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Introduction: As a multisystem autoimmune disorder disease, systemic

sclerosis (SSc) is characterized by inflammation and fibrosis in the skin and

other internal organs. However, mechanisms underlying the inflammatory

response that drives the development of SSc remain largely unknown.

Methods: ADAR1 heterozygous knockout (AD1+/-) mice and myeloid-specific

ADAR1 knockout mice were used to determine the function of ADAR1 in SSc.

Histopathological analyses and western blot confirmed the role of ADAR1 in

bleomycin-induced increased skin and lung fibrosis.

Results: In this study, we discover that adenosine deaminase acting on RNA

(ADAR1), a deaminase converting adenosine to inosine (i.e., RNA editing) in

RNA, is abundantly expressed in macrophages in the early stage of bleomycin-

induced SSc. Importantly, ADAR1 is essential for SSc formation and

indispensable for classical macrophage activation because ADAR1 deficiency

in macrophages significantly ameliorates skin and lung sclerosis and inhibits the

expression of inflammationmediator inducible NO synthase (iNOS) and IL-1b in
macrophages. Mechanistically, deletion of ADAR1 blocks macrophage

activation through diminishing NF-kB signaling.

Discussion: Our studies reveal that ADAR1 promotes macrophage activation in

the onset of SSc. Thus, targeting ADAR1 could be a potential novel therapeutic

strategy for treating sclerosis formation.
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Introduction

Systemic sclerosis (SSc), as a multisystem autoimmune

disease, is characterized by fibrosis of the skin and other

organs, like lung, heart, kidney, and gastrointestinal tract,

which is accompanied by abnormalities in innate and adaptive

immunity (1, 2). Although the etiology remains ambiguous,

several advances suggest that SSc is closely associated with the

immune response, including immunological activation and

tissue infiltration of innate immune cells, microvascular

endothelium injury by activated macrophages, and fibroblast

activation by proinflammatory cytokines, which leads to

excessive deposition of extracellular matrix (3, 4). Recent

studies highlight that macrophage infiltration is a prerequisite

for SSc, as evidenced by the bleomycin-induced dermal and lung

fibrosis in nude, rag-deficient, or SCID mice (5–7). Although

these immunodeficient transgenic mice do not have mature T

cells, bleomycin induces pathological features of SSc, suggesting

that macrophages alone are sufficient to initiate the onset of SSc.

However, the mechanisms by which macrophages drives the

development of SSc remain largely unknown.

As the effector and regulator cells in the immune system,

macrophages display diverse plasticity and physiology, which

give rise to distinct populations with different functions. The M1

macrophages, which also named classically activated

macrophages, are stimulated by interferon-gamma (IFNg) and
lipopolysaccharides (LPS). This divergent population has a

robust capability of producing high levels of pro-inflammatory

cytokines including interleukin-1b (IL-1b) and nitric oxide

which specifically depends on inducible nitric oxide synthase

(iNOS) expression through NF-kB signaling (8–10). M1

macrophages contribute to the pathogenesis of SSc. Previous

studies have shown that pro-inflammatory macrophages and

cytokines, such as IL-1b and TNFa, are significantly higher in

the bronchoalveolar lavage fluid and peripheral blood of SSc

patients (11). Additionally, SSc patients show boosted NF-kB
activity (12) and augmented expression of a cluster of IFN-

regulated genes (13). Despite a broad appreciation of SSc being

an inflammation-related disease, the mechanisms regulating

macrophage function in SSc pathogenesis has not been

sufficiently addressed. On the other hand, alternatively

activated macrophages (M2 macrophages), as stimulated by

IL-4, have the ability to promote arginase activity and

contribute to tissue fibrosis through secreting pro-fibrogenic

cytokines such as TGF-b, PDGF and CCL18. Blocking the

functions of these cytokines with the neutralizing antibodies

has been shown to reverse the pro-fibrogenic function of M2

macrophages (14–16). During the development of human SSc,

M2 macrophages are abundantly observed in the skins of SSc

patients (2). Therefore, both M1 and M2 macrophages are

involved in SSc.
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RNA editing, particularly the conversion of adenosine to

