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Head and neck tumours are common malignancies that are associated with

high mortality. The low rate of early diagnosis and the high rates of local

recurrence and distant metastasis are the main reasons for treatment failure.

Recent studies have established that the tumour microenvironment (TME) can

affect the proliferation and metastasis of head and neck tumours via several

mechanisms, including altered expressions of certain genes and cytokines.

Increasing evidence has shown that epigenetic modifications, such as DNA

methylation, histone modification, RNA modification, and non-coding RNAs,

can regulate the head and neck TME and thereby influence tumour

development. Epigenetic modifications can regulate the expression of

different genes and subsequently alter the TME to affect the progression of

head and neck tumours. In addition, the cell components in the TME are

regulated by epigenetic modifications, which, in turn, affect the behaviour of

head and neck tumour cells. In this review, we have discussed the functions of

epigenetic modifications in the head and neck TME. We have further examined

the roles of such modifications in the malignancy and metastasis of head and

neck tumours.

KEYWORDS
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Introduction

Globally, head and neck tumours are the most common malignant tumours (1).

More than 430,000 people die from the disease annually (1), and 90% of the cases involve

head and neck squamous cell carcinoma (HNSCC) (2). It is considered the dominant

phenotype and is associated with cervical lymph node metastasis and the progression of
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malignancy (3). Surgical resection is the mainstay of HNSCC

treatment; however, it is often unsatisfactory owing to the

uncertainty of tumour boundaries and the potential for

aggressive lymphatic metastasis (4). Many therapies are

available for head and neck tumour microenvironment (TME),

including immunotherapy and anti-angiogenic therapy (5, 6).

Immunological monotherapy and combination therapy have

been shown to prolong the survival of patients (7), and anti-

angiogenic therapy is an attractive option for overcoming

hypoxia and radiation in head and neck tumours (6). Both

immunotherapy and anti-angiogenic therapy are closely linked

to alterations in the TME (8, 9). Therefore, it is vital to explore

the impact of TME on head and neck tumours.

The TME includes both cellular and non-cellular

components, such as stromal cells, immune cells, and

chemokines (10). The processes of proliferation, apoptosis

resistance, invasion, migration, and immune evasion of

cancer cells are considered to be related to TME (11-15).

The acidic and hypoxic TME creates a unique growth

environment for cancer cells, which enables them to resist the

immune response (16, 17). The TME can influence tumour

progression viamultiple mechanisms, such as Notch and STAT3

signalling pathways (18, 19). Furthermore, m6A modifications

are involved in the regulation of TME. For example, the m6A

demethylase ALKBH5 can regulate the tumour immune

microenvironment (TIME) of HNSCC via the RIG-I/IFNa
signalling pathway (20), which suggests that epigenetic

modifications are involved in the regulation of the TME in

head and neck tumours. Therefore, the characteristics of the

TME should be explored, and the mechanisms regulating

epigenetic modifications of the TME in HNSCC must

be clarified.

Epigenetic alterations lead to abnormal gene expression in

the cells in the TME and are linked to the development of cancer

(21). Recent studies have shown that TME is regulated by

epigenetic modifications (22). In this review, we have

summarised the interactions between epigenetic modifications

and the TME as well as their effects on the fate of HNSCC. These

insights may help in identifying new potential targets for the

effective treatment of head and neck tumours.
The TME of head and neck tumours

The microenvironment of head and neck cancer is a

complex system that is composed of non-tumour cells, an

extracellular matrix, and a vascular system (23). The TME is

characterized by hypoxia, high angiogenic factor content, and

immunosuppression and is involved in tumour growth,

metastasis, and invasion (6, 24, 25). In addition to

conventional approaches, such as surgical treatment,

radiotherapy, and chemotherapy, anti-angiogenic and

immunosuppressive therapies are novel directions for treating
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these tumours. Therefore, we focussed on the role of the TME in

angiogenesis and immune responses (Figure 1).
The role of angiogenesis in the TME of
head and neck tumours

