than

70% of AT1 CC homozygotes have a 50% reduction in the

HAMD-17 scale within 4 weeks of antidepressant treatment,

implying that patients with a haplotype combining the CC and

DD/ID genotypes respond better to treatment than those with a

single allele (75). Although the therapeutic outcome in various
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genotypes is related to pharmaceutical variety, the findings

demonstrate that the ACE gene may generate varied

antidepressant effects.
4.3 RAS blockers inhibit
neuroinflammation

Inflammation is triggered by cellular damage caused by

infection or injury. The term “neuroinflammation” refers to an

immune-related process that occurs within the brain and spinal

cord as a result of harm induced by infection, psychological or

physical stress, or indirectly as a result of infection emerging in

the periphery (76). Subsequently, innate immune cells in the

brain (microglia, astrocytes, and oligodendroglia) are activated

in response to inflammatory stimuli including the production of

cytokines, chemokines, and secondary inflammatory mediators

such as prostaglandins (77).

The brain lacks T- and B-cells that are involved in cellular

and humoral immunity but contain innate immune cells,

including macrophages and dendritic cells (78). Macrophages

in the brain referred to as microglia, are the primary immune

cells and contain surface membrane receptors recognizing

neurotransmitters and hormones (79). Microglia respond to

local and systemic inflammatory stimuli by producing pro-

inflammatory cytokines (PIC), including interleukin-1a and b
(IL-1a and IL-1b), tumor necrosis factor a (TNF-a), and
interleukin-6 (IL-6) (79). In addition, microglia produce the

anti-inflammatory cytokines IL-10 and transforming growth

factor (TGF)-b. Activated microglia also trigger a chain

reaction between chemokines, prostaglandins, and NO. In

addition to the direct promotion of brain inflammation,

chemokines such as CCR2 promote the recruitment of

peripheral immune cells into the brain, thereby increasing the

effects of inflammation (80).

Appropriate central inflammatory responses are essential to

protect the brain from infection and restore homeostasis;

however, prolonged inflammation is harmful. Long-term

neuroinflammation leads to the activation of peripheral

macrophages and central microglia and nerve dysfunction

(76). Moreover, excessive responses may lead to decreased

levels of brain-derived neurotrophic factors chronic

inflammation, and neuronal damage. Sustained activation of

the immune response increases inflammation and nitro-

oxidative stress, ultimately leading to changes in monoamine

levels that increase the risk of many neurological and psychiatric

disorders (81). Such a procedure most likely occurs in chronic

psychiatric disorders such as depression (82).

In recent years it has become apparent that inflammation is

associated with psychiatric disorders. For example, depression is

characterized by a chronic low-grade inflammatory state,

increased levels of peripheral inflammatory cytokines, and

microglial activation (83–85). Clinically, high levels of
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inflammatory markers are associated with the development of

depression (83). In the general population, an elevated C-

reactive protein (CRP) level is linked to a higher risk of

developing depression (86). Elevated levels of inflammatory

cytokines have been observed in both peripheral and

cerebrospinal fluid in patients with depression (87).

Particularly, elevated levels of circulating pro-inflammatory

mediators have been found in patients with treatment-

refractory depression (TRD), including TNF-a, IL-6, IL-1b,
CRP, and macrophage inflammatory protein-1 (88).

Consequently, it has been hypothesized that medications

that suppress levels of pro-inflammatory cytokines might also

contribute to treating depression (87, 89). Some antidepressants

with known anti-inflammatory effects have been shown to

reduce the level of IL-6 and IL-1b in patients with MDD (88,

90). The use of anti-cytokine and anti-tumor necrosis factor

drugs (e.g. infliximab, etanercept, and adalimumab) has been

associated with significant improvements in depressive

symptoms (91). LPS promotes the activation of microglia and

induces depressive-like symptoms, while treatment with anti-

inflammatory medication alleviates depressive symptoms

(92, 93).

In addition to the regulation of blood pressure, the RAS is

also an important regulator of the inflammatory states in the

nervous system (94). Excessively elevated Ang II levels enhance

plasma cytokine levels such as IL-6, interferon-g (IFN-g), TNF-
a, and IL-1b (95). IL-6 levels increase the most after Ang II

infusion, and plasma IFN-g levels also increases significantly

(96). Cytokine expression is controlled at the transcriptional

level by pro-inflammatory transcription factors, such as nuclear

factor kappa B (NF-kB) and activator protein-1 (AP-1) (97).

Ang II induces the differentiation of immune cells and promotes

the production of cytokines through NF-kB and/or AP-1,

initiating an inflammatory cascade that leads to microglial

activation (98). These findings suggest that the RAS has an

intimate and complex regulatory role in the immune system.

ARBs have been proven to effectively inhibit inflammation

by reducing gene expression of brain pro-inflammatory

cytokines (99)(Table 3). Ang II facilitates the production of IL-

1b and NO. This effect is reversed by losartan, which inhibits

NF-kB and AP-1 (110). Administration of candesartan reduces

brain AT1R synthesis and inhibits LPS-induced acute brain

inflammation throughout the inflammatory cascade, including

decreased production and release to the circulation of centrally

acting pro-inflammatory cytokines; reduction of brain pro-

inflammatory cytokines, cytokine, and prostanoid receptors;

and reduced microglial activation (105, 106). Pretreatment

with candesartan (1 mg/kg/d, for 3 d before the LPS

treatment) lessens LPS-induced ACTH and corticosterone

release and reduces gene expression of cyclooxygenase-2

(COX-2), IL-6, and TNF-a (105). Moreover, candesartan

prevents the synthesis and release of the pro-inflammatory

hormone aldosterone (108). In the pituitary, candesartan
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decreases the expression of the genes for IL-6, iNOS, and

COX-2 (109). It also lessens the release of inflammatory

markers such as TNF-, IL-1, and IL-6 in the circulation (109).

AT1 receptor blockades are demonstrated to provide superior

neuroprotective properties to ACE inhibition (107). In the rat

model of neuroinflammation, candesartan (1 nM) inhibits LPS-

induced neuroinflammation more effectively even at lower

dosages and increases AT2R and anti-inflammatory IL-10

expression than perindopril (1 mM) (107). Systemic

administration of telmisartan directly ameliorates the IL-1b-
induced neuronal inflammatory response and inhibits oxidative

stress (102). Administration of telmisartan attenuates chronic

intermittent hypoxia (CIH)-induced neuronal apoptosis and

decreases levels of CD45 (leukocyte common antigen), CRP,

and IL-6 in the hippocampus and circulation through inhibiting

inflammatory response (103). Intranasal administration of

telmisartan (1 mg/kg; two months) significantly reduces glial

activation in the brain and ameliorates the synthesis of NO,

iNOS, TNF-a, as well as IL1-b (104).