inosine (A-to-I), is one of the posttranscriptional mechanisms

for gene expression (17). A-to-I editing is catalyzed by adenosine

deaminase acting on RNAs (ADARs). Among three members

(ADAR1-3) identified in mammalian cells, ADAR1 has been

shown to display most versatile roles in biological and

pathological conditions (18–20). ADAR1-mediated A-to-I

RNA editing alters RNA structure and gene coding sequence

of proteins (21). Recent studies have extended our knowledge on

editing-independent mechanisms of ADAR1 such as RNA

binder (22, 23).

In skin biopsies and peripheral blood of SSc patients, an

increased level of ADAR1 is observed (24). However, the

potential role of ADAR1 in SSc has not been reported.

Although ADAR1 has been found to be involved in

inflammatory response, the current results remain

controversial. ADAR1 expression is increased in mice with

systemic inflammation after endotoxin treatment (25). ADAR1

inhibition attenuates local inflammation due to acute lung

injury (26). These studies suggest that ADAR1 favors

inflammatory response. However, a few other studies suggest

an anti-inflammatory function of ADAR1. For instance,

inhibiting ADAR1 increases inflammatory cytokine levels in

experimental septic model or liver injury model (27–29). In

addition, in viral infection, ADAR1 dampens macrophage

activation via blocking viral replication and suppressing IFN

signaling (30). Also, overexpression of ADAR1 suppresses

inflammatory cytokine expression in the RAW264.7

macrophages (28). Therefore, elucidating ADAR1 function in

modulating macrophages, especially the key inflammatory

mediator M1 macrophages, in SSc development would shed

considerable new light on the roles of ADAR1 in inflammation

and diseases.

In the present study, we have identified a novel role of

ADAR1 in promoting pathogenesis of the bleomycin-induced

SSc. ADAR1 deficiency in macrophages significantly ameliorates

skin and lung sclerosis. Mechanistically, ADAR1 mediates

bleomycin-induced M1 macrophage activation and the iNOS

and IL-1b production through enhancing NF-kB signaling.
Materials and methods

Mice

ADAR1 knockout mice (B6.129(Cg)-Adartm1.1Phs/

KnkMmjax), ADAR1fl/fl mice (B6.129-Adartm1Knk/Mmjax),

and LysM-cre mice (B6.129P2-Lyz2tm1(cre)Ifo/J) were

purchased from the Jackson Laboratory (Bar Harbor, ME).

Mice aged 6-8 weeks were used for analyses in this study. All

mice were housed under conventional conditions in the animal
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care facilities by the Xi’an Jiaotong University Division of

Laboratory Animal Research. All animal procedures were

approved by the Institutional Animal Care and Use

Committee of Xi’an Jiaotong University, Xi’an Center for

Disease Control.
Cytokines and reagents

Bleomycin was purchased from ThermoFisher Scientific. The

following antibodies were used in Western blot and

immunofluorescent staining. ADAR1 (D-8) and collagen type Ia1

(COL1a1) (D-13) and Lamin B (C-20) were obtained from Santa

Cruz Biotechnology. iNOS (4E5) were purchased from Abcam. IL-1

b (3A6), NF-kB p65 (D14E12), phospho- NF-kB p65 (Ser536) were

from Cell Signaling Technology. GAPDH antibody was from

Proteintech, and F4/80 (BM8) antibody was from BioLegend.

Nuclei were stained with DAPI (Vector Laboratories). The

secondary antibodies were from Cell Signaling Technology. M-

CSF and IFNg were purchased from R&D Systems. M-CSF was

used at 10 ng/ml, and IFNgwas used at 100 ng/ml. LPS was obtained

from Sigma-Aldrich (St. Louis, MO) and used at 100 ng/ml.
Bleomycin-induced murine model of SSc