The rapid proliferation of cells in malignant tumours

requires a supply of oxygen and nutrients via the bloodstream

(26). Angiogenesis is a key factor that affects the progression of

head and neck cancers (27, 28). Microvessel density (MVD) is an

indirect marker of tumour angiogenesis and is associated with

poor prognosis in HNSCC (29). Disease-free survival and overall

survival are significantly reduced in patients with high CD105+

MVD (29). A study has reported that increased MVD in head

and neck tumours promotes the proliferation of cancer cells and

leads to poor tissue differentiation and lymph node metastasis

(30). Therefore, the mechanism of angiogenesis in head and

neck cancer needs to be explored for developing targeted

angiogenic therapy.

The downstream signalling pathway of angiogenesis is

mainly mediated by vascular endothelial growth factor (VEGF)

(31). It affects angiogenesis chiefly via three signalling pathways,

namely, RAS/RAF/MAPK, PI3K/AKT/mTOR, and STAT3/

cycD1/Bcl-xL (6). In head and neck tumours, VEGF-C has

been observed to promote cell growth and migration (32).

Recent studies have revealed that epigenetic modifications can

directly or indirectly regulate the expression of VEGF and, thus,

play a role in the angiogenesis in head and neck tumours. For

instance, sevoflurane can reduce the angiogenic ability of tongue

squamous cell carcinoma by enhancing DNA methylation in the

VEGF promoter region (33). In nasopharyngeal carcinoma, high

DNA methylation of the FBLN2S promoter inhibits the

expression of FBLN2S, while overexpression of FBLN2S

downregulates the expression of angiogenesis-related factors

such as VEGF165 and VEGF189 and inhibits angiogenesis

(34). Moreover, non-coding RNAs (ncRNAs) play a vital role

in angiogenesis. A study has suggested that upregulating the

expression of miR-30e-5p can inhibit mRNA expression of

VEGF and inhibit angiogenesis in HNSCC in vivo, thereby

reducing tumour invasion and metastasis (35). Based on these

findings, it is clear that epigenetic modifications are instrumental

in the angiogenesis in head and neck tumours and may provide a

new target for anti-angiogenic treatment.
The role of immune responses in the
TME of head and neck tumours

The role of the immune system in tumour development is

widely accepted, and therapeutic modalities targeting tumour

immunity have been frequently reported (36). To facilitate the

development of immunotherapy for head and neck cancer, the
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components involved in immunotherapy, such as immune cells

and immune checkpoints, deserve to be investigated.

The role of immune cells in the TME of head
and neck tumours

The TME of solid tumours contains a variety of immune cells,

such as CD8+ T cells, CD4+ T cells, natural killer cells (NKs), and

dendritic cells (DCs), which act as anti-tumour agents. The TME

also contains myeloid suppressor cells (MDSCs), regulatory T cells

(Tregs), and tumour-associated macrophages (TAMs), which act

as immunosuppressive agents (37, 38). These immune cells, along

with cytokines, constitute TIME. DCs promote the activation of

CD8+ T cells and induce CD4+ T cells to differentiate into antigen-

specific effector T cells (39). CD4+ T cells and NKs induce the

maturation of DCs and contribute to the activation of CD8+ T

cells (40, 41). Furthermore, CD4+ T cells exert their tumour-

killing effect by secreting cytokines that activate CD8+ T cells (42).

The TME of solid tumours presents a highly immunosuppressed
Frontiers in Immunology 03
state. MDSCs, Tregs, and TAMs inhibit the tumour killing effect

of CD8+ T cells and effectively achieve immunosuppression

(43-45). Moreover, cancer-associated fibroblasts (CAFs), a major

cellular component of the TME matrix, are involved in the

immune processes of head and neck tumours. For example, in

nasopharyngeal carcinoma, there is a significant correlation

between the densities of CAFs and M2 TAMs (46).

