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Ovarian cancer is the most deadly malignancy among women, but its complex

pathogenesis is unknown. Most patients with ovarian cancer have a poor

prognosis due to high recurrence rates and chemotherapy resistance as well

as the lack of effective early diagnostic methods. The tumor microenvironment

mainly includes extracellular matrix, CAFs, tumor angiogenesis and immune-

associated cells. The interaction between tumor cells and TME plays a key role

in tumorigenesis, progression, metastasis and treatment, affecting tumor

progression. Therefore, it is significant to find new tumor biomarkers and

therapeutic targets. MicroRNAs are non-coding RNAs that post-

transcriptionally regulate the expression of target genes and affect a variety

of biological processes. Studies have shown that miRNAs regulate tumor

development by affecting TME. In this review, we summarize the

mechanisms by which miRNAs affect ovarian cancer by regulating TME and

highlight the key role of miRNAs in TME, which provides new targets and

theoretical basis for ovarian cancer treatment.
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Introduction

MicroRNAs (MiRNAs) are small non-coding RNAs that

were first detected in Caenorhabditis elegans in early 1990, and

since then studies have confirmed their presence in almost all

species (1, 2). MiRNAs influence tumor and other disease

processes by regulating post-transcriptional gene expression

and participating in a variety of cellular activities (3, 4).

MiRNAs are dysregulated in most tumors and the expression

of specific miRNAs can characterize different tumors and

stages (5, 6). Hence, miRNAs are used in the diagnosis,

treatment and prognosis of cancer (7). The levels of cellular

miRNAs change during tumor development, and recent

studies have demonstrated that miRNAs can regulate tumor

microenvironment (TME) to affect tumor angiogenesis (8, 9),

immune invasion (10, 11) and tumor interstitial interactions (12,

13). TME is heterogeneous and contains a variety of cell types,

including fibroblasts, endothelial cells, pericytes, immune cells,

stromal stem and progenitor cells derived from local and bone

marrow, and extracellular matrix (14, 15) (Figure 1). Some of

them are altered during tumor development. Both tumor cells

and their surrounding tissues influence cancer development, and

TME is the main factor regulating both (16). As research

progressed, the evolution of TME was found to complicate

tumor formation, metastasis, and treatment (17).

Tumorigenesis, growth and metastasis are closely related to

the internal and external environment in which tumor cells live,

and tumor cells and their environment are both interdependent
Frontiers in Immunology 02
and competitive (18, 19). TME includes not only the structure,

function and metabolism of tumor tissues, but also the intrinsic

environment of tumor cells (20, 21). TME is complex and

constantly evolving, including innate and adaptive immune

cells in addition to stromal cells, fibroblasts and endothelial

cells. Ovarian cancer is gynecologic cancer with high mortality

rate (22), and due to the lack of characteristic clinical

manifestations and effective diagnosis in the early stages, most

patients have advanced disease and metastasis at the time of

diagnosis. Ovarian cancer has a poor prognosis with a 5-year

survival rate of approximately 47% (23). Previous studies have

shown that the progression of ovarian cancer is not only

associated with tumor cells but also with TME (24, 25).

MiRNAs have been recognized as biomarkers for several

human cancers, including ovarian cancer, and dysregulated

miRNA expression is a prominent feature of ovarian cancer

(26). Many studies have evaluated the expression profiles of

miRNAs in tissue and serum samples from ovarian cancer

patients in search of biomarkers (27–29). Several experiments

have also demonstrated that miRNAs exert oncogenic or

carcinogenic effects by degrading or inhibiting the translation

of target mRNAs, such as miR-135a-3p (30), miR-200c (31),

miR-216a (32)和miR-340 (33), these miRNAs regulate

epithelial-mesenchymal transition and thus regulate the

invasiveness of ovarian cancer cells. Recent studies have shown

that the roles of miRNAs in TME include regulation of tumor

angiogenesis (34, 35), tumor immune invasion (36, 37) and

tumor interstitial interactions (12, 38), etc. (Table 1; Figure 2).
FIGURE 1

TME composition.
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In this review, we focus on the mechanisms by which miRNA-

mediated regulation of TME affects the development of

ovarian cancer.
MiRNAs regulate tumor
angiogenesis in TME of
ovarian cancer

Tumor angiogenesis is a hallmark of tumor growth,

infiltration, and metastasis, and an increasing number of

studies have shown its close association with TME (66, 67).