To induce skin fibrosis, bleomycin (0.02U) dissolved in 50uL

PBS was injected subcutaneously (s.c.) into a single location on

the back of mice daily for 28 days. To induce pulmonary fibrosis,

bleomycin (0.2 U) in 100 uL PBS was applied intranasally once,

and the mice were euthanized 24 days later. PBS was used as

control in both models. The skin or lung tissues were collected

for further analyses.
Histopathology and immunofluorescent
staining

Skin and lung tissues were fixed in 4% paraformaldehyde

(PFA) and embedded in paraffin. Tissue sections (5 µm thick)

were stained with hematoxylin-eosin (H&E) or Masson’s

trichrome using commercial kits (Dako) for histopathological

analyses according to the manufacturer’s protocol. For

immunofluorescent staining, serial sections (10 µm) from

OCT-embedded frozen tissues or primary cultured cells were

fixed in cold acetone or 4% paraformaldehyde. After blocking

with 1% goat serum, sections were incubated with primary

antibodies at room temperature for 2 hours followed by

incubation with fluorescent dye-conjugated secondary

antibodies for 1 hour. Images were acquired with a

fluorescence microscope (Nikon Instruments Inc).
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Isolation and cell culture of peritoneal
macrophages and bone marrow-derived
macrophages

Mouse PEMs were isolated from the peritoneum of mice

as previously described (31). Briefly, peritoneal cells were

harvested by injecting 10 ml of PBS (5 injections, 2mL each)

into the peritoneal cavity. 1-2×106 cells were collected from

one mouse, in which 0.5×106 cells were macrophages. After

flushing with cold PBS, the cells were diluted to 1×106 cells/

ml in Dulbecco ’s Modified Eagle ’s medium (DMEM)

supplemented with 10% heat-inactivated fetal bovine serum

(FBS) and incubated in 12-well plates in a humidified CO2

incubator at 37°C for 2 hours. The non-adherent cells were

removed by washing with warm PBS. More than 90% of the

adherent cells were macrophages.

Bone marrow cells were used to generate BMDMs as

previously described (2). Bone marrow was aseptically

flushed out from the tibiae and femurs of mice and depleted

of red blood cells using red blood cell lysis buffer (Roche

Corporation). After re-suspended in DMEM medium, the

cells were placed in a cell culture dish and incubated at 37°C

for 2 hours to remove adherent cells. The non-adherent cells

were re-suspended in DMEMmedium supplemented with 10%

heat-inactivated FBS, 100 IU/ml penicillin, 100 µg/ml

stereptomycin, 2 mM L-Glutamine (Thermo Fisher

Scientific), and 10 ng/ml M-CSF and cultured for 7 days.

Non-adherent cells were removed, and the M-CSF-

conditioned medium was changed on day 3 and day 5. To

acquire the M1 macrophages, 100 ng/ml IFNg and 100 ng/ml

LPS were used to stimulate the macrophages for 3 hours for

mRNA expression or 6 hours for protein assays.
Quantitative reverse transcription PCR

The RNeasy Mini Kit (QIAGEN) was used to extract total

RNA from cells or tissues according to the manufacturer’s

instruction. Complementary DNA (cDNA) was synthesized

using cDNA Synthesis Kit (TOYOBO). qPCR was performed

based on the StepOnePlus Real-Time PCR System (Thermo

Fisher Scientific) using SYBR Green RT-qPCR Master

Mix (GenStar).
Western blotting

PEMs, BMDMs, or tissues were lysed in RIPA lysis buffer

(1% Nonidet P-40, 0.1% sodium dodecyl sulfate (SDS), 0.5%

sodium deoxycholate, 1 mM sodium orthovanadate, and

protease inhibitors) to extract the total proteins. Samples
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were separated on SDS-polyacrylamide gels and electro-

transferred onto nitrocellulose membranes (Amersham

Biosciences). After blocking with 5% BSA, the membranes

were incubated with various primary antibodies at 4°C

overnight, followed by incubation with secondary antibodies

at room temperature for 1 hour. The protein expression was

measured by FUSION Solo.6 s (Vilber).
Statistical analysis

Statist ical analyses were applied to biological ly

independent mice or technical replicates for each experiment.