Consequently, it is hypothesized that medications with anti-

inflammatory effects might also have antidepressant potential.

Losartan and ramipril can reverse depression-like behaviors in

restraint-stressed mice and insulin resistance through anti-

inflammatory mechanisms (112). Administration of irbesartan

reduces the level of inflammatory mediators and reverses Ang II-

induced depressive-like behaviors as manifested by decreased

immobility times in the modified forced swim test (MFST) and

the TST (100). Pretreatment with losartan significantly improves

FST performance and prevents LPS-induced anhedonia and

anxiety-like behaviors in addition to preventing LPS-induced

higher levels of the pro-inflammatory cytokine (TNF, IL-1, and

IL-6) (99, 116). A model of diabetes-associated depression rats

exhibited depression-like behavior, which can be therapeutically

reversed by losartan (20 mg/kg) via altering diabetes-induced

neuroinflammatory responses (111). Telmisartan effectively

reduces the concentration of pro-inflammatory mediators,

including NO, IL-6, and IL-1b, in depressed rats with diabetes

(101). Moreover, in a rat model of post-traumatic stress disorder

(PTSD), treatment with captopril decreases pro-inflammatory

cytokines levels and inhibits microglial activation in the

hypothalamus (114). More importantly, the anxiolytic/

antidepressant effects of RAS blockers may be mediated by their

anti-inflammatory effects, providing new treatment directions.
4.4 RAS blockers inhibit oxidative stress

Oxidative stress occurs when there is an imbalance between

the production of reactive oxygen species (ROS) and

endogenous antioxidant enzymes. Antioxidant enzymes, such

as catalase (CAT), superoxide dismutase (SOD), and glutathione

peroxidase (GPX), maintain low levels of ROS in vivo. Excessive

ROS generation and exhaustion of anti-oxidative defense-
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TABLE 3 RAS blockers inhibit inflammation.

RAS Com-
ponent

Compounds Species Mode of
Administration

Measure
Method

Main Findings Reference

AT1R AT1aR knockout mice EPM Anxiolytic
Neuroinflammation↓

(31)

ACE2 Male SD rats Bilateral microinjected
ACE2 into PVN

Anxiolytic
PIC↓

(44)

ARB Irbesartan Swiss albino mice of UCMS 40mg/kg i.p./p.o. MFST
TST
OFT

Antidepressant
5-HT levels↑

(100)

Telmisartan Wistar rats with DM 0.05mg/kg, p.o.
for 21days

FST
OFT
EPM

Antidepressant
NO↓, IL-6↓, IL-1b↓

(101)

SK-N-SH human neuroblasts
Primary rat cortical neurons

10 ng/ml Neuronal
inflammatory response
to IL-1b↓
COX-2 PGE2↓
JNK/c-Jun pathway↓

(102)

Male SD rats 10 mg/kg
for 8 weeks

CD45, IL-6, CRP↓ (103)

5XFAD mice
Primary neonatal rat glial cells

1 mg/kg/day intranasal
for 2 months

TNF-a, IL1-b↓
iNOS↓
Ab burden and
CD11b↓

(104)

Candesartan WH rats and SHR 1 mg/kg per day
for 14 days

EPM Anxiolytic
PIC↓
Microglia activation↓

(105)

Male SD rats 1 mg/kg oral gavage for
2 weeks

EPM
FST
NSFT

Anxiolytic
Antidepressant
IL-1b, IL-6, Cox2↓,
iNOS↓, IL-10↑

(106)

Male SD rats 0.1 mg/kg
Orally for 5 days

Astroglia, microglial,
STAT3 activation↓
NFкB↓ TNF-a↓
PP2A activation↓
IL-10↑

(107)

Male Wistar Hanover rats 1 mg/kg/d, s.c.
for 3 days

PIC↓
COX-2, IL-6↓
LIF, IkB-a↓

(108)
(109)

Losartan Microglial cells 10-5m IL-1↓
NF-kB ↓
AP-1 activation↓

(110)

Wistar rats ICV 50 mg NF-kB↑
AP-1↑

(98)

Wistar rats of DM 20 mg/kg
for 2 weeks

FST
OFT

Antidepressant
Neuroinflammation↓

(111)

Male LACA mice of CRS 20 mg/kg
for 30 days

FST Antidepressant
Insulin levels↑
Locomotor activity↑

(112)

ACEI Lisinopril Wistar rats ICV 50 mg NF-kB↑
AP-1↑

(98)

Enalapril
Ramipril

Wistar rats of DM (40mg/bwkg/d)
(10mg/bwkg/d)
for 2 weeks

FST
OFT

Antidepressant
IL-1a mRNA↓

(113)

(Continued)
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produced pro-inflammatory mediators results in damage to vital

macromolecules and induces cellular apoptosis (117). Another

major consequence of ROS-derived damage is lipid

peroxidation. The brain is particularly susceptible to damage

from reactive oxygen species because of its elevated oxygen

consumption and lower levels of endogenous antioxidant

enzymes (118).

Many studies have highlighted associations between

oxidative stress and the development of affective disorders,

and that antioxidants can improve symptoms of emotional

disorders (119). Increased levels of oxidative stress markers,

pro-inflammatory cytokines, and lipid peroxidation are

observed in patients with anxiety and depression (120).

Depression patients have significantly higher levels of F8-

isoprostanes and lower GPX activity, two markers of oxidative

stress, compared to healthy controls (121). Moreover,

antioxidant treatment improves diabetes-induced depressive-

like behaviors, increases levels of antioxidant enzymes CAT

and SOD in brain tissue, and reduces oxidative stress in the

hippocampus (118). Additionally, the administration of

antioxidants shows an anxiolytic effect (122, 123). F2-

isoprostanes and oxidized glutathione are positively associated

with total Hamilton Anxiety ratings and the severity of anxiety

in MDD (124). Moderate treadmill exercises prevent anxiety-like

behaviors and the production of oxidative stress markers in the

hippocampus, amygdala, and locus coeruleus (125).

Importantly, antioxidants have the same effects as treadmill

exercises, performing an anxiolytic effect (125), indicating that
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oxidative stress metabolites play an important role in

mood disorders.