Tumor growth and metastasis are dependent on the growth of

blood vessels within the tumor, a process stimulated by soluble

factors, of which vascular endothelial growth factor and its

receptors are the main drivers (68). Recent in vitro and in vivo

experiments have shown that miR-204-5p promotes ovarian
Frontiers in Immunology 03
tumor angiogenesis through THBS1 (39). By binding to

scavenger receptor class B type 1 (SCARB1), recombinant

high-density lipoprotein-nanoparticles (rHDL NPs) effectively

deliver miR-204-5p inhibitors to tumors to inhibit tumor

growth. This result provides new insights into miR-204-5p

regulating tumor angiogenesis (39, 69). Angiogenesis plays a

key role in the progression and peritoneal dissemination of

ovarian cancer (70), and increased expression of VEGF has

been found to promote the production of malignant ascites (71).

Tumor samples from 198 ovarian cancer patients were analyzed

by array and RT-PCR to confirm that three miRNAs (miR-484,

miR-642 and miR-217) were able to predict chemotherapy

resistance in ovarian cancer. This process is regulated by

modulation of the tumor vascular system induced by the

VEGFB and VEGFR2 pathways and is involved in tumor

angiogenesis (40). MiR-21 and miR-27a induce ovarian

cancer angiogenesis through upregulation of HIF1- a and

VEGF (41, 42). Other pathways affected by miRNA
TABLE 1 Detailed information of miRNAs targeting TME to regulate ovarian cancer.

miRNA Target genes Related hallmark Expression reference

miR-204-5p THBS1 Tumor angiogenesis Promote (10, 39)

miR-484
miR-642
miR-217

VEGFB/VEGFR2 Tumor angiogenesis Promote (40)

miR-21
miR-27a

HIF1- a/VEGF Tumor angiogenesis Promote (41, 42)

miR-141-3p JAK/STAT3/VEGFR2 Tumor angiogenesis Promote (43)

miR-205 PTEN/AKT Tumor angiogenesis Promote (44)

miR-145 HIF1- a/VEGF Tumor angiogenesis Inhibit (45)

miR-497 PI3K/AKT Tumor angiogenesis Inhibit (46)

miR-195-5p GSK3b/b-catenin Tumor angiogenesis Inhibit (47)

miR-181 RTKN2 Tumor angiogenesis Inhibit (48)

miR-29b MMP-2 Tumor-associated fibroblast Inhibit (49)

miR-214 CCL5 Tumor-associated fibroblast Inhibit (50)

miR-98-5p CDKN1A Tumor-associated fibroblast Inhibit (51)

miR-124 SPHK1 Tumor-associated fibroblast Inhibit (52)

miR-29a-3p
miR-21-5p

STAT3 Immune-suppressive Inhibit (53)

miR-125b ID8-VEGF Immune-suppressive Inhibit (54)

miR-222-3P SOCS3/STAT3 Immune-suppressive Promote (55)

miR-223 PTEN-PI3K/AKT Immune-suppressive Promote (56)

miR-7 EGFR/AKT/ERK1/2 Immune-suppressive Inhibit (57)

miR-221-3p CDKN1B Immune-suppressive Promote (58)

miR-1246 Cav1/p-gp/M2 Immune-suppressive Inhibit (59)

miR-200b KLF6 Immune-suppressive Inhibit (60)

miR-424(322) PD-L1/PD-1
CD80/CTLA-4

Immune-suppressive Promote (61)

miR-142 Sirt1 Immune activity Promote (62)

miR-20a MICA/B Immune activity Inhibit (63)

miR-155 Ago2 Immune activity Inhibit (64)

miR-22
miR-503

PI3K/AKT/MAPK
Bcl2

Immune activity
Immune activity

Inhibit
Inhibit

(65)
(65)
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dysregulation also contribute to angiogenesis in ovarian cancer.