All experiments were independently repeated at least three

times. All data are presented as the mean + SD. One-way or

two-way ANOVA was used for comparison among different

groups. All bar graphs include means with error bars to show

the distribution of the data. The level of significance is

indicated as *P < 0.05; **P < 0.01; ***P < 0.001.
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Results

ADAR1 is essential for the
development of SSc

Bleomycin-induced skin fibrosis in mice was used to study

SSc (2). Along with SSc progression, ADAR1 mRNA (Figure 1A)

and protein expression (Figure 1B) of both isoforms (p150 and

p110) (21) was significantly upregulated in the skin tissues. A

substantial ADAR1 expression was induced as early as day 1

following the bleomycin injection, suggesting that ADAR1 may

be involved in SSc formation.

Due to embryonic lethality of homozygous ADAR1 mutant,

ADAR1 heterozygous knockout (AD1+/-) mice were used to

determine the function of ADAR1 in SSc. As the hallmark of

skin fibrosis, WT mice with bleomycin injection for 28 days

developed significant thickened dermis that results from

collagen deposition. However, ADAR1 deletion remarkably

reduced the skin thickening as measured by ultrasound
A B D

E F

C

FIGURE 1

ADAR1 was essential for the pathogenesis of systemic sclerosis (SSc). (A, B) Mice were injected s.c. with bleomycin (Bleo: 0.02U) for the times
indicated. ADAR1 mRNA (A) and protein (B) expression in skin were detected by qPCR and Western blotting, respectively. (B) ADAR1 protein
levels were quantified by normalizing to GAPDH (n = 6). *P<0.05, **P<0.01, ***P<0.001 vs PBS-treated group for each isoform. 1-way ANOVA
was used for comparison among groups. (C) ADAR1 heterozygous deletion (AD1+/-) attenuated bleomycin-induced skin fibrosis compared with
WT mice. Skin sections were collected 28d after bleomycin injection, and skin thickness was measured by ultrasonography and indicated by
white arrows (D) Quantification of the skin thickness in bleomycin-treated WT and AD1+/- mice compared with PBS control (n = 6). ***P<0.001.
(E) ADAR1 deletion inhibited bleomycin-induced collagen deposition in skin, as shown by Masson’s trichrome staining. H&E staining showed skin
structure. 20x power of objective lens was used to acquire images. (F) ADAR1 deletion blocked bleomycin-induced Col1a1 expression in skin
tissues, as determined by Western blotting. COL1A1 protein levels were quantified by normalizing to GAPDH (n = 6). ***P<0.001. 2-way ANOVA
was used for comparison among groups.
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imaging (Figures 1C, D). Histopathological analyses using H&E

staining of the skin sections further confirmed that ADAR1

deficiency effectively attenuated bleomycin-induced increased

skin thickness (Figure 1E, left panels). As fibrosis is characterized

by excessive collagen deposition, Masson’s trichrome staining

was used to detect collagen accumulation in the bleomycin

challenged skins. As shown in Figure 1E (right panel), the

collagen deposition was markedly attenuated in ADAR1-

deficient mouse skin tissues compared to the WT after

bleomycin injection for 28 days. Consistently, the collagen

protein COL1A1 expression was also decreased considerably

in bleomycin-treated AD1+/- mice (Figure 1F). Taken together,

these data demonstrated that ADAR1 is essential for the

SSc development.
Macrophage ADAR1 is essential for SSc

In agreement with previous report that macrophage

infiltration is one of the essential factors initiating SSc (32), we

observed a rapid and remarkable increase in mRNA expression

of macrophage marker F4/80 in bleomycin-treated skin tissues
Frontiers in Immunology 05
of C57BL/6 mice (Figure 2A). Notably, the highest F4/80 level

was concomitant with ADAR1 expression, indicating that

ADAR1 may promote bleomycin-induced SSc by modulating

macrophage function.