RAS overactivation is involved in oxidative stress via

increasing Ang II levels and oxidative stress in the central

nervous system is associated with depression (126)

(Figure 1B). Ang II induces the production of superoxide

anion and impairs cerebral microvascular endothelial function

in vivo (127). Ang II stimulates inflammatory responses in the

microvascular endothelium of the brain through AT1R, allowing

more interaction between immune cells and the endodermis,

and in turn, leading to disrupted BBB permeability partly via

oxidative stress cascades (128). Ang II increases leukocyte

adhesion 2.6-fold and BBB permeability 3.8-fold in male mice

via oxidative stress-mediated cerebral microvascular

inflammation (128). Furthermore, Ang II directly increases the

production of ROS and subsequently induces lipid peroxidation

and modification (129).

After systemic inflammation in the brain, nicotinamide

adenine dinucleotide phosphate (NADPH) oxidase and

inducible nitric oxide synthase (iNOS) activities rise, resulting

in an accumulation of ROS and NO (126). During inflammation,

Ang II promotes the oxidative stress process by increasing

NADPH oxidase and iNOS activity in the BBB and PVN

(126), and ARBs attenuate iNOS activity (126)(Table 4).

Moreover, pretreatment with losartan at 3 mg/kg attenuates

NO metabolite accumulation in hippocampal and cortical

tissues (116). Treatment with telmisartan attenuates CIH-

induced neuronal apoptosis in the hippocampus by
frontiersin.or
TABLE 3 Continued

RAS Com-
ponent

Compounds Species Mode of
Administration

Measure
Method

Main Findings Reference

IL-6 mRNA↓
TNF-a mRNA↓

Ramipril Male LACA mice subjected to CRS 10, 20mg/kg
for 30days

FST Antidepressant
Locomotor activity↑

(112)

Male SD rats 1 mM
Orally for 5 days

Astroglia, microglia,
STAT3 activation↓
NFкB↓ TNF-a↓
AT2R expression↑

(107)

Captopril Male SD rats 0.5 mg/ml for 2 weeks TNF-a↓
PIC↓

(114)

MRL/lpr lupus-prone mouse model 5 mg/kg every other
day i.p.
for 2 weeks

Rotarod Test
FST
EPM

Antidepressant
5-HT levels↑
IFNa levels↓
Microglial activation↓

(115)
IL-1b, interleukin-1b; IL-6, interleukin-6; NO, nitric oxide; SD, Sprague-Dawley; DM, diabetes mellitus; MR, mineralocorticoid-receptor; TNF-a, tumor necrosis factor-a; IL-1a,
interleukin-1a; i.c.v., intracerebroventricular; AP-1, activator protein-1; PIC, pro-inflammatory cytokine; i.p., intraperitoneal; p.o., oral route; CRS, Chronic restraint stress; IFNa,
interferon-a; MFST, Modified forced swim test; TST, tail suspension test; OFT, open-field test; UCMS, unpredictable mild stress, WH rats, Wistar Hannover rats; MWM, Morris water
maze; PA, passive avoidance; MBT, Marble burying task; NSFT, Novelty-Suppressed Feeding Test; Cox-2, cyclooxygenase-2, NOS, Nitric oxide synthase, LIF, leukemia inhibitory factor;
iNOS, inducible nitric oxidase synthase; MIF migration inhibitory factor; NFkB Nuclear factor-kappa B; pSTAT3, Phosphorylated signal transducer and activator of transcription 3; PP2A,
Protein phosphatase-2A; PGE2, prostaglandin E2; JNK, c-Jun N-terminal kinase; NOS, Nitric oxide synthase; CIH, chronic intermittent hypoxia; CD45, leukocyte common antigen; CRP,
C-reactive protein; 5XFAD, five familial Alzheimer’s disease transgenic mouse; CD11b expression, a marker for microglia; SPT, sucrose preference test; BDNF-TrkB-CREP, brain-derived
neurotrophic factor-tropomyosin receptor kinase B-cyclic adenosine monophosphate response element-binding protein.
g

https://doi.org/10.3389/fimmu.2022.1053136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong and Deng 10.3389/fimmu.2022.1053136
suppressing NOS activity and inhibiting excessive NO

generation (103). In addition, RAS blockers have a positive

effect on depression as a comorbidity. Administration of RAS

blockers prevents indices of systemic oxidative/nitrosative stress

increased in rats with diabetes mellitus by inhibiting oxidative

stress (131). Treatment with perindopril reduces severe acute

respiratory syndrome-related coronavirus 2 spike protein-

induced inflammatory and oxidative stress responses in cells

and significantly blunted apoptosis and ROS (130).
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The limbic system, comprised primarily of the amygdala and

hippocampus, includes widely distributed AT1 receptors and is

sensitive to oxidative stress 184). Oxidative stress upregulates

angiotensin-1 receptor levels and elevates NF-kB-mediated pro-

inflammatory factors levels (IL-6, TNF-a) in these brain areas,

leading to anxiety-like behaviors (132, 133). Candesartan

significantly inhibits nuclear translocation of NF-kB
expression, while also decreasing ROS levels and increasing IL-

10 levels in the cortex and hippocampus (133). Captopril and
TABLE 4 RAS blockers inhibit oxidative stress.

RAS Compo-
nent

Compounds Species Mode of
Administration

Measure
Method

Main Findings Reference

Ang- (1–7) Adult male Wistar rats GPX↑
MDA↓

(37)

AT2R Blocker
PD-123177

Male Wistar rats 0.1 mg/kg/b.w. i.c.v.
for 7 days

PA
Y-maze

Antidepressants
Memory↑
SOD↑ GPX↑
MDA↓

(37)

ARB Losartan Male Wistar rats 0.1 mg/kg i.c.v. SOD↑ GPX↑
MDA↓

(59)

Male Wistar rats 0.1 mg/kg/b.w. i.c.v.
for 7 days

PA
Y-maze

Memory↑
SOD↑, GPX↑
MDA↓

(37)

Male LACA mice of CRS 20 mg/kg for 30
days

FST Antidepressant
MDA↓ Nitrite↓

(112)

Telmisartan Primary rat cortical
neurons

10 ng/ml NOX-4 mRNA
expression↓
NADPH, ROS↓

(102)

Male SD rats 10 mg/kg
for 8 weeks

iNOS, NO↓
MDA↓

(67)