For example, miR-141-3p-containing extracellular vesicles from

epithelial ovarian cancer cells promote vascular endothelial cell

generation by activating the JAK/STAT3 signaling pathway and

inducing VEGFR2 expression (43). Through different

mechanisms, upregulation of miR-205 in ovarian cancer leads

to increased angiogenesis through downregulation of the tumor

suppressor PTEN and upregulation of the AKT signaling

pathway (44). MiR-145 has tumor suppressive effects, and

downregulation of miR-145 in ovarian cancer promotes

angiogenesis through the upregulation of HIF-1 a and VEGF

(45). MiR-497 targets vascular endothelial growth factor A

through PI3K/AKT and MAPK/ERK pathways to inhibit

ovarian cancer angiogenesis (46) Overexpression of

microRNA-195-5p reduces cisplatin resistance and

angiogenesis in ovarian cancer by inhibiting the psat1-

dependent GSK3b/b-catenin signaling pathway (47). However,

the role of aberrant regulation of miRNAs in ovarian cancer

angiogenesis and development remains to be further

investigated, which provides future therapeutic options and

targets (72). Significant advances have been made in exploring

the regulatory role of miRNAs in tumor angiogenesis. The

rapidly increasing discoveries shall pave the way in the use of
Frontiers in Immunology 04
miRNAs as predictive biomarkers for anti-angiogenic

treatments and as miRNA-based strategy against tumor

angiogenesis in the future, though there are some challenges.
MiRNAs regulate CAFs in TME of
ovarian cancer

Fibroblasts are the main cells in solid tumors and are

stimulated to become cancer-associated fibroblasts (CAFs) by

a variety of factors secreted by tumor cells or immune cells.

Activated fibroblasts gain the ability to provide fertile soil for

tumor progression (73, 74). CAFs are the major tumor

mesenchymal component of TME (75), promoting tumor

growth, angiogenesis, invasion and metastasis through

extracellular matrix, chemokines, growth factors, cytokines,

and stromal degrading enzymes, and mediating drug resistance

(76). Studies have shown that CAFs influence the malignant

progression, metastasis, drug resistance, and recurrence of

ovarian cancer. After co-culture of SKOV-3 cancer cells with

primary cultured human normal fibroblasts FP-96, the

express ion of the tumor suppressor miR-29b was

downregulated, migration of SKOV-3 cells was increased, and
FIGURE 2

MiRNAs regulates TME and participates in the development of ovarian cancer.
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the activity of the miR-29b target MMP-2 was also increased

(49). In vitro and in vivo experiments revealed that transient

interference of three miRNAs, miR-31, miR-214 and miR-155,

was sufficient to convert normal ovarian fibroblasts into induced

CAFs, thereby promoting ovarian tumor growth and increasing

the aggressiveness and migration of tumor cells. In contrast, the

converse of this conclusion also holds, that by overexpressing

downregulated miRNAs, CAFs can be reversed to more normal

fibroblasts (77). Mitra et al. (50) identified one target of miR-214

as CCL5 and demonstrated that miR-214 inversely regulates

CCL5. Importantly, downregulation of miR-214 increases the

production of CCL5, leading to accelerated tumor growth. Anti-

CCL5 antibodies blocked the effect of CAFs on tumor growth

and migration. Cisplatin resistance is a common phenomenon in

cancer treatment. CDKN1A was highly expressed in cisplatin-

sensitive ovarian cancer cell lines, and silencing CDKN1A

significantly promoted the proliferation and entry into the cell

cycle of cisplatin-sensitive ovarian cancer cells and reduced

apoptosis. MiR-98-5p is an exosomal miRNA derived from

CAFs and promotes cisplatin resistance in ovarian cancer cells

by targeting CDKN1A to inhibit CDKN1A expression (51).