To determine if ADAR1 in macrophages is essential for SSc

formation, we generated myeloid-specific ADAR1 knockout

mice (ADAR1mj-/-) by crossing ADAR1-floxed mice with

LysM-cre mice. After bleomycin injection for 28 days,

ADAR1mj-/- mice exhibited much less skin thickness

compared to WT mice as measured by ultrasonography

(Figures 2B, C). Moreover, both the collagen deposition and

protein expression were markedly reduced in ADAR1mj-/-
mouse skin tissues under bleomycin treatment (Figures 2D, E).
Macrophage ADAR1 is essential for
bleomycin-caused lung fibrosis

Pulmonary lesions are the leading cause of death in patients

with SSc (33). Thus, we sought to determine whether ADAR1

plays a role in lung sclerosis. Lung fibrosis was induced by

bleomycin injection inWT and ADAR1mj-/- mice. As analyzed
A B

D E

C

FIGURE 2

ADAR1 deficiency in macrophages (ADAR1mj-/-) ameliorated skin sclerosis formation. (A) Mice were injected s.c. with bleomycin (Bleo: 0.02U)
for the times indicated. Total RNA was extracted from skin tissues, and F4/80 mRNA levels were detected by RT-qPCR. *P<0.05, ***P<0.001 vs
PBS-treated group for each isoform. (B) ADAR1mj-/- attenuated bleomycin-induced skin fibrosis compared with WT mice. Skin sections were
collected 28d after bleomycin injection, and skin thickness was measured by ultrasonography and indicated by arrows. (C) Quantification of the
skin thickness in bleomycin-treated WT and ADAR1mj-/- mice. ***P<0.001 vs. PBS control, n = 6. (D) ADAR1mj-/- inhibited bleomycin-induced
collagen deposition in skin, as shown by Masson’s trichrome staining. H&E staining showed skin structure. 20x power of objective lens was used
to acquire the images. (E) ADAR1 deletion blocked bleomycin-induced COL1A1 expression in skin tissues, as determined by Western blotting.
COL1A1 protein levels were quantified by normalizing to GAPDH. **P<0.01, n = 6. 2-way ANOVA was used for comparison among groups.
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by H&E staining, the bleomycin-caused lung structure

damage was remarkably alleviated in ADAR1mj-/- mice

(Figure 3A). Furthermore, bleomycin-treated ADAR1mj-/-
mice exhibited a significant reduction in collagen deposition

and protein expression in the lung compared with WT mice

(Figures 3B–D). These data suggested that ADAR1 promote

systemic sclerosis via the modulation of macrophage function.
ADAR1 promotes the macrophage
inflammation in SSc

Inflammation is essential in driving the pathogenesis of SSc

(34). Pro-inflammatory cytokines, such as IL-1b and nitric oxide

production, were upregulated in sclerosis tissues (35, 36). Since

macrophage ADAR1 is essential for sclerosis formation

(Figure 2), we sought to investigate the relation of ADAR1-

expressing macrophages and the inflammatory response in

bleomycin-induced skin fibrosis. Immunostaining of skin

sections showed that iNOS (Figure 4A) and IL-1b (Figure 4B)

were co-localized with macrophage marker F4/80. These

observations strongly supported that pro-inflammatory (M1)

macrophages, the major inflammation mediator, play a critical

role in bleomycin-induced SSc development. Importantly,

ADAR1mj-/- mice showed a remarkably lower inflammation
Frontiers in Immunology 06
in the skins after bleomycin treatment, as evidenced by the

declined mRNA and protein expression of iNOS and IL-1b
(Figures 4C, D), which correlated with the attenuated SSc

formation and progression in ADAR1mj-/- mice (Figure 2).

The mRNA expression of IL-1b appeared to show a little

increase in ADAR1mj-/- mouse skins after bleomycin

treatment while its protein level was completely blocked by

ADAR1-/-. This discrepancy was likely because qPCR detection

is much more sensitive than Western blot analysis. However, the

increase in IL-1b mRNA level was not significant compared to

the PBS treated group. Together, these results indicated that

ADAR1 promoted sclerosis development by activating the pro-

inflammatory macrophages.
ADAR1 regulated M1 macrophages via
NF-kB signaling pathway

It is well-known that NF-kB activation contributes to M1

macrophage activation (2). We hypothesized that ADAR1 activates

M1 macrophages by modulating the NF-kB signaling pathway.