Candesartan Male Wistar Hanover rats 1 mg/kg/d, s.c.
for 3 days

nNOS/eNOS activity↓
iNOS↓

(109)

Male SD rats 0.1 mg/kg
Orally for 5 days

ROS↓
Nitrite↓

(107)

Irbesartan Swiss albino mice of
UCMS

40 mg/kg i.p./p.o. MFST
TST
OFT

Antidepressant
CAT↑
MDA↓

(100)

ACEI Ramipril Male LACA mice of CRS 10,20mg/kg
for 30 days

FST Antidepressant
MDA↓
Nitrite↓

(112)

Captopril Male Wistar rats 0.1 mg/kg/b.w. i.c.v.
for 7 days

PA
Y-maze

Memory↑
SOD, GPX↑
MDA↓

(37)

Perindopril Male SD rats 1 mM
Orally for 5 days

ROS↓ (107)

THP-1 cells 100 µM TNF-a, IL-17↓
Apoptosis↓
ROS↓

(130)
f

GPX, glutathione peroxidase; MDA, malondialdehyde; SOD, superoxide dismutase; MBT, Marble burying task; NOX-4, NADPH oxidase-4; NOS, Nitric oxide synthase; NO, nitric oxide;
CIH, chronic intermittent hypoxia; iNOS, inducible nitric oxide synthase; CAT, catalase; HCD, high cholesterol diet; TABRS, thiobarbituric acid reactive substances, CUMS, chronic
unpredictable mild stress; BDNF–TrkB-CREP, brain-derived neurotrophic factor-tropomyosin receptor kinase B–cAMP response element-binding protein; NSF, novel-suppressed feeding
test, OFT, open-field test; TST, tail suspension test; FST, forced swimming test; SPT, sucrose preference test.
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losartan reverse the disruption of BBB permeability and prevent

Ang II-induced enhancement of oxidative stress in the

hippocampus (59, 134). Moreover, captopril and losartan

decrease lipid peroxidation levels, reduce anxiety-like

behaviors, and increase antioxidant enzymes including SOD

and GPX (59, 134). Furthermore, antioxidant treatment

improves Ang II-induced disruption of BBB permeability and

prevented anxiety-like behaviors in rats (135). LPS injection

raises the concentration of malondialdehyde (MDA), a marker

of lipid peroxidation, in hippocampus tissue (99). Losartan

prominently increases the activity of antioxidant enzymes and

reduces lipid peroxidation, such as MDA (99, 136). Pretreatment

with losartan (3 mg/kg) significantly decreases MDA levels and

reverses the negative effects of LPS on the activity of CAT and

SOD in the hippocampal and cortical tissues (116). Consistent

with losartan, telmisartan suppresses CIH-induced lipid

peroxidation and overexpression of inflammatory mediators in

the hippocampus (103). Irbesartan, alone or in combination

with fluoxetine, significantly decreases the levels of

thiobarbituric acid reactive substances, CAT, and MDA, and

reverses the reduction in GSH levels in unpredictable chronic

mild stress (UCMS) mice (100). Taken together, RAS blockers

improve emotional disorders through anti-oxidative

stress effects.
4.5 RAS blockers inhibit stress responses

4.5.1 RAS, corticotropin-releasing factor,
and stress

In response to stress stimulation, the subgenual prefrontal

cortex is suppressed and the amygdala is activated, which

activates the HPA axis (137). As the major stress mediator and

crucial regulatory center of the neuroendocrine system, HPA

releases corticotropin-releasing factor (CRF) to regulate stress

responses (138). When the HPA axis is activated, CRF is released

from the paraventricular nucleus(PVN) into the portal

circulation, stimulating the pituitary to produce and release

adrenocorticotropic hormone (ACTH). ACTH further

stimulates the glucocorticoid (GC) hormone cortisol synthesis

and release by the adrenal cortex (139). Interestingly, increased

CRF in the cerebrospinal fluid and hyperactivation of the HPA

axis have been reported in both anxiety and depression

(140, 141).

Corticotrophin-releasing factor or hormone (CRH) is a 41

amino acid neuropeptide that mediated the neuroendocrine,

immunological, autonomic, and behavioral responses to stress

(142). In various animal models of anxiety disorders, centrally

injected CRF induces anxiety-like responses such as sleep

disturbances, loss of appetite, and anhedonia (143). CRF

antagonists show anxiolytic effects in a variety of animal

models (143). In addition, a large literature indicates that

stress responses upregulate the transcription and expression of
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Ang II-related receptors and enhance the expression of central

Ang II (144–146). Ang II, as a stress hormone, increases the

expression of CRF mRNA through AT1R, which contributes to

increasing the expression of CRF receptors and promoting CRF

release during stress (147, 148). Ang II stimulates ACTH and GC

secretion through pituitary AT1R and/or activates Ang II

afferent terminals innervating present in PVN neurons

enhancing the stimulatory effect of CRF (149, 150)(Figure 1C).

The various stressors enhance Ang II levels and affect the

expression of receptors. Pavel reported that ARBs prevent the

response of the HPA axis to isolate stress and reduce the

expression of CRH receptors and benzodiazepine receptors,

demonstrating that ARBs exert powerful anti-anxiety

properties by downregulating CRH receptor type and

benzodiazepine receptors in stress models (151, 152). Saavedra

et al. pretreated rats for 13 days with candesartan (0.5 mg/kg/

day) followed by 24 h of isolation in metabolic cages, and they

found that candesartan blocks the stress-induced augments of

CRF in the cortical and prevents benzodiazepine receptors from

binding in the paraventricular nucleus and cortex (153).

Injecting Ang II-induced depressive-like behaviors via

microglia activation and activates the HPA axis (28),

pretreatment with candesartan (1.0mg/kg/days for 14 days)

attenuates the response of the HPA axis to stress and reduces

cold restraint stress (placed in plastic restraining devices and

maintained at 4°C for 2 h)-induced ulceration of the gastric

mucosa eventrally (154). Candesartan increases gastric blood

flow by 40-50% and prevents gastric ulcer formation by 70-80%

after cold-restraint stress (154). Administration of losartan

effectively attenuates the stress-induced fear memory

impairment and prevents the development of depression-like

behaviors caused by chronic mild unpredictable stress (CMS)

(116, 155). Low doses of candesartan completely reverse chronic

restraint stress (2 h/21 days in tight plastic tubes)-induced

memory deficits (156). Isolation stress increases AT1 receptor

binding in the PVN and anterior pituitary. The administration

of candesartan is sufficient to block the isolation stress (24h

isolation in individual metabolic cages)-induced increased

binding of AT1R to PVN and to reduce the HPA response to

stress (157)(Table 4).