After miR-124 downregulation, normal fibroblasts exhibited

tumor-associated fibroblast characteristics, including

overexpression of a-smooth muscle actin (a-SMA) and

fibroblast activated protein (FAP) and enhanced migratory

and invasive abilities. Overexpression of miR-124 in CAFs

reverses these features in normal fibroblasts (52). MicroRNA

dysregulation is involved in the entire process of CAFs

formation and executive function, and is closely related to the

activation and formation of CAFs. These findings provide new

insights into the communication between CAFs and cancer cells.
MiRNAs regulate
immunosuppressive cells in TME of
ovarian cancer

TME is composed of many non-tumor cells called stromal

cells, including tumor-associated macrophages (TAMs) (78),

CAFs (79), regulatory T cells (80), myeloid-derived suppressor

cells (81), endothelial cells, pericytes, and platelets (82, 83).

Macrophages are the main inflammatory cells (84) and when

they are present in the TME, they are called TAMs (85). Over the

past decade, convincing evidence has emerged for the tumor-

promoting role of macrophages in TME (20, 86, 87). TAMs are

transformed from macrophages affected by cytokines, growth

factors and chemokines in TME and are classified as M1 and M2

types. The M1 type has antitumor effects, whereas the M2 type

has a tumor-promoting effect (78, 88). TAMs are enriched in

ovarian cancer tissues and ascites and affect ovarian

carcinogenesis, metastasis and invasion via multiple

mechanisms (89, 90). It was demonstrated that miR-29a-3p
Frontiers in Immunology 05
and miR-21-5p synergistically inhibit STAT3, regulate Treg/

Th17 cel l s and induce an imbalance , creat ing an

immunosuppressive microenvironment that promotes ovarian

cancer progression and metastasis (53). Hyaluronic acid

nanoparticles encapsulated with miR-125b specifically target

TAMs in the peritoneal cavity of ID8-VEGF ovarian cancer

mice and repolarize macrophages to an immune-activating

phenotype (54). It was found that miR-222-3p is enriched in

epithelial ovarian cancer-derived exosomes, activates

macrophage polarization toward TAMs of the M2 phenotype,

and participates in the SOCS3/STAT3 pathway to promote

cancer progression (55). Hypoxia triggers macrophage

aggregation and induces macrophages to develop a tumor-

associated macrophage-like phenotype. Exosomes released

from hypoxic macrophages are enriched with miR-223, which

promotes drug resistance in ovarian cancer cells in vivo and in

vitro via the PTEN-PI3K/AKT pathway (56).

Ovarian cancer is prone to peritoneal metastases compared

to other tumors in the abdominal cavity (91, 92). Therefore, the

immune microenvironment in the peritoneum is crucial for the

progression of ovarian cancer (93). Previous reports have shown

that the main immune cells in the peritoneum are M2

macrophages, especially TAMs (94, 95). Microarray analysis of

exosomes showed that miR-221-3p was abundant in M2

exosomes and directly inhibited cell cycle protein-dependent

kinase inhibitor 1B (CDKN1B). Further, miR-221-3p promoted

proliferation and G1/S transition in ovarian cancer cells (58).

Cav1 is a direct target gene of miR-1246 and has been shown to

be involved in exosome transfer along with multiple drug

resistance genes. When ovarian cancer cells were co-cultured

with macrophages, miR-1246 was able to transfer macrophages

to the M2 type (59). It has been noted that miR-200b is highly

expressed in plasma-derived exosomes of ovarian cancer

patients and induces macrophage M2 polarization through

inhibition of KLF6 expression, promoting proliferation and

invasion of ovarian cancer cells (60). Accumulating literature

points to the central role that many miRNAs play in the

regulation of these mechanisms of macrophages-mediated

immunosuppression. However, the area of research remains

largely unexplored.
MiRNAs regulate immunoreactive
cells in TME of ovarian cancer

T lymphocytes are mainly divided into two subsets, CD4+ T

cells and CD8+ T cells (96), and the specific immune responses

they mediate are an important part of anti-tumor cellular

immunity and are closely related to tumor development and

prognosis (97). It was found that infiltration of CD8+ T cells was

associated with prolongation of survival in tumor patients, but

the inherent low immunogenicity of tumor cells with TME
frontiersin.org
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suppressed the immune activity of T lymphocytes, leading to a

decrease in the anti-tumor capacity of T lymphocytes (98, 99)