Thus, we assessed the phosphorylation of NF-kB (p65) in

bleomycin-induced skin sclerosis. In agreement with the

expression of iNOS and IL-1b (Figure 4), bleomycin significantly

augmented the NF-kB phosphorylation in WT skin tissues
A B

DC

FIGURE 3

ADAR1mj-/- blocked bleomycin induced lung fibrosis. Lung fibrosis was induced in WT and ADAR1mj-/- mice by bleomycin injection (0.2U) for
24 days. (A, B) ADAR1mj-/- inhibited bleomycin-induced structure damage and collagen deposition in lung as shown by H&E staining (A) and
Masson’s trichrome staining, respectively. 20x power of objective lens was used to acquire images. (C) ADAR1mj-/- blocked bleomycin-induced
COL1A1 expression in lung tissues, as determined by Western blotting. (D) COL1A1 protein levels in C were quantified by normalizing to GAPDH.
***P < 0.001, n = 6. 2-way ANOVA was used for comparison among groups.
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(Figures 5A, B) without altering the NF-kB protein expression.

However, ADAR1mj-/- significantly blocked the NF-kB

activation. There data indicates that NF-kB signaling plays a

critical role in ADAR1 regulated in macrophage activation in Ssc.
IL-1b is required for ADAR1-mediated
SSc

To determine whether IL-1b is responsible for ADAR1-

mediated sclerosis, we injected IL-1b into ADAR1mj-/- mice

followed by bleomycin treatment. As shown in Figure 6,

adoptive injection of IL-1b deteriorated the relief in skin

fibrosis in ADAR1mj-/- mice treated with bleomycin, as

evidenced by the marked increase in skin thickness and

collagen deposition/protein expression that were attenuated in

ADAR1mj-/- mice (Figures 6A, B). These data demonstrated

that ADAR1 regulates SSc development through promoting the

inflammatory macrophages to secret IL-1b.
Frontiers in Immunology 07
Discussion

As a chronic autoimmune disorder, SSc is characterized by

diffuse fibrosis in the skin, joints, and internal organs (e.g., lungs

and kidneys) (37, 38). Accumulation of pro-inflammatory

macrophages is an early event essential for SSc development

(39, 40). However, the pathophysiological mechanism

underlying the role of macrophages in SSc is incompletely

understood. Here, we discover that ADAR1 is a novel protein

factor essential for SSc pathogenesis because ADAR1 deficiency

significantly ameliorated the bleomycin-induced sclerosis. It

appears that ADAR1 promotes classic macrophage activation,

leading to SSc development. ADAR1 is prominently induced at

the initial stage of SSc, concomitant with macrophage

accumulation in the skin. More importantly, loss of ADAR1 in

macrophages remarkably inhibits the skin and lung fibrosis

pathogenesis along with reduction in dermis thickness, lung

structure damage, collagen tissue deposition and production.

Our mechanistic data indicate that ADAR1 promotes the classic
A B

DC

FIGURE 4

Macrophage ADAR1 deficiency (ADAR1mj-/-) modulated inflammation in bleomycin induced skin sclerosis. Mice were injected s.c. with
bleomycin (Bleo: 0.02U) for 1 day. (A, B) Frozen skin sections were co-immunostained with F4/80 and iNOS antibodies (A) or IL-1b antibodies
(B). 20x power of objective lens was used to acquire images. (C, D) ADAR1mj-/- attenuated the mRNA and protein expression of iNOS and pro-
inflammatory cytokines IL-1b. The mRNA (C) and protein (D) levels of iNOS and IL-1b in bleomycin-treated mouse skin were quantified by qPCR
and Western blot, respectively. And iNOS and IL-1b protein levels were normalized to GAPDH. Data shown are the mean ± SD of three
independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 (ADAR1mj-/- vs WT mice with bleomycin injection). 2-way ANOVA was used for
comparison among groups.
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activation of macrophage and inflammatory response through

activating NF-kB signaling pathway.