Systemic administration of angiotensin II receptor antagonist

inhibits stress-induced anxiety (158). Ovariectomized rats treated

with losartan decreased plasma corticosterone levels (p<0.05) and

AT1R mRNA expression in the CA3 region of the hippocampus

(159). Administration of losartan improves anxiety responses in

stressed rats via blockade of the AT1 receptor within the amygdala

under both non-stress and acutely stressed rats (160). In sub-

chronic swim stress models, pretreatment with losartan (10 mg/

kg) decreases anxiety-like and stress behaviors as manifested by

enhancing the tendency to spend more time in the center area in

the OFT (43). Chronic stress lead to neuropsychiatric disorders,

such as anxiety and depression, the neuroprotective effect of

losartan alleviates chronic fatiguing stress-induced anxiety-like
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behaviors (161). Moreover, pretreatment of losartan reveres the

chronic restraint stress-induced increased anxiety-like behaviors

and decreased motor activity (162).

Empirical studies in animals show RAS blockers exert

antidepressive effects. Treatment with losartan significantly

abolishes the increased Ang II level and prevents the

development of stress-induced depression-like behaviors in

UCMS rats (163). Chronic administration of irbesartan

significantly increases swimming and climbing times, decreases

immobility times in the MFST, and decreases immobility time in

the tail suspension test in UCMS rats (100). Administration with

telmisartan for five weeks notably prevents the depression-like

behaviors in OFT and sucrose preference test (SPT) in animals

under chronic stress (164).
4.5.2 RAS, 5-HT, and stress
Serotonin (5-HT) is an important neuromodulatory

transmitter and decreased 5-HT production may result in

mood disturbance, aggression, and other neuropsychological

impairment (165). There is an interaction between Ang II and

5-HT, particularly in the hippocampus, and brain Ang II

regulates stress-related effects by modulating 5-HT release and

synthesis (166, 167). The major serotonin metabolite 5-

hydroxyindoleaceticacid (5-HIAA) is significantly elevated in

the striatum after Ang II administration, indicating that Ang II

increases the 5-HT levels (167). Furthermore, the AT1 receptor

antagonist losartan reduces basal levels of 5HIAA (167).

However, irbesartan (an ARB) increases time spent in the

center of the OFT and elevates the 5-HT levels in UCMS rats

(100), suggesting the biphasic response of Ang II on 5-HT

synthesis (166). It is speculated that the biphasic response was

related to the concentration of Ang II. Ang II stimulated

tryptophan (TRP) hydroxylase at high concentrations to

increase the synthesis of 5-HT. At low concentrations, an

inhibitory effect is found, Ang II inhibits tryptophan

hydroxylase resulting in decreasing 5-HT levels (166). Above

all, it represents a subtle regulation of serotonin and the

RAS system.

Perindopril (1.0 mg/kg/day) and candesartan (10 mg/kg/day)

were administered via drinking water for 1 week, and serotonin

levels increase in the prefrontal cortex and hippocampus,

suggesting that decreased Ang II levels are associated with

increased serotonin (168). Systemic administration of captopril

increased serotonin levels and decrease depressive-like behaviors

(115). In addition, captopril significantly increases the

concentration of 5-HT and 5-HIAA in the parabrachial lateral

nucleus (169). Administration with telmisartan for five weeks

notably prevents the depression-like behaviors in OFT and SPT,

and enhances expression of 5-HT transporter in the hippocampus

of mice through activation of peroxisome proliferator-activated

receptor d, indicating RAS blockers improve stress-induced

depressive symptoms in animals under chronic stress (164).
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Although these findings support that Ang II regulates stress by

altering 5-HT levels in the brain, the association between Ang II

and 5-HT in the formation of stress-related behaviors needs

further investigation.

4.5.3 RAS, sympathetic/parasympathetic,
and stress

Stress generally triggers the autonomic nervous system,

which is one of the major neural pathways (170). Depression

is characterized by autonomic imbalance, with elevated

sympathetic tone and weak parasympathetic tone, or both

(171). A study of more than 600 subjects reports that

depression and anxiety are shown to be more significantly and

positively linked with the activation of the sympathetic nervous

system (SNS), and depression is negatively correlated with

parasympathetic nervous system (PNS) activation (172). SNS

is stimulated in response to stress and increases the

concentration of serum catecholamines to maintain body

homeostasis (173). Indeed, patients with depression have been

reported to have elevated catecholamines in plasma and

cerebrospinal fluid (CSF) (174).

Norepinephrine (NE), one of the catecholamine hormones,

is a major monoamine neurotransmitter that widely affects

multiple brain regions (175). Noradrenergic hyperactivity has

been shown to be an important component of the stress response

and dysregulation of noradrenergic signaling has been

implicated in the pathogenesis of anxiety and depression

disorders. In fact, RAS has a complex bidirectional interaction

with the autonomic nervous system activity under both

physiological and pathophysiological conditions via receptors

localized to peripheral and central sites of action (176). In the

brain, Ang II increases sympathetic discharge and decreases

vagal discharge. As a neuromodulator, Ang II stimulates

ganglionic transmission and catecholamine release from

adrenal medullary chromaffin cells and potentiated NE release

from sympathetic nerve terminals in the periphery (177). In

addition, there is some evidence that Ang II inhibits

norepinephrine reuptake to promote neurotransmission (177).

Administration of angiotensin-converting enzyme inhibitors

can attenuate sympathetic neurotransmission and facilitate

parasympathetic (175). In addition, Ang-(1–7) inhibits

sympathetic tone and facilitates parasympathetic tone effects in

experimental animal models, which will become an attractive

treatment for autonomic nerve dysfunction (178).

In rat hypothalamic tissue, losartan partially reduces

norepinephrine secretion (179). Also, noradrenaline levels are

also shown to be significantly reduced in the striatum after

chronic candesartan, although the mechanism is unclear (168).

Ang II elevates catecholamines in the periphery and central, and

pretreatment with Ang II receptor antagonism losartan

significantly attenuates neuroendocrine responses, indicating

Ang II activates sympathetic-adrenomedullary system activity

through AT1R during stress (180). Although these findings
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support that Ang II regulated stress-related behaviors by altering

NE levels, the association between Ang II and NE and

sympathetic and parasympathetic in the formation of stress-

related behaviors needs further investigation.