Furthermore, tumour cells can release immunosuppressive

mediators to exert their immunosuppressive effects. Head and

neck tumour cells can avoid detection by T cells and NKs by

secreting various cytokines, including TGF-b, IL-6, and IL-10,

which can inhibit T-cell proliferation and effector function (47–

49). Another study has reported that exosomes from peripheral

blood of head and neck patients containing cyclooxygenase 2,

TGF-b, programmed death 1 (PD-1), and cytotoxic T lymphocyte

antigen 4 (CTLA-4). These exosomes promote CD8+ T-cell

apoptosis, inhibit CD4+ T-cell proliferation, upregulate Tregs

and impair the function of NKs (50).
FIGURE 1

The role of angiogenesis and immune response in the TME. Immune response in the TME: NKs and CD4+ induced DC maturation; DCs
promoted the activation of CD8+T cells and induced CD4+T cells to differentiate into antigen-specific effector T cells; CD4+ secreted cytokines
to activate CD8+T cells; MDSCs, Tregs and TAMs inhibited the tumour-killing effect of CD8+T cells; cancer cells released cytokines to inhibit T-
cell proliferation and the effector function; PD-1/PD-L1 interaction inhibited the function of effector T cells; CTLA-4 binds to B7 ligands to
inhibit T cell activation; IDO1 inhibited the function of T cells; the expression levels of CTLA-4 and IDO1 were regulated by DNA methylation.
Angiogenesis in the TME: VEGF affected angiogenesis through RAS/RAF/MAPK, PI3K/AKT/mTOR, and STAT3/cycD1/Bcl-xL signalling pathways.
Epigenetic modification affected the expression of VEGF and the angiogenesis in the TME.
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The role of immune checkpoints in the TME of
head and neck tumours

Some immune checkpoints play a role in the immune escape

of head and neck tumours, including PD-1/PD-L1, CTLA-4, and

indoleamine 2,3-dioxygenase 1 (IDO1). In HNSCC, the

expressions of PD1 and PD-L1 are upregulated, which

represents one of the key immune checkpoints in HNSCC

(51–53). PD-1 is mainly expressed on the surface of T cells

and interacts with PD-L1 and PD-L2 ligands (54). The

interaction of PD-1 and PD-L1 can inhibit the function of

effector T cells and promote immunological tolerance (55).

Furthermore, CTLA-4 can bind to B7 ligands on cancer cells,

which results in the inhibition of T-cell activation and the

promotion of HNSCC immune escape (56). IDO1 is a new

immunosuppressive locus whose increased expression can

inhibit the function of anti-tumour T cells (57). Recent studies

have stated that epigenetic modifications are also involved in the

immunomodulatory process in head and neck cancers.

Investigations have suggested that CTLA-4 and IDO1

expression levels in head and neck tumours are epigenetically

regulated via DNA methylation (57, 58). This finding implies

that epigenetic modifications are involved in the TME of head

and neck tumours. Therefore, the role of epigenetics in the TME

of head and neck cancers must be clarified.
Epigenetic modifications of the TME
in head and neck tumours

DNA methylation of the TME in head and
neck tumours

Multiple studies have suggested that DNA methylation is

involved in genetic alterations in tumour cells and in activities in

the TME (Figure S1) (59, 60). A recent study showed that

inhibiting the expression of DNA methyltransferase 1 can

reduce MDSCs and increase tumour-infiltrating T cells to

prevent tumour growth in the TME of oral squamous cell

carcinoma (OSCC) (61). Furthermore, altered DNA

methylation of certain genes can affect immune cells and,

therefore, the TME. In HNSCC, squalene cyclooxygenase is

demethylated and overexpressed, which inhibits the activation

of CD8+ T cells and leads to immunity evasion (62). Another

study observed that the TME of patients with ornithine

aminotransferase hypomethylation had a higher degree of

immune cell infiltration and ornithine aminotransferase

hypermethylation exhibited higher radiosensitivity (63).

One study indicated that immune checkpoints in the TME of

head and neck tumours were regulated by DNA methylation

(58). According to a recent study on oral cancer, the expressions

of the immune checkpoint CTLA-4 and its function-related

molecules CD28, ICOS, CD80, and CD86 were regulated by
Frontiers in Immunology 04
DNA methylation (58). Expression of CTLA4 is negatively

correlated with DNA methylation, whereas mRNA levels of

CD28, ICOS, CD80, and CD86 are positively correlated (58).

This evidence suggests that DNA methylation directly or

indirectly influences the regulation of the TME in head and

neck tumours.
Histone acetylation of the TME in head
and neck tumours

Histones comprise the core histones H2A, H2B, H3, and H4

and the connective histone H1 (64). Acetylation of histone H4-

Lys16 and trimethylation deletion of H4-Lys20 are common

markers of human cancer (65). Many studies have shown that

histone deacetylase inhibitors (HDACis) can reshape the TME

and enhance the ability of the immune system to kill tumour

cells (66–69). A recent study opined that head and neck tumours

sustain low levels of histone acetylation, which may be the

reason for the accumulation and maintenance of cancer stem

cells (70). The above evidence implies that histone acetylation

has an essential role in the TME of head and neck tumours.
RNA modification of the TME in head
and neck tumours

m1A modification
m1A modification is closely related to the TIME in several

cancers (71, 72). m1A modification has been documented to affect

the TME in HNSCC and thereby influence its prognosis. A recent

study has shown that the m1A gene mutation may be associated

with the TME of OSCC and that it could potentially predict its

prognosis (73). Researchers have analysed the methylation pattern

of m1A, which revealed that the expressions of all m1A regulatory

factors were significantly upregulated in 502 patients with OSCC

compared with the normal control group. This upregulation was

closely linked to poor prognosis in the patients (73). Moreover,

m1A modification was shown to be negatively correlated with

immune checkpoints, angiogenesis, and CD8+ T cells in the TME

(73). A study has reported that this modification can affect the

TME in head and neck tumours by influencing the long non-

coding RNAs (lncRNAs). Furthermore, m1A-related lncRNA has

been observed to be closely related to the prognosis, TME, and

tumour mutation burden in HNSCC (74). In summary, m1A

modification exerts immunomodulatory effects in the TME

of HNSCC.

m5C modification
m5C modification is a key player in several biological and

pathological processes, such as cell proliferation and

differentiation, tumorigenesis, malignant tumour progression,
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and tumour immunity (75, 76). Moreover, m5C regulatory

factors can regulate the TIME (77). A recent study has stated

that the activities of most immune cells in the TME are

significantly reduced in patients with a high expression of m5C

regulators (78). This observation implies a correlation between

the TME and m5C in patients with OSCC (78). Furthermore,

m5C can influence the TME via lncRNAs. Another study has

suggested the presence of a close relationship between m5C-

related lncRNA and the HNSCC TME (74). In HNSCC, m5C

regulators inhibit immune cell activity, which means that m5C

can regulate the TME and influence its fate.

m6A modification
m6A modification is the most common mRNA modification

in eukaryotes (79). This modification is involved in the

regulation of RNA stability, localisation, output, splicing, and

translation and is closely linked to several cellular activities (80).

Abnormal m6A modification is associated with a TME

phenotype of non-inflammation and immunorejection (81).

For instance, low expression of the m6A writer METTL3

promotes the production of IL-8. Tumour-associated

neutrophils are recruited to the TME for immunosuppression,

which promotes the progression of papillary thyroid carcinoma

(82). Moreover, m6A eraser acts in the TME, with a recent study

reporting that the expression of ALKBH5 is upregulated in

HNSCC (20). A subsequent study has shown that ALKBH5

downregulates the expression of RIG-I and reduces the secretion

of interferon-a in the TME via the IKK-a/Tbk1/IRF3 pathway.

Ultimately, the infiltration of immune killer cells is inhibited,

and immune escape is promoted (20). Furthermore, m6A

readers YTHDF1 and IGF2BP2 have been found to be

significantly correlated with different immunological states in

HNSCC. These readers may regulate the TME by blocking the

expression of specific genes related to antigen recognition, signal

transduction, and effector T-cell proliferation and activation

(83). YTHDC2 is associated with the degree of immune

infiltration of B cells, CD8+ T cells, CD4+ T cells, neutrophils,

and DCs in HNSCC (84). High expression of YTHDC2 is

accompanied by high immune infiltration (84). Moreover,

m6A is associated with immune checkpoints in the TME. A

report has suggested that the upregulation of PD-L1 expression

is associated with m6A methylation (85). Also, m6A methylation

and the PI3K/AKT/mTOR signalling pathway may be involved

in the regulation of the HNSCC immune microenvironment

(85). These reports suggest that m6A modifications are primarily

associated with immune regulation of the TME in head and

neck tumours.
Non-coding RNAs

ncRNAs, including circular RNAs (circRNAs), microRNAs

(miRNAs), and lncRNAs, interact with the components of the
Frontiers in Immunology 05
TME, thereby affecting tumorigenesis and progression (Table

S1) (86–88). These ncRNAs, which are enriched in exosomes of

CAFs, are transmitted to the cancer cells to regulate their

biological characteristics. The decreased expressions of miR-

34a-5p and miR-3188 in the CAF exosomes augment the

metastatic potential of head and neck tumours (89, 90). miR-

382-5p transported by CAF exosomes can promote migration

and invasion in OSCC (91). In addition, miR-196a transported

by CAF exosomes can augment cisplatin resistance in head and

neck tumours by targeting CDKN1B and ING5 (92). Moreover,

miRNAs from cancer cells can influence the TME. miR-192/215

transported by exosomes in head and neck tumour cells could

promote remodelling of the hypoxic TME (93). Another study

has reported that deletion of the p53 gene results in the reduced

expression of miR-34a, which promotes adrenergic trans-

differentiation of tumour-associated sensory nerves and head

and neck tumour progression (94). Furthermore, the

downregulation of miR-34a promotes immune escape in head

and neck tumours via upregulation of MET expression (95). Low

levels of miR-9 can promote tumour growth by upregulating

MDK expression and regulating the PDK/AKT signalling

pathway to enhance angiogenes i s in the TME of

nasopharyngeal carcinoma (96). Therefore, miRNA plays a key

role in the TME of head and neck tumours.

The role of lncRNAs in the microenvironment of head and

neck cancer is yet to be elucidated. Like miRNAs, lncRNAs from

the TME can influence the fate of the tumour. The lncRNA H19

is upregulated in CAF and participates in the glycolytic pathway

of CAF via the miR-675-5p/PFKFB3 axis, which promotes the

progression of oral cancer (97). The lncRNA FLJ22447 is

significantly upregulated in CAFs and promotes the

transformation of CAF into OSCC by upregulating IL-33 (87).

Furthermore, lncRNA transported by tumour cell exosomes can

act on components in the TME to regulate tumour progression.

Oral leukoplasia (OL) is a precancerous state of OSCC (98). A

study has shown that the lncRNA IFITM4P can induce PD-L1

expression, thereby activating the immunosuppressive process

and immune escape of OL cells in the cytoplasm (98). The

expression of the lncRNA DCST1-AS1 in OSCC is significantly

increased, and the polarization of M2 macrophages is promoted

by regulation of the NF-kB pathway to enhance tumour

progression (99). These results suggest that ncRNA can

regulate the TME of head and neck tumours and might serve

as a potential therapeutic target.
Discussion

Head and neck tumours are associated with a poor prognosis

because of their high degree of malignancy and the high rate of

lymph node metastasis (3). At present, the major treatment for

these tumours is surgical resection (4). However, owing to their

location, surgical resection of head and neck tumours often
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results in physiological disorders that affect swallowing,

mastication, or pronunciation. Moreover, it can exert a

negative influence on the facial appearance and mental health

of patients (100, 101). Therefore, therapies that are more

efficient and less damaging should be immediately developed.

Several studies have shown that the TME can regulate

tumorigenesis, growth, and metastasis of head and neck

tumours (102–105). As mentioned above, angiogenesis

promotes the invasion and metastasis of head and neck

tumour, and increased immunosuppression promotes the

immune escape of tumour cells (8, 32). Therefore, TME is

extremely important for the pathological progression of head

and neck tumours. Anti-angiogenic drugs and immunotherapies

that target the TME of head and neck tumours are promising

alternative therapies (103, 106). However, these treatment

modalities require further research to refine them. Therefore,

elucidating the role of the TME in head and neck tumours is the

need of the hour.

Epigenetic mechanisms are involved in a variety of

pathological processes and play an essential role in tumour

progression (21). These alterations can influence the TME of

head and neck tumours and regulate cancer progression

(Figure 2). In this regard, DNA methylation can affect tumour

progression by regulating immune infiltration and immune

checkpoints in the TME of head and neck tumours (58, 61,

62). Furthermore, histone acetylation can weaken the immune-

killing capability of the TME in head and neck tumours and
Frontiers in Immunology 06
promote their growth (70). RNA modification predominantly

regulates the level of angiogenesis, immune activity, and

immune infiltration of immune cells in the TME of head and

neck tumours and participates in tumour progression (20, 73, 78,

82–85). ncRNA secreted by certain cells in the TME of head and

neck tumours can influence the behaviour of cancer cells,

including invasion, metastasis, and drug resistance (89, 97).

Furthermore, ncRNA in tumour cells can participate in the

immune regulation of the TME in head and neck tumours and

promote their progression (95, 96, 99). Succinctly, epigenetic

modification holds promising potential in the regulation of the

TME in head and neck tumours and is expected to provide targets

for their treatment. Key proteins in epigenetic modifications can

affect angiogenesis, immune responses in TME and can further

affect tumour growth (Table S2) (61, 73, 78, 82). Numerous drugs

targeting different epigenetic modifications have been used to treat

head and neck tumours. The major DNA methylation drugs

include zebularine, 5-azacytidine, 5-aza-2’-deoxycytidine, aloe-

emodin, and procaine (107–109) . Tr ichostat in A,

suberoylanilide hydroxamic acid, M344 (an analogue of

hydroxamic acid), and cyclic tetrapeptide are potent HDAC

inhibitors that have been reported to promote radiosensitivity in

head and neck tumours (110). Additionally, the HDAC inhibitor

LBH589 promotes p21 expression and induces cell death (111).

Therefore, the development of drugs targeting epigenetic

modifications in the TME may offer new prospects for the

treatment of head and neck tumours.
FIGURE 2

Effect of epigenetic modifications on the TME of head and neck tumours. DNA methylation, RNA modification, and ncRNA modification resulted
in different gene expression changes that affected the TME of head and neck tumours.
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Conclusion

The data summarized herein establishes that the TME can affect

the malignant development of head and neck tumours, including

their growth, metastasis, and drug resistance. Epigenetic

modifications are involved in these processes. It is essential to gain

more knowledge about the molecular mechanisms involved in

epigenetic modifications of TME in head and neck tumours.

Therefore, the development of new drugs effectively targeting

epigenetic modifications can be envisaged in the near future. In

general, clarifying the roleof epigeneticmodifications in theTMEcan

provide a novel therapeutic target for head and neck tumours.
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SUPPLEMENTARY FIGURE 1

The role of DNA methylation in TME of head and neck tumours. (A) DNA

hypomethylation of VEGF and DNA hypermethylation of FBLN2S promote

angiogenesis. (B) Inhibition of DNMT1 expression decreased the
percentage of MDSCs and increased CD8+T cell infiltration. (C)
Hypomethylation at CpG S_Shore site of SQLE promotes immune
escape. (D) OAT hypomethylation promotes immune cell infiltration,

and hypermethylation tumour is more sensitive to radiotherapy.
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