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Background and objectives: GBM patients frequently exhibit severe local and

systemic immunosuppression, limiting the possible efficacy of immunotherapy

strategies. The mechanism through which immunosuppression is established

in GBM tumors is the key to successful personalized immunotherapies.

Methods: We divided GBM patients into subtypes according to the expression

characteristics of the TME typing-related signature matrix. WGCNA analysis

was used to get co-expressed gene modules. The expression activity of hub

genes retrieved from co-expressed modules was validated in two single-cell

datasets. Then, cell–cell interaction was calculated.

Results: Four subtypes were identified in the TCGA and CGGA RNA-seq

datasets simultaneously, one of which was an immunosuppressive subtype

rich in immunosuppressive factors with low lymphocyte infiltration and an

IDH1 mutation. Three co-expressed gene modules related to the

immunosuppressive subtype were identified. These three modules are

associated with the inflammatory response, angiogenesis, hypoxia, and

carbon metabolism, respectively. The genes of the inflammatory response

were mainly related to myeloid cells, especially TAM, angiogenesis was related

to blood vessels; hypoxia and glucose metabolism were related to tumors,

TAM, and blood vessels. Moreover, there was enhanced interaction between

tumor cells and TAM.

Discussion: This research successfully found the immunosuppressive subtype

and the major cell types, signal pathways, and molecules involved in the

formation of the immunosuppressive subtype and will provide new clues for

the improvement of GBM personalized immunotherapy in the future.
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GRAPHICAL ABSTRACT

Overview of the study design. (A) We firstly identified five GBM progression related pathways. By performing functional enrichment analysis on
gene sets obtained from three perspectives, such as genes co-survival in TCGA–GBM and CGGA cohort, DEGs of high and low risk groups,
and DEGs of IDH1 mutation compared with wild type, we identified five pathways significantly associated with poor prognosis in GBM patients.
(B) Secondly, GBM TME-associated functional gene signatures were constructed. Based on the activity profile of these signatures, GBM patients
were classified into four distinct subtypes and immunosuppressive subtypes were found. (C) the expression of hub genes from immunosup-
pressive subtypes were validated in three single-cell RNA-seq datasets, and cell types significantly associated with TME subtypes were identi-
fied. The interactions between certain cell types were also elaborated.
Introduction

GBM is the most common primary tumor of the central

nervous system (CNS) in adults and is notoriously difficult to treat

because of its diffuse nature. The median survival time of GBM

patients remains approximately 14–15 months after diagnosis (1,

2). Passage of systemically delivered pharmacological agents into

the brain is largely blocked by the blood–brain barrier (BBB) (3).

Although recent advances, including the addition of tumor-

treating fields (TTF), have shown some modest benefits, the

overall survival rate remains effectively unchanged (4). Effective

new therapies are urgently required.

Immunotherapy has emerged as a promising treatment for

some of the hardest-to-treat tumors, including metastatic

melanoma. The general principle of immunotherapy is to fight

immune suppression in the tumormicroenvironment and activate

the patient’s own immune system to kill the tumor. Successful
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cancer immunotherapy depends on the existence of an intact and

functional immune system. However, GBM patients frequently

exhibit severe local and systemic immunosuppression, which

limits the possible efficacy of these therapeutic strategies (5).

This apparent immunosuppression is a critical barrier to

improving patient survival. Understanding the mechanism of

establishing immunosuppression in GBM tumors is the key to

successful personalized immunotherapy soon. However, the

nature of these mechanisms remains surprisingly elusive.

The implications of specific immune cell types on GBM disease

status were unknown. In most cancers, the presence of tumor-

infiltrating lymphocytes (TILs) is positively correlated with the

improvement of overall survival in patients, but the correlation

between the presence of TILs and the improvement of overall

survival in GBM patients has not been clearly established (6, 7).

Myeloid cells, especially microglia and macrophages, in the tumor

microenvironment regulate GBM progression and influence
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therapeutic outcomes (8). Besides, resident fibroblasts, endothelial

cells, pericytes, and the extracellularmatrix also contribute to cancer

progression (9). Abnormal cytokine expression was found to be

associated with glioma progression. Within the heterogeneous

GBM microenvironment, tumor cells, normal brain cells,

immune cells, and stem cells interact with each other through the

complex cytokine network (10, 11). The formation of the GBM

tumor microenvironment has been associated with specific

mutations. For example, the IDH mutation has recently been

found to be associated with decreased immune cell infiltration

(12), whereas inactivated NF1 has been associated with increased

macrophage infiltration (13). In addition, several major signaling

pathways like NFkB, Wnt, and PI3K–AKT–mTOR are reported to

be involved in the pathogenesis of GBM and have been used as

therapeutic targets for GBM (14–16).