In clinical studies, elevated catecholamine activity impaired

prefrontal cortex (PFC) function under stress and is associated

with PTSD and other anxiety disorders (181). Chronic stress

exposure leads to dendritic atrophy in PFC and enhances the

noradrenergic NE system in the PFC (181). Cerebrospinal fluid

norepinephrine concentrations are significantly higher in

patients with chronic PTSD than in healthy subjects (182).

Moreover, CSF norepinephrine concentrations are shown to

be more significantly and positively link with the severity of

PTSD symptoms, rather than plasma norepinephrine

concentrations (182). Gold observed significant elevations in

twenty-four-hour indices of norepinephrine secretion in both

cerebrospinal fluid and plasma in severely depressed patients,

compared with the control group (183). Clinical studies find that

alpha-1 receptor blockers or alpha-2A receptor agonists can

reduce the high concentration of NE release during stress,

suggesting targeting the autonomic nervous system can be

utilized as a pharmaceutical therapy for stress-related

symptoms (181, 184). Taken together, the above finding

indicates that RAS is involved in stress and that inhibiting

RAS reduced the effects of stress.
4.6 RAS blockers elevate brain-derived
neurotrophic factor levels

Brain-derived neurotrophic factor (BDNF) is a neurotrophic

factor bound to its receptor tropomyosin-related receptor kinase

B (TrkB). BDNF is associated with the neurobiology of

depression and antidepressant effects (185). BDNF plays an

important role in neuronal growth, maturation, and survival

and it mainly has the following functions (186): (1) increase

synaptic plasticity and affect learning and memory. (2) promote

neurogenesis, especially in the hippocampus. Further, the

expression of BDNF is regulated via cyclic adenosine

monophosphate response element-binding protein (CREB),

and the phosphorylated cyclic adenosine monophosphate

response element-binding protein (pCREB) level in the

hippocampus was one of the pathogenesis of depression (187).

TrkB signaling is essential for antidepressants, activating TrkB

and increasing levels of BDNF (188). Hippocampal biopsies

showed that individuals with major depression reveal lower

levels of BDNF and its receptor TrkB, and long-term use of

antidepressants promotes increased BDNF levels (111).

Chauhan et al. revealed that in depressed patients with low

BDNF levels, after four weeks of antidepressant treatment, the

serum BDNF levels and depressive symptoms significantly

improve (189).
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BDNF exhibits a negative regulatory effect on brain

inflammation along with inflammation and oxidative stress (83,

189). RAS performs an integral effect in mediating BDNF, which

is essential in the neurobiology of depression and antidepressant

effects (34). Decreased BDNF levels in the hippocampal are

associated with depressive-like behaviors in UCMS rats and

losartan minimizes depressive-like behaviors via modulating the

BDNF pathway (113, 190)(Table 5). Losartan treatment

significantly elevates TrkB and p-CREB protein levels and

reduces NF-kB protein, IL-6, and TNF-a mRNA levels, and

facilitates the BDNF-TrkB-CREB, indicating that the TrkB

signal promoted neuronal survival (111). Losartan exerts

neuroprotective effects by alleviating neuroinflammatory

responses and elevating BDNF levels in astrocyte (111). Oral

administrat ion of candesartan ameliorates chronic

neuroinflammation-induced behavioral changes and apoptosis

by inhibiting Ang II-induced NF-kB inflammatory signaling

and enhancing the phosphorylated CREB and BDNF expression

level in the cortex and hippocampus regions (133). In the case of

AT1R blockade, AT2R activation increases the expression of

AT2R mRNA (192). The antidepressant-like effect of losartan

may increase the binding of Ang II to AT2R by inhibiting AT1R,

finally, increase the surface levels of TrkB and coupling of TRK/

FYN in the hippocampus and ventral medial prefrontal cortex

(vmPFC) prelimbic aspects (34).

Reduced BDNF levels promote oxidative stress processes

that lead to anxiety (120, 132). For example, social stress lowers

BDNF and glutathione reductase levels, leading to oxidative

stress-induced anxiety/depression-like behaviors in rats (193).

Impaired hippocampal neurogenesis and reduced BDNF levels

were observed in UCMSmice. Orally administration of valsartan

(10–40 mg/kg/day, 4 weeks) promotes the hippocampus

neurogenesis and the BDNF expression, exerting an

antidepressant-like effect, which may be one of the

mechanisms for its antidepressant (191). Importantly, the

antidepressant-like property is dose-dependent, with the

maximum effect obtained when valsartan is administered at a

dose of 40 mg/kg/day (191).
5 Clinical data

To date, no randomized controlled trial has examined the

impact of ACEIs or ARBs on depression. However, case reports

and observational studies have demonstrated a bidirectional

relationship between antihypertensive medications and

depression, indicating mood-improving effects of RAS blockers,

whereas other antihypertensive agents did not (Table 6). For

example, losartan positively affects individuals with high-trait

anxiety and prevents the development of anxiety disorders

(205). In hypertensive individuals without a psychiatric history,

discontinuation of valsartan (160 mg/day) is accompanied by

anxiety symptoms such as palpitations, insomnia, and increased
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TABLE 5 RAS blockers reduce stress responses and elevate BDNF levels.

RAS Compo-
nent

Compounds Species Mode of
Administration

Measure
Method

Main Findings Reference

AT1R AT1aR knockout mice in
PVN

EPM CRH gene
transcription↓

(31)

AT2R Agonist
Novokinin

Male Wistar rats of T1DM i.c.v. EPM
TMRA

Corticosterone↓ (32)

ARB Telmisartan Male Wistar rats of DM 0.5mg/kg, p.o.
for 21days

FST
OFT
EPM

Antidepressant
Serum cortisol↓

(101)

Candesartan Rats of CRS EPM Anxiolytic
Sympathetic↓

(151)

Male Wistar rats of isolation
stress

0.5 mg/kg/day
for 13 days

Anxiolytic
CRF1R and BZ
binding↓

(153)

Male Wistar rats of isolation
stress

4 mg/day per os for 3
months

Corticosterone↓
Aldosterone↓
Catecholamines↓
HPA response to
stress↓

(157)

Male Wistar rats of isolation
stress

1 mg/kg/d, s.c.
for 3 d

ACTH↓ (109)

Losartan Male SD rats of CMS 20 mg/kg/day
for 7 weeks

SPT
FST
Y-maze test

Antidepressant
Cognition↑

(163)