ADAR1 appears to promote sclerosis by stimulating

macrophage inflammatory response. We demonstrated that

ADAR1 deficiency in macrophages significantly reduces the

expression of iNOS and IL-1b in skin tissues. IL-1b has been

shown to play a vital role in promoting fibrosis and SSc (35,

36). IL-1b expression level is significantly up-regulated in the

serum, bronchoalveolar lavage fluid, and the skin lesions of

SSc patients (41). IL-1b deficiency significant attenuates the

pulmonary fibrosis induced by bleomycin in mice through

relieving fibroblast–myofibroblast differentiation and the

myofibroblasts longevity, which are also the critical events in

skin fibrosis in SSc patients (42, 43). Our data demonstrated
Frontiers in Immunology 08
that IL-1b is also critically important for ADAR1-mediated

SSc development, as supplementation of IL-1b significantly

reverses the reduction of skin fibrosis observed in

ADAR1mj-/- mice treated with bleomycin. It is possible

that ADAR1 also mediates fibroblast–myofibroblast

differentiation or the myofibroblasts longevity to promote

SSc through regulating IL-1b expression. However, this

would require extensive future investigation.

ADAR1 participates in regulating innate immune response

by both editing-dependent and -independent mechanisms (44).

RNA editing of target proteins is the primary function of

ADAR1. Additional editing-dependent mechanism of ADAR1

has been proposed to affect mRNA maturation through splicing

pre-mRNA (45). Recently, an increasing number of studies have
A

B

FIGURE 5

ADAR1 was essential for activation of the NF-kB pathway in M1 macrophages. (A, B) ADAR1 deficiency (ADAR1mj-/-) significantly inhibited the
bleomycin-induced NF-kB phosphorylation in skin tissues. WT and ADAR1mj-/- mice were injected s.c. with bleomycin (Bleo, 0.02U) and skin tissues
were collected 1d after the treatment. Expression pNF-kB, and NF-kB in the skin tissues was measured by Western blotting (A) and quantified by
normalizing to GAPDH (B) **P < 0.01 vs PBS-treated group in each panel, n = 3. 2-way ANOVA was used for comparison among groups.
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revealed RNA editing-independent roles of ADAR1 in

regulating miRNA biogenesis by either acting as an RNA-

binding protein or forming complexes with other proteins (22,

46, 47). Therefore, ADAR1 could induce M1 macrophage

activation through RNA editing or non-editing mechanisms.

The mechanisms by which ADAR1 regulates macrophage

polarization is a subject for future investigation.

Although the role of ADAR1 in macrophages and

inflammatory response remains controversial, our current

results clearly demonstrated that ADAR1 is indispensable for

bleomycin-induced classical macrophage activation and its

subsequent inflammatory response. This outcome is validated

in vivo in bleomycin-induced SSc mouse model. The discrepancy

of the ADAR1 functions in macrophage studies including ours is

likely due to the different approaches blocking ADAR1

expression and/or the use of different source of macrophages.

Nonetheless, our studies reveal a crucial role for ADAR1 in the

development of SSc. ADAR1 promotes M1 macrophage
Frontiers in Immunology 09
activation and regulates the expression of inflammatory

mediators through modulating NF-kB signaling. Therefore,

targeting ADAR1 could be a novel therapeutic strategy in

treating systemic sclerosis.
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FIGURE 6

IL-1b is required for ADAR1 mediated SSc. Mice were injected s.c. IL-1b into ADAR1mj-/- mice followed by vehicle (PBS) or bleomycin (Bleo)
treatment, and skin tissues were collected 28d after the treatment. (A) IL-1b deteriorated the ADAR1mj-/- induced skin fibrosis relief, as shown
by Masson’s trichrome staining. H&E staining showed skin structure. 20x power of objective lens was used to acquire images. (B) IL-1b
exacerbated the ADAR1mj-/- blocked COL1A1 expression in skin tissues, as determined by Western blotting. Col1a1 protein levels were
quantified by normalizing to GAPDH. ***P < 0.001, n = 3. 2-way ANOVA was used for comparison among groups.
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