Based on the above knowledge, we constructed gene signatures

that can be used to distinguish GBM samples, including tumor-

promoting signaling pathways, angiogenesis-related genes, and

various cell-characteristic gene signatures. GBM patients were

classified into subtypes by clustering the expression characteristics

of these gene signatures in each patient. Also, we found hub genes in

each module throughWGCNA analysis. Combined with published

single-cell data, we identified cell types responsible for the abnormal

expression of these hub genes and the pathways involved in this

process. At the same time, the interactions between cell types and

related ligand–receptor pairs were also studied. These analyses

systematically analyzed the formation mechanism of the GBM

microenvironment, especially the immunosuppressive

microenvironment, and helped to find targets for immunotherapy.
Methods

Publicly available GBM were obtained from The Cancer

Genome Atlas (TCGA), and level 3 RNA-seq data for 167 GBM

samples were downloaded from the UCSC Xena browser

(https://xena.ucsc.edu/) (17). Corresponding clinical

characteristics were obtained. Another 345 GBM samples with

clinical information were provided by the Chinese Glioma

Genome Atlas (CGGA). The detailed clinical and pathological

characteristics of the TCGA-GBM and CGGA cohorts were

summarized in Supplementary Table 1. Data on RNA-seq

were transcripts-per-million (TPM) normalized and log2-

transformed. Then, low expressed genes were eliminated.

Three GBM-related scRNA-seq datasets were retrieved from

the GEO database (GSE117891 (n = 8), GSE84465 (n = 2), and

GSE163120 (n = 12)) (18–20). After removing low-quality cells,

followed by normalization and dimension reduction, Louvain

clustering was used to group cells. GSE117891 and GSE84465

were integrated. Cell types were annotated using canonical

marker genes. Additionally, malignant cells were defined by

“InferCNV” (https://github.com/broadinstitute/InferCNV). All

these were performed by Seurat (4.0) in the R package (21).
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Functional characterization of differential
expression analysis (DEGs)

For the RNA-seq data, the DEseq2 R package was used.

Genes with an FDR <0.05 and absolute fold change ≥1.5 were

considered as differential expressed.
Functional enrichment analysis

Functional annotation of DEGs was performed on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) classification databases. Enrichment analysis of

GO categories was performed by the R clusterProfiler (v3.14.3)

package, and pathway enrichment analysis was tested upon

hypergeometric distribution by the R “phyper” function. GO

categories with a false detection rate (FDR) of <0.05 were

significantly enriched. The pathway with P <0.05 was

enriched. Only those go categories or pathways containing ≥5

DEGs were retained.
Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed by the R package WGCNA (V1.69)

(22). We use the log2-transformed TPM value as the normalized

expression and filter out abnormal samples. According to the

principle of scale-free network, coefficient b was set as 14. The

parameter of network type was used with “signed” and “bicor”

(double weighted correlation) to calculate the correlation

adjacency matrix. Co-expression gene modules were identified

by using dynamic tree cutting with the following major

parameters: The main parameters minModuleSize and

deepSplit were 30 and 1, respectively. The highly similar

modules with the height of the module eigengene in the

clustering lower than 0.2 were merged. A univariate Cox

proportional hazard regression was performed on each gene

module. Genes in each module with a p-value <0.05 were kept as

modules’ survival-related genes. Those genes, both survival-

related and with kME ≥0.8 and GeneSignificance >0.2 were

regarded as hub genes in this study (22). The coexpression of

hub genes was plotted by Cytoscape 3.6.0.
Transcriptome deconvolution of the
gene signatures

The abundance of infiltrating immune cell populations was

estimated by deconvolution methods integrated in the R package

“immunedeconv.” Other immune- or tumor-associated

signatures in each sample were quantified by ssGSEA with the

R package “GSVA.”
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Risk score model

We used univariate Cox regression, LASSO, and stepwise

regression successively to screen out candidate mRNAs for

construction. In the univariate Cox proportional risk regression

analysis, mRNAs with p <0.05 was associated with survival. The

criteria for LASSO regression remained in the model more than 900

times out of all 1,000 repetitions. Then step wise were used. The risk

scoring model was constructed based on Cox coefficients and

mRNAs’ expression. Risk score ∑I = 1 = (Coefi × Expri). The

Expri represented the expression levels of mRNAs in the gene risk

model, K–M survival analyses and ROC curves were performed to

evaluate the predictive accuracy of models.
Gene signature activity scores on cells

Specific gene sets’ activity scores for each cell type were

calculated by AUCell (23). The gene set is the survival-related

gene set of modules discussed in the WGCNA section. The

scores were plotted as a heatmap and a violinplot.
Cell–cell communication

CellPhoneDB (https://www.cellphonedb.org/) was used to

infer the ligand–receptor crosstalk between single cells (24),

which interpreted interactions in single cells based on known

protein–protein interaction annotations. The number of ligand–

receptors at intercellular junctions was calculated. As for the

differential cell crosstalk analysis in each group, it was computed

separately. The differential crosstalk between cells was visualized.

Ligand activity was predicted by NicheNet (V1.1.0) (25).
Statistical analysis

Hierarchical clustering analysis was performed on the R

“hclust” function using the “ward.D” method to identify the

number of subtypes in TCGA-GBM based on the pattern of

signature scores. Univariate and multivariate Cox proportional

hazards regression models were used to assess the association

between the risk model and overall survival with and without

clinical variables. The hazard ratio (HR) and 95% confidence

interval (CI) were calculated. Wilcoxon rank sum, or Student

tests, were used to compare two groups. For comparisons of

more than two groups, one-way ANOVA tests and Kruskal–

Wallis tests were utilized as parametric and nonparametric

methods, respectively. The Kaplan–Meier method and log-

rank test were conducted to compare survival differences

between two groups. All statistical analysis was performed

using R (version 4.0).
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Results

Cytokine–cytokine receptor interaction
tops the GBM risk factors

A univariate Cox hazard regression analysis was performed

for all expressed genes in the TCGA–GBM cohort. We found

1264 genes as survival related in the TCGA–GBM cohort genes

and 2,681 genes in the CGGA cohort (<0.01). There were 86

genes associated with survival in the two datasets (Figure 1A).

The enriched KEGG pathways of these 86 genes were shown

(Figure 1B). The relationship between these enriched pathways

and GBM has been reported in several publications (11, 26, 27).

To further verify the predictive role of these genes in GBM

progression, a risk model was constructed. Eight genes met the

requirement through the least absolute shrinkage and selector

operation (LASSO) regression. After stepwise regression, a model

based on the expression of eight genes in the TCGA-GBMcohort was

established. Patients in the high-risk group had a worse prognosis

than those in the low-risk group (lop-rank test, p <0.001, Figure 1C).

The area under the curve (AUC) was higher than 0.75 according to

the ROC curves of the 1-, 3-, and 5-year OS predictions (Figure 1D),

which means that the risk model has high predictive power. The risk

model was validated in the CGGA cohort (Figures S1A, B). Then, the

differentially expressed genes (DEGs) between the high- and low-risk

groups were calculated in the TCGA–GBMcohort. TheseDEGswere

also enriched in the pathways discussed above, among which

cytokine–cytokine receptor interaction was the top one (Figure 1E).

The isocitrate dehydrogenase (IDH1) gene represents a

recurrent mutation in GBM patients, which was associated

with good prognostic outcomes compared to wild-type

counterparts (TCGA-GBM cohort, log-rank p <0.0001,

Figure S1C) (12). The enriched, upregulated pathways in the

above high-risk patients were downregulated in IDH1

mutation samples, which further validated their pro-tumor

characteristics in GBM (Figure 1F). Interestingly, cytokine–

cytokine receptor interaction, again, was at the top of enriched

pathways between IDH1 mutation and wild-type patients. As

reported, within the heterogeneous GBM microenvironment,

tumor cells, normal brain cells, immune cells, and stem cells

interact with each other through the complex cytokine network

(12). Therefore, we included these cell types into consideration

next to complicatedly delineate the microenvironment

of GBM.
Heterogeneous TME components
were associated with
tumor-promoting pathways

The tumor microenvironment (TME) is composed of

resident fibroblasts, endothelial cells, pericytes, leukocytes,
frontiersin.org
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and the extracellular matrix (9). To classify TMEs using a

transcriptomic-based analytical platform, gene expression

signatures (GES) representing the major functional components

and immune, stromal, and other cellular populations of the tumor

were constructed (Figure S2A).We selected five tumor-promoting

pathways from the above upregulated pathways in high-risk

patients according to biological background knowledge. Then

we analyzed their correlation with other TME signatures, such
Frontiers in Immunology 05
as MDSC and monocytes. The five tumor-promoting pathways