Female long evans rats of
Ovx

10mg/kg/day SPT
OFT
EPM
NORT

Anxiolytic
Cognition↑
Corticosterone↓

(159)

Male rats 2,4ug injected into
amygdala

EPM Anxiolytic (160)

Male LACA mice of CFS 10 and 20 mg/kg, ip
for 21 days

Anxiolytic
TNF-a, CRP↓

(161)

Male Wistar rats of CFS 10 mg/kg for 10 days OFT Anxiolytic
Stress↓

(162)

Male LACA mice of CFS 20 mg/kg FST Antidepressant
Corticosterone↓

(112)

Wistar rats of DM 20 mg/kg
for 2weeks

FST
OFT

Antidepressant
BDNF↑

(111)

Valsartan Male C57BL/6J mice of
CUMS

40 mg/kg/d, p.o.
for 4 weeks

NSF
FST
OFT
TST
SPT

Antidepressant
Anxiolytic
BDNF↑

(191)

ACEI Ramipril Male LACA mice of CFS 10,20mg/kg for 30 days FST Antidepressant
Corticosterone↓

(112)

Wistar rats of DM 10mg/bwkg/d
for 2 weeks

FST
OFT

Antidepressant
BDNF↑

(113)

Enalapril Wistar rats of DM 40mg/bwkg/d
for 2 weeks

FST
OFT

Antidepressant
BDNF↑

(113)
F
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 f
HPA, hypothalamic-pituitary-adrenal; CMS, chronic mild unpredictable stress; CFS, Chronic fatigue stress; CSR, chronically stressed rats; CRS, chronic resistance stress; BZR,
Benzodiazepine receptors; CRH/CRF, Corticotropin-Releasing Hormone/factor; CRF1R, Corticotropin-Releasing Factor Receptor; UCMS, unpredictable chronic mild stress.
rontiersin.org

https://doi.org/10.3389/fimmu.2022.1053136
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong and Deng 10.3389/fimmu.2022.1053136
respiratory rate (206). These anxiety symptoms were significantly

relieved with recontinuation of valsartan (80 mg/day) (206). A

recent neuroimaging study showed that losartan prevents

sustained amygdala activation in individuals with high-trait

anxiety and leads to increased activation in other brain areas

associated with threat processing, such as the insula and putamen

(205). A recent study reports a significant association between the

presence of an ACE inhibitor/ARB medication and decreased

post-traumatic stress disorder symptoms compared with other

blood pressure medications, including b-blockers, calcium

channel blockers, and diuretics (207).

Moreover, captopril and enalapril partly reverse the

significant negative emotional effects of hypertension (12).

Several cases have reported that captopril has mood-improving

properties and antidepressant effects (202–204). Patients treated

with captopril had significantly reduced total Hamilton

Depression Scale (HAMD) scores and corrected neuroendocrine

dysfunction during one-year follow-up (201). Moreover, captopril

(12.5 mg b.i.d.2 weeks) decreases HAMD-21 scores and improves

depressive symptomatology in patients with recurrent unipolar
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major depression (208). Captopril and enalapril improve

depressive and anxiety symptoms in patients with hypertension

(200). Hertzman reported that ten patients who suffered from

hypertension and mood disorders (major depressive disorder or

bipolar disorder) had improved mood with a combination of

antidepressants and lisinopril, and no serious negative effects were

reported by any of these patients while using lisinopril (209). A

clinical trial reported that ACE inhibitors reduced the likelihood

of depression risk and significantly improved general well-being,

work performance, and cognitive function in 625 white men with

mild hypertension administered captopril for 6 months (210).

Two prospective multicenter randomized trials have shown that

captopril has a significant tendency to reduce depressive

symptoms compared with other antihypertensive drugs (211).

Subsequently, another ACE inhibitor (enalapril) showed a

significant improvement in health-related quality of life

(HRQoL) compared to selective beta-blockers, although the

overall tolerability of the two drugs was similar (212). In a

clinical trial that enrolled 387 subjects aged 75+ years with

hypertension in Italy, the results showed that the use of ACE
TABLE 6 Clinical data of RAS blockers.

Compounds Study Design Clinical Population Main Findings Reference

SSRI
SSRI+RAS

PSM cohort study SSRI users 30,311
SSRI+RAS 30,311
A total of 49,327
1997 to 2012

Risk for psychiatric hospital contacts↓ (194)

ACEI
ARB

Nationwide population-based study in Danish 1,576,253 individuals
2005 to 2015

Rate of incident depression↓ (195)

ACEI
ARB

Meta-analysis of Randomized clinical trials Mental health domain of quality of life↑ (196)

ACEI
ARB

378 patients with HBP Rates of antidepressant usage↓ (197)

ACEI
CCB
b-blockers

Nationwide Population-Based Study in Danish 5.4 million individuals
2005 and 2015

Rates of depression↓ (198)

ACEI
ARB

Prospective study 144,066 patients Risk of mood disorders admissions↓
Risk for mood disorder↓
b-blockers and CCB higher risk

(199)

Candesartan 4 mg/d orally for 3 months 17 patients with T2DM Interpersonal sensitivity↓
Depression ratings↓
Sensitivity of the adrenals to ACTH↓
Expression of AT1R↓

(148)

Enalapril
Captopril

15.5 ± 1.54 mg/day
for 1.66 ± 0.51 years

15 HBP patients Anti-depressant
Cognition↑

(200)

Captopril 12.5,50 mg 50-year-old woman with MDD Anti-depressant (201)

Captopril 12.5, 25 mg 41-year-old man with MDD Anti-depressant (202)

Captopril 50 mg t.i.d./4 weeks Patiens with HBP Anti-depressant (203) (204)

Losartan 50 mg orally 30 anxious individuals Anxiolytic (205)
f

PSM, propensity scores matched; 95%-CI, 95%-confidence intervals; HRR, hazard rate ratio; HBP, hypertension; CCB, calcium antagonists; ACEI, angiotensin-converting enzyme
inhibitors; ARB, angiotensin II receptor blockers; T2DM, type 2 diabetes.
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inhibitors was associated with significantly better HRQoL among

older adults (213). A case-control study enrolled 972 patients with

both diabetes and depression, and the results suggest that those

given ACEIs show a lower odds ratio for depression (OR 1.3, 95%

confidence interval (95%CI):0.8–2.2) compared to beta-blockers

(OR 2.6, 95% CI:1.1–7.0) and calcium channel blockers (OR 2.2,

95% CI:1.2–4.2) (214). Patients with type 2 diabetes and

depressive symptoms received chronic candesartan

administration for at least three months, which significantly

improved interpersonal sensitivity and depression ratings and

reset the HPA axis by reducing the sensitivity of the adrenals to

ACTH and expression of AT1R (148).