MiR-424 (322) regulates the PD-L1/PD-1 and CD80/CTLA-4

pathways in drug-resistant ovarian cancer (100), and restoration

of its expression reverses the chemoresistance that accompanies

PD-L1 immune checkpoint blockage (101). The synergistic effect

of chemotherapy and immunotherapy is associated with the

proliferation of functional cytotoxic CD8+ T cells and the

suppression of bone marrow-derived suppressor cells and

regulatory T cells (61). Chen et al. found that artesunate

promoted apoptosis of ovarian cancer cells by promoting CD4

+ T cell differentiation to Th1 through miR-142 downregulation

of Sirt1 (62). It was found that miR-20a binds directly to the 3

-untranslated region of MICA/B mRNA, leading to its

degradation and reducing its protein level at the plasma

membrane. A reduction in membrane-bound MICA/B protein,

a ligand for the natural killer group 2 member D (NKG2D)

receptor found on natural killer (NK) cells, gd+ T cells and CD8

+ T cells, allows tumor cells to evade immune-mediated killing.

In vitro and in vivo tumor models, antagonism of miR-20a

enhanced NKG2D-mediated tumor cell killing (63).

Dendritic cells (DCs) are a specialized group of antigen-

presenting cells that are the focus of initiating and regulating

innate and adaptive immune responses. DCs are important in

anti-tumor immunity by regulating TME, recruiting and

activating anti-tumor T cells (102). An increase in the density

of DCs within the TME was found to correlate with improved
Frontiers in Immunology 06
prognosis in cancer patients (103), yet ovarian cancer cells and

TME evade immune control by impairing the activation,

maturation, antigen presentation, differentiation, and

recruitment of DCs (104). Min et al. demonstrated that miR-

22 targets YWHAZ and blocks PI3K/Akt and MAPK signaling

pathways, and miR-503 downregulates Bcl2 expression. The

increased expression of miR-22 and miR-503 in tumor-

associated DCs results in their reduced survival and lifespan.

Thus, tumor-associated miRNAs can target a variety of

intracellular signaling molecules and cause apoptosis of DCs in

TME (65).
Exosome-derived miRNAs regulate
TME of ovarian cancer

Exosomes are tiny vesicles 30-150 nm in diameter secreted

by cells, which are rich in various components such as proteins,

lipids and nucleic acids and are significant in cellular

communication, immune response, angiogenesis and

tumorigenesis (105). There are a large number of miRNAs in

exosomes (106), and exosome-derived miRNAs influence cancer

progression, and they mediate ovarian cancer growth, invasion,

metastasis, angiogenesis, and drug resistance through regulation

of TME. Therefore, they are of great value in the early diagnosis

and determination of prognosis of ovarian cancer (106, 107)

(Table 2; Figure 3). MiRNAs play a role in communication
TABLE 2 Details of exosome-derived miRNAs targeting the TME to regulate ovarian cancer.

miRNA Target genes Related hallmark Expression reference

miR-940 CD163/CD206 Proliferation/Migtation Promote (108)

miR-124-3p BAX/CASP9/CASP3 Proliferation Inhibit (109)

miR-205 VEGFA Proliferation/Migtation Promote (110)

miR-6126 Integrin-b1 Proliferation Inhibit (111)

miR-940 SRC Proliferation Inhibit (112)

miR-200 CD63/CD9 Migtation Promote (113)

miR-99a-5p HPMCs Migtation Promote (114)

miR-574-3p
miR-30a-5p
miR-922

CUL2 Enhance chemosensitivity Inhibit (115)

miR-183-5p MECP2 Proliferation Inhibit (115)

miR-162 TEAD3 Enhance chemosensitivity Inhibit (115)

miR-146a PI3K/AKT Enhance chemosensitivity Inhibit (116)

miR-451 ABCB1 Enhance chemosensitivity Promote (117)

miR-186 ABCB1 Enhance chemosensitivity Promote (118)

miR-770-5p ERCC2 Enhance chemosensitivity Promote (119)

miR-376c ALK7 Enhance chemosensitivity Promote (120)

miR-130a
miR-374a

MDR1/PTEN Enhance chemosensitivity Promote (121)

miR-489 AKT3 Enhance chemosensitivity Promote (122)

miR-134 NF-kB1/c-Rel/ELK1 Enhance chemosensitivity Inhibit (123)
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between tumor cells and TME through exosome secretion and

transfer (107, 124). Meanwhile, exosomal miRNA expression is

dysregulated in ovarian cancer, which reflects the malignant

character of the tumor to some extent (125).

Cancer-derived exosomal miRNAs are considered to be

mediators between cancer cells and TME (126, 127). In the

context of proliferation, ovarian cancer cells release exosomal

miR-205 that promotes cell proliferation and invasion by

targeting vascular endothelial growth factor A (128). In

contrast, the widely released exosomal miR-6126 (129) and

miR-940 (110) from drug-resistant and sensitive ovarian

cancer cells inhibited tumor growth by targeting integrin-b1
and proto-oncogene tyrosine-protein kinase (SRC), respectively.

On the other hand, non-ovarian cancer-derived exosomes also

inhibit the proliferation of ovarian cancer cells (111). For

example, human adipocyte-derived exosomes have inhibitory

effects on two ovarian cancer cells, A2780 and SKOV-3, by

blocking the cell cycle and activating the mitochondria-mediated

apoptotic signaling pathway, capable of inhibiting their

proliferation and wound repair (112). MiR-205 is involved in

the proliferation, migration, invasion and apoptosis of ovarian
Frontiers in Immunology 07
cancer cells by regulating the target gene VEGFA. Transient

introduction of miR-205 mimics into SKOV3 cell-derived

exosomes resulted in enhanced ovarian cancer cell

proliferation, migration and invasion, attenuated ovarian

cancer cell apoptosis, downregulation of epithelial-

mesenchymal transition protein E-cadherin, and elevated

Vimentin (128). The let-7 family miRNA transcripts were

found in both ovarian cancer cell lines and their exosomes and

were more abundant in OVCAR-3 cells than in SKOV-3 cells.

The let-7 and miR-200 families in exosomes are associated with

the aggressiveness of ovarian cancer cells (130). Exosomal miR-

99a-5p in the serum of ovarian cancer patients promotes

invasion by increasing the expression of fibronectin and

vitreous junction protein in adjacent peritoneal mesothelial

cells (109). Studies have confirmed that miR-940 is highly

expressed in exosomes isolated from ascites of ovarian cancer

patients. Furthermore, miR-940 stimulated M2 phenotypic

polarization, which in turn promoted proliferation and

migration of ovarian cancer (113).

Chemotherapy is the mainstay of cancer treatment, but some

patients develop chemotherapy resistance, with ovarian cancer
FIGURE 3

Exosome-derived miRNAs regulate TME and participate in the development of ovarian cancer.
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having the highest recurrence rate associated with drug

resistance, this phenomenon significantly limits the long-term

outcomes of cancer patients, resulting in 5-year survival rates as

low as 30%. Cellular resistance develops through long treatment

cycles or intrinsic pathways. CDKN1A was highly expressed in

cisplatin-sensitive ovarian cancer cell lines, and silencing

CDKN1A significantly promoted the proliferation and entry

into the cell cycle of cisplatin-sensitive ovarian cancer cells and

reduced apoptosis. The cancer-associated fibroblast-derived

exosome miR-98-5p increases ovarian cancer cell proliferation

and promotes cisplatin resistance by targeting CDKN1A (51).

Microarray data downloaded from the Gene Expression

Omnibus database revealed that miR-574-3p, miR-30a-5p and

miR-922 may mediate the HIF 1 cancer signaling pathway

through regulation of CUL2, and miR-183-5p may affect cell

proliferation through regulation of MECP2. Downregulation of

miR-162 may promote TEAD3 expression through the Hippo

signaling pathway, and this miRNA is associated with poor

prognosis. Through experimental validation, researchers

predicted that these genes may be potential therapeutic

strategies for ovarian cancer (114). Similarly, exosomal