were significantly positively correlated with other pro-tumor or

angiogenesis-related signatures and negatively correlated with

anti-tumor-related signatures (Figure S2B). Then, we examined

their characteristics in GBM progression by univariate Cox

regression analysis on these TME-related characteristics, and we

found most signatures were in high HR (Figure S2C). In

summary, we comprehensively analyzed TME gene signatures
A B

C D

E F

FIGURE 1

Analysis of GBM progression-related pathways (A) The Venn diagram of survival-related genes in the TCGA–GBM and CGGA cohorts. A total of 86
genes were found to coexist with diversity, of which 81 genes were associated with a poor prognosis. (B) Bar-plot of KEGG enrichment analysis of 86
survival-related genes with x-axis as −log10 transformed P-value. Bars were colored by the ratio of poor and good prognosis-related genes. (C) The
Kaplan–Meier curves comparing patients with a low- or high-risk score in the TCGA–GBM cohort. Patients were divided into two groups according to
the median value of their risk scores. Higher risk scores were correlated with a poorer prognosis. (D) ROC curve for the risk model in the TCGA–GBM
cohort. (E) Bar-plot of KEGG enrichment analysis of DEGs between high- and low-risk groups. Bars were colored by the ratio of up and downregulated
genes. Upregulated genes were those with elevated expression in the high-risk group. (F) Bar-plot of KEGG enrichment analysis of DEGs between
mutant and wild-type patients. Bars were colored by the ratio of up and downregulated genes.
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of GBM and found heterogeneous TME components were

associated with tumor-promoting pathways.
Identification of the immunosuppressive
subtype of GBM through GES classifier

According to the expression activity of the selected GES in the

TCGA–GBM dataset, patients were classified into four subtypes by

the hierarchical clustering method. Based on the infiltrating

situation of tumor killing cells and tumor progression

characteristics, these subtypes were defined as tumor progression
Frontiers in Immunology 06
(P), immune infiltrating (IE), and expressing both simultaneously

(P/IE) (Figure 2A). It was evident that the P subtype had higher

tumor progression signatures and lower lymphocyte infiltration.

These patients had the worst survival (Figure 2B, log-rank p =

0.0061). Then, we evaluated the differences between IE and P

subtypes from several perspectives, such as immunosuppression,

ICB, high-frequency mutation distribution, and cell infiltration. The

expressions of immunosuppressive factors were plotted as a heat

map (28), and it could be seen that subtype P represented higher

expression of these genes (Figure 2C). For gene mutations, we

plotted the distribution of five high-frequency mutations across the

four subtypes (Figure 2D). IDH1 mutations were all of the IE type,
A B

C D

E F

FIGURE 2

Immunosuppressive subtype identification in the TCGA–GBM cohort. (A) A heatmap of row-scaled gene signature scores from the cell
deconvolution algorithm, with the color ranging from green to red, represents the activity score from low to high. The samples in this column
were grouped into four TME subtypes. (B) Overall survival of patients stratified by TME subtype classification. The log-rank p-value between
subtypes IE and P was 0.0061, and the annova log-rank p-value for four subtypes was 0.059. (C) The expression profile of immune
suppression-related genes across four TME subtypes, with the color ranging from green to purple, represents the expression value from low to
high. (D) Mutation frequency of five high-frequency mutant genes across four TME subtypes. Samples were shown in the column. Samples with
mutations were color red. (E) The expression profile of inhibitory immune checkpoints across four TME subtypes. (F) Differential immune cell
infiltration level across immunosuppressive subtypes and others. Statistical significance between groups was tested by Wilcox. *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns > = 0.05.
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which was consistent with their better outcomes. Tumor cells

usually upregulate ICB gene expression to evade the immune

system. We evaluated the expression of inhibitory ICBs in P-type

cells (Figure 2E). In terms of cell infiltration, the P subtype showed

high levels of myeloid cell infiltration and other subtypes showed

high levels of lymphocyte infiltration (Figure 2F).
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We validated these findings with the CGGA dataset. Four

types were also found (Figure S3A). The log-rank p-value

between IE and P subtypes was 0.00051 (Figure S3B). The P

subtype also showed high expression of immunosuppressive

factors and inhibitory ICBs (Figures S3C, E). Myeloid cells

were infiltrated in subtype P, and lymphocytes were infiltrated
A B

C

D E

F

FIGURE 3

Co-expressed gene module detection by WGCNA. (A) Correlation between module eigengenes (1st principal component of modules) and TME
subtypes in the TCGA–BGM cohort. The correlations were shown as a heatmap, gradually colored lower in blue and higher in red according to
the Pearson correlation coefficient. The first line of the value in the heatmap represents the correlation coefficient, and the second line is the p-
value from the correlation test. (B) Dotplot of the top enriched pathways of each module. Dots were colored gradually by −log10 (p-value), and
the size of the dots gradually changed according to the number of genes contained, with the larger the value, the larger the dots. (C) Barplot
shows the number of molecules that met the requirements of univariate Cox regression p-value <0.05 in each module. Bars were colored with
an HR ratio >1 (orange) or <1 (purple). (D) The distribution of expression levels of each module’s survival-related hub genes across different cell
types. The larger the size, the larger the percent of expression. (E) Co-expression network between the top 50 hub genes selected according to
the kME score. The larger in node size the higher in node degree. The top 15 genes in degree were more important and were defined as
Top15_hub. (F) Relationship between Top15_hub gene expression and prognosis of immunotherapy samples. The Kaplan–Meier curves
comparing Top15_hub gene low and high expressed patients in an immunotherapy dataset (GSE78220).
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in subtype IE (Figure S3F). Inconsistent with TCGA-GBM, IDH

mutations were not predominantly distributed in the IE type but

also in the IE/P type (Figure S3D). In conclusion, we identified

immunosuppressive and lymphocyte subtypes both in the

TCGA–GBM and CGGA cohorts and found their opposite

biological characteristics.
GBM subtypes represented
heterogeneous functional
gene modules

The WGCNA algorithm was used to construct co-expressed

gene modules (22). Twenty co-expressed modules were identified

using the “cutreeHybrid” function (Figure S4). To find subtype-

specific modules, we calculated the correlation between module

genes and subtypes (Figure 3A). Genes in modules 7, 5, and 18

were highly expressed in the P subtype, while modules 1 and 13

were in the IE/P2 subtype, module 10 in the IE/P1 subtype, and

modules 15, 8, and 11 were in the IE subtype. Functional

enrichment analysis was performed on these subtype-specific

modules, and the top 5 pathways with p-values ranking from

small to large in each module were plotted (Figure 3B). M5 was

enriched with genes participating in inflammatory responses,

including cytokine interactions, chemokine signaling, and Th17

cell differentiation (Figure S4C). M7 was enriched with genes

related to angiogenesis, including focal adhesion and PI3K/Akt

signaling (Figure S4D). M18 was enriched with genes involved in

the cellular response to hypoxia and carbonmetabolism, including

the HIF-1 signaling pathway and glycolysis/gluconeogenesis

(Figure S4E). This suggested that these three different

functionally related genes were involved in the formation of an

immunosuppressive microenvironment. Both the IE/P2 and IE/

P1 subtypes were related to metabolism. The IE subtype was

mainly enriched in synapse and singling transduction-related

pathways (Figure S4F). This indicated that the activity of the

nervous system in the IE subtype was high.

The relationship between gene expression and patient survival

in each module was analyzed by univariate Cox regression analysis.

Genes with P <0.05 and HR >1 were considered pro-tumor-related

genes, and genes with HR <1 were considered anti-tumor-related

genes. The proportion of pro-tumor genes greater than 0.5 was

considered a poor prognosis-related module. Similarly, the

proportion of anti-tumor-related genes greater than 0.5 was

considered to be prognosis-related. Finally, nine subtype-specific

modules were divided into seven poor prognosis and two good

prognosis-related modules (Figure 3C), and the survival-related

genes of each subtype-specific module were abbreviated as ssMSGs

(Supplementary Table 2, hubgene.survival.related.xlsx). A total of

24 hub genes (Supplementary Table 3, module cox logtpm.sel.xlsx)

were obtained, which were mainly located in M5 and M7 (P
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subtype). These genes were mainly located in M5 and M7 (P

subtype). Through co-expression analysis of top hub genes in

different gene modules, we identified the top 15 hub genes in M5,

which represented the top connections with each other (Figure 3E).

The top 15 hub genes included LAPTM5, NCKAP1L, PTPN5, SYX,

and SIGLEC9, which is consistent with the top risk pathways we

concluded above. Further, the signatures of the top 15 hub genes

signature were associated with poorer outcomes in immunotherapy

cohorts, which is also consistent with the tumor-promoting

function of M5 (Figure 3F).

Notably, compared with single-cell datasets, we confirmed that

hub genes in M5, M7, and M15 were also marker genes for specific

cell types. CSTs (CSTA, CSTB, and CSTZ), CD68, and NOD2 in

M5 were markers of macrophages; COL6A2 and ITGA5 in M7

were related to vascular cells; and Oligo2 in M15 was a marker of

oligodendrocytes (Figure 3D). This result indicated that specific cell

types should represent different functional modules during GBM

progression.Therefore, we turned to single-cell datasets in the next

part to delineate GBM TME at the single-cell scale.
Macrophages and microglia manipulate
tumor-promoting gene modules of GBM

Next, we analyzed the expression activity of ssMSGs from nine

subtype-specific modules in two published GBM single-cell datasets

(GSE117891, GSE84465, and GSE163120) (18–20). GSE117891 and

GSE84465 sequenced 10 patients’ single cells from both the tumor

core and the peritumoral brain, including tumor cells, vessels,

microglia, neurons, and glia. GSE163120 only detected immune

cells; myeloid cells accounted for the majority. TAMs, blood vessels,

and tumor cells were in the tumor core, while neurons and glial cells

were mainly located in peripheral tissues. More immune cells were

detected in recurrent samples (Figure S5B).

The “AUCcell” method was used to calculate the expression

activity of ssMSGs in single cells (Figures 4A, B). As for the P

subtype-related genes, M5 was highly expressed in myeloid cells,

including TAMs, microglia, monocytes, and DCs; M7 was

mainly expressed in blood vessels; and M18 in blood vessels,

myeloid cells, and tumor cells. The IE subtype-related genes

were in OPCs and neurons. The expression distribution of 24

hub genes across cells was shown (Figures 4C, D, Figures S5C,

D). These genes were expressed in myeloid cells, blood vessels,

and OPCs. Combined with these results, we concluded that

macrophages manipulated M5, vascular-related cells contributed

to M7, and OPC cells regulated M15.
Cell–cell interaction

Considering the significant role of cell–cell interaction

during GBM progression, we used cellphoneDB to figure out
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the interaction network of GBM (Figures 4E, F). We compared

interaction strength in tumor samples with those of normal

samples and found that macrophages exhibited high

interaction with tumor cells among all cell types. This result

was consistent with the characteristics of GBM tumor cells

reported by others that they could interact with macrophages

and induce their malignant transformation. Then we checked

the interaction network among immune cells (Figure 4F).
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Interestingly, when we divided cells by expression of

cytokine-related pathways, we found macrophages expressing

higher cytokine pathways represented stronger interaction

with DC and T cells, which may underline their pro-tumor

mechanism. Similarly, we found microglia cells with higher

cytokine pathway expression tend to interact with DC,

macrophages, monocytes, and T cells. Specifically, Tregs

showed stronger interaction with cytokine-high subtypes
A B

C D

E F

FIGURE 4

Gene sets expression activity and cell-cell interaction in sing-cell RNA-Seq datasets. (A, B) Row scaled gene expression activity of ssMSG across
cell types in the GSE117891 and GSE163120 datasets, with the color from blue to red representing the activity score from low to high. Cells
were clustered by the activity of these gene sets. (C, D) The expression level of Top15_hub genes across different cell types in two datasets. The
larger the size, the larger the percent of expression. The darker the color, the higher the expression. (E) The differential cell–cell interaction
weight between the tumor core and peripheral region of GSE117891.Upregulated interactions in tumor core were colored in red, down-
regulated in blue. (F) The differential cell–cell interaction weight between recurrent and newly diagnosed samples of GSE163120. Upregulated
interactions in recurrent samples were colored in red.
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than their counterparts , which could reshape the

immunosuppressive microenvironment (Figure S5E).

In summary, we identified specific cell types that manipulate

different gene modules in GBM. We then focused on the

interactions related to macrophages and microglia with other

cell types in the microenvironment.
Macrophage and microglia cells shape an
immunosuppressive microenvironment
through interaction with Tregs

To further identify the key mediators of macrophage and

microglia interaction in GBM patients, we use the R package

“NicheNet” based on the expression and downstream targets of

ligand–receptor pairs. Based on the above results, we chose Tregs
Frontiers in Immunology 10
for the following analysis (Figures 5A, B; Figure S6). We found that

macrophages and microglia cells could directly contact Tregs

through the adhesive ligand–receptor pairs ICAM1-IL2RG and

ITGAM-ICAM2. In addition, macrophages and microglia cells

enhanced the activation cytokine activity of tregs via the expression

of EBI3, CD86, and TNF, inducing the expression of IL27RA,

CD28, TNFRSF1B, FAS, ICOS, and the immune checkpoint

CTLA4 on tregs. Additionally, macrophages and microglia cells

enhanced the recruitment of tregs through CXCL16–CXCR6,

CCL3–CCR5, CCL2–CCR5 pairs.

Then, we evaluated which ligands on macrophages or

microglia cells could most likely regulate Tregs. We merged

the GSE163120 and GSE117891 datasets and identified seven

ligand genes (Figure 5C). The regulatory network between the

top 15 hub genes and these ligands is shown in Figure 5D. SPI1

could be the upstream regulator of TNF, and GPSM3 may
A

B C

D

FIGURE 5

Macrophage and microglia cells shape an immunosuppressive microenvironment through interaction with Tregs in GSE163120. (A) A heatmap
showing the predicted ligand activity by NicheNet on genes highly expressed in Treg. Pearson correlation indicates the ability of each ligand to
predict the target genes, and better predictive ligands are thus ranked higher. (B) A dot heatmap showing the selected ligand-receptor pairs
between macrophages or microglia and Treg cells. Benjamini–Hochberg adjusted permutation test. (C) The intersection between top ligands
from both datasets, seven ligands in macrophage/microglia were detected. (D) protein–protein interaction between Top15_hub genes (colored
in yellow green) and seven ligands (colored in sky blue) with both directed and undirected interaction. The directed interaction was shown in
arrows. Some Top15_hub genes were involved in the regulation of ligands.
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regulate the expression of a series of cytokines and chemokines

such as C3, CXCL3, CXCL16, and CXCL2.

In conclusion, we find out how upstream regulators

regulate ligand expression on macrophages and microglia

cells, how ligands interact with their receptors on tregs, and

how these interactions thus shape the immunosuppressive

microenvironment of GBM.
Discussion

The characteristics and mechanisms of the tumor

microenvironment, especially the immunosuppressive

microenvironment, in patients with GBM are still unclear. In

addition to immunosuppressive microenvironment, in patients

with GBM are still unclear. In addition to various immune cells’

infiltration, the tumor microenvironment also contains glial

cells, vascular-related cells, fibroblasts, immunosuppressive

factors, etc. The major signaling pathways also play a key role

in the formation of GBM. On the research of tumor immune

microenvironment, previous studies mainly focused on

estimating the composition of immune cells or including some

immune system-related signatures, while ignoring the role of

non-immune factors. In addition, the cell type infiltration and

signaling pathways involved were rarely the subjects of deeper

discussions in previous studies. In this study, we first collected

various functional signatures related to the GBM tumor

microenvironment and divided GBM patients into four groups

according to the expression profiles of these signatures. The

immunosuppressive subtypes were successfully defined and

which had elevated expression of immunosuppressive

molecules such as IDO1, Il-6, etc. Then we conducted an in-

depth study of the cellular composition and interaction of the

immunosuppressive subtypes.

As reported, some major pathways played a key role in the

tumor progression or influenced the formation of an

immunosuppressive microenvironment in GBM (14–16, 29).

For example, GBM cancer-related cytokine deregulation might

be responsible for the failure of the immune system to recognize

malignant tumor cells (11). The increase of pro-angiogenic

growth factors, including VEGF, led to a high degree of tumor

vascularization (30). In this study, five pathways that were

significantly related with the GBM progression were found by

analysis from three different perspectives. These three

perspectives differed in methodology, but the results were

indeed very consistent. This indicated that these pathways

were very important in the progression of GBM. They were

mainly involved in two directions: inflammatory response

related, including TNF-a signaling and cytokine–cytokine
Frontiers in Immunology 11
interactions and angiogenesis related to ECM, focal adhesion

and the PI3K/Akt signaling pathway. The activity of these five

signaling pathways was positively correlated with the infiltration

of myeloid suppressor cells (MDSCs), which were reported to

participate in the immunosuppression of GBM (31). Therefore,

we used the genes from these five pathways for further

GBM subtyping.

Among the four GBM subtypes we found, these were

immune-infiltrating (IE) and immunosuppressive (P).

Statistical differences in survival were identified among the

types of patients (long-rank p-value <0.01). As expected, the P

subtype had high expression of ICB and immunosuppressive

factors and no IDH mutation, while the IE subtype had high

lymphocyte infiltration. Unexpectedly, in the IE subtype, we did

not find the high expression of genes related to lymphocytes

activation, but only synapse related genes were detected. It was

reported that lymphocytes infiltrated in GBM were rarely

activated, which might explain our findings. This suggested

that immunotherapy targeting T cells in GBM might not

be meaningful.

In addition, we were surprised to find that the three co-

expressed gene modules associated with the P subtype differ

greatly in enriched pathways according to the following

WGCNA analysis. These three gene modules had the

functions of inflammatory response (cytokine interaction),

angiogenesis, hypoxia, and carbon metabolism, respectively.

This indicated that three different functional genes worked

together to influence the formation of the P subtype. By

verifying the expression of ssMSGs in two publicly available

single-cell datasets, we found that three modules corresponded

to different types of cells (TAM, blood vessels, tumors).

Therefore, we inferred that these types of cells worked

together to form the immunosuppressive microenvironment.

Also, we found that TAM and tumor had significant interactions

in the tumor core through cell interaction analysis.

More interestingly, we found novel hub genes from

immunosuppressive modules could be the upstream regulators

of a series of cytokines and chemokines such as C3, CXCL3,

CXCL16, and CXCL2 in macrophages and microglia cell, which

further interact with Treg and shape the immunosuppressive

microenvironment of GBM.

In conclusion, we combined bulk- and single-cell RNA-seq data

to profile the GBM tumor microenvironment using bioinformatics

tools, and discovered important cells and pathways involved in the

formation of the tumor immunosuppressive microenvironment

(Graphic abstract). Future research needs to focus on inhibiting

the interference signaling pathways in myeloid cells, especially

TAM cells and the interaction between Tregs, which may be a

beneficial therapeutic direction for GBM tumors.
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SUPPLEMENTARY TABLE 1

The detail clinic pathological characteristics for TCGA-GBM and
CGGA cohort.

SUPPLEMENTARY TABLE 2

The survival related genes of each subtype specific module; which were
mainly located in M5 and M7 (P subtype).

SUPPLEMENTARY FIGURE 1

Risk model in CGGA-cohort (A) The Kaplan–Meier curves comparing

patients with low or high risk score in CGGA cohort. Patients were divided
into two groups according to the median value of risk scores. Higher risk

score were correlated to poorer prognosis. (B) ROC curve for risk-model
in CGGA cohort. (C) The Kaplan–Meier curves comparing IDH1 mutation

and wild-type patients in TCGA-GBM cohort.

SUPPLEMENTARY FIGURE 2

Generation of the Ges utilized for transcriptomic-based TME classification
(A) The 13 Gges included in each functional group. (B) Correlation analysis

between signatures in TCGA-GBM cohort. Positive correlation coefficient
was shown in orange and negative correlation coefficient was shown in

blue, darker color indicates bigger value. (C) Result of univariate Cox
regression analysis in TCGA-GBM cohort. HR and p values were displayed.

SUPPLEMENTARY FIGURE 3

Immunosuppressive subtype validation in CGGA cohort (A) Heatmap of

row scaled gene signature scores from cell deconvolution algorithm
with the color from green to red represents the activity score from low

to high. Samples in column were grouped into four TME subtypes. (B)
Overall survival of patients stratified by TME subtype classification. The

log-rank p-value between subtype IE and P was 0.0051 and the annova

log-rank p-value for four subtypes was 0.0001. (C) The expression
profile of immune suppression related genes checkpoints across

TCGA-GBM four TME subtypes with the color from green to purple
represents the expression value from low to high. (D) Mutation

frequency of five high frequency mutant gene across four TME
subtypes. Samples were shown in column. Samples with mutation

were colored in red. (E) The expression profile of inhibitory immune

checkpoints across four TME subtypes. (F) Differential immune cell
infiltration level across Immunosuppressive subtype and other’s.

Statistical significance between groups was tested by Wilcox.

SUPPLEMENTARY FIGURE 4

WGCNA construction (A) Determine soft-thresholding power in WGCNA.

The scale-free fit index for various soft-thresholding powers (b) (Left). The
mean connectivity for various softthresholding powers (Right). (B)
WGCNA cluster dendrogram on TCGA-GBM patients, genes were

grouped into several distinct modules. (C, D, E, F) Top10 enriched
pathways of 4 selected modules, M5 (C), M7 (D), M18 (E), M15 (F).

SUPPLEMENTARY FIGURE 5

Gene expression validation in 2 sing-cell RNA-Seq datasets (A) The ratio

of cell types between tumor core (T) and peripheral region (N) of
GSE117891. (B) The ratio of cell types between recurrent (R) and newly

diagnosed (ND) samples of GSE163120. (C, D) Violin plots of selected
pathways’ expression activity across cell-types with y-axis as expression

activity in two datasets. (E) The interaction weight between Treg and other
immune cells in recurrent samples of GSE163120. The thick in line the

bigger in weight.

SUPPLEMENTARY FIGURE 6

Cell interaction between macrophage/microglia and T cell in GSE117891
Heatmap showing the predicted ligand activity by NicheNet on genes

highly expressed in Treg. Pearson correlation indicates the ability of each
ligand to predict the target genes, and better predictive ligands are thus

ranked higher.
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