In clinical and cohort studies, targeted RAS compounds have

neuropsychiatric advantages through their anti-inflammatory

properties, especially in depression (215). A Danish nationwide

population-based study enrolled 1 576 253 subjects exposed to one

of the six drugs(low-dose aspirin, statins, allopurinol, ACEIs, ARBs,

and non-aspirin non-steroidal anti-inflammatory drugs) during the

exposure period from 2005 to 2015. The incidence of depression

decreased in patients taking ACEIs and ARBs, suggesting that these

agents may act on inflammation and the stress response system

(195). A recent meta-analysis identified 11 randomized controlled

trials on the effects of antihypertensives on mental health and

reported that ACEI and AT1R blockers have better effects on quality

of life, anxiety, and mental well-being than placebo and other

antihypertensives (196). Nasr analyzed data from 378 patients

whom both suffered from hypertension and depression and

found that patients being treated with an ACEI or ARB showed

significantly lower rates of antidepressant usage, while beta-blocker

and calcium channel blocker usage led to the highest rate of

antidepressant usage (197). Consistent with these studies, Boal

et al. analyzed cohort data and found that the use of RAS

blockers in patients was associated with a low prevalence of

depressive symptoms. The risk of affective disorders is reduced

with the usage of ACEIs or Ang II receptor blockers, whereas the

risk is increased with the administration of beta-blockers or calcium

channel blockers (199). A nationwide population-based study

showed that 3747190 subjects were exposed to antihypertensive

drugs between 2005 to 2015. The findings of this study suggest that

patients who continue to use classes of angiotensin agents, calcium

antagonists, and b-blockers have significantly decreased rates of

depression, whereas those using diuretic medication do not (198). A

retrospective cohort study to investigate the distinct effects of

antihypertensives on depression enrolled 181,709 patients and

found that other antihypertensives may have a negative effect on

the risk of depression compared with ARBs (216). Furthermore,

58.6 million patients aged 18–90 years were enrolled to study the

influence of antihypertensive drugs on the onset and recurrence of

psychiatric disorders (217). This study showed that ARB users

exhibited the lowest incidence of psychotic, affective, and anxiety

disorders for the first and recurrent diagnoses compared with CCB
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and b-blockers (217). However, there are limited randomized

clinical trials on ACEI- and ARB-targeting medications and

depression, which raises the possibility that future clinical

r esearch should conduct t r ia l s to examine these

apparent advantages.

Despite the success demonstrated, a significant limitation is

that not all research has revealed that ACEIs and ARBs have

positive benefits on mood disorders, and these opposing results

provide a new perspective for future clinical therapy. A small

double-blind pilot study of eight patients was conducted to

assess whether captopril has euphoric effects in the treatment

of hypertension and found that the administration of captopril

failed to elevate depressive mood (218). This result may be due

to the small sample size of this study. A case report shows the

dose of captopril is increased from 25 mg t.i.d. to 37.5 mg q.i.d.

and the patient becomes intensely dysphoric within 2 days (203).

When the captopril dose was raised to 37.5 mg q.i.d, anxiety and

dysphoria reappeared. Furthermore, the dose was increased to

50 mg q.i.d., and the patient exhibited incoherent speech and

suicidal ideation. It should be noted that although several studies

have found that captopril has a positive effect on depression, its

anxiolytic effect may be dose-dependent. In future studies, more

attention should be paid to the frequency and different dosages

of RAS blockers and the negative effects of different doses

on mood.

In contrast, some epidemiological studies highlight concerns

regarding possible links between the use of RAS blockers and

increased risk of suicide, although the underlying mechanisms

remain unknown (49). Mamdani et al. carried out a population-

based nested case-control study, which included 964 patients

and 3856 controls. The study found that ARB exposure is

associated with a higher risk of suicide compared with ACEI

(adjusted odds ratio, 1.63; 95% CI, 1.33–2.00). The preferred use

of ACEI instead of ARB should be explored whenever possible,

especially in individuals with severe mental disorders (219).

Nonetheless, when a subsequent analysis was performed in

2020, a nationwide population-based propensity score

matching study demonstrated that ARB use was not associated

with an increased risk of suicide compared to non-ARB use

(220). In summary, evidence from epidemiological studies

suggests that the relationship between RAS medication use

and suicide is inconsistent. Even if a direct cause-and-effect

link exists, it is difficult to prove whether higher or lower RAS

contributes to increased suicide risk.

Furthermore, most studies investigating the role of RAS in

mood disorders have focused on pharmacological compounds

that target ACE or AT1 receptors. Recently, several novel

pharmacological compounds have been discovered, including

ACE2 activators, Mas receptor agonists, AT2 receptor agonists,

and renin blockers (221, 222), and further work to understand

their roles is required.
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6 Conclusion

A growing body of experimental and clinical data highlights

the important role of the RAS in the pathophysiology of mood

disorders. In this review, we presented an overview of the RAS,

which consisted of two mutually antagonistic pathways that

maintain balance through ACE2. The ACE/Ang II/AT1R

classical pathway aggravates depression and anxiety by

activating AT1R, while the non-classical pathway exerts

anxiety/antidepressant effects by activating MasR. Moreover,

RAS, mainly Ang II, is involved in the pathological process of

depression by promoting inflammation, oxidative stress, and

stress responses and reducing BDNF levels. Similarly, agents that

inhibit RAS reduce inflammation, oxidative stress, and stress

responses and facilitate neurogenesis. This may be the

underlying mechanism of RAS blocker treatment for anxiety

and depression. The full potential of RAS blockers as

antidepressants and anti-anxiety drugs has not yet been

elucidated. Hence, in future work, large-scale, randomized,

controlled clinical trials are necessary to evaluate the

therapeutic efficiency of RAS compounds in emotional

disorders. RAS blockers need to be tested as potential

therapies for emotional disorders, such as comorbid

cardiovascular/cerebrovascular disease and depression.

Furthermore, the role of RAS blockers in males and females in

emotional disorders and pharmaceutical dosage in men and

women should be carefully established.

Thus, RAS blockers may be a promising strategy for the

treatment of mood disorders in the future. However, to realize

the full therapeutic potential of RAS in mood disorders, further

research is required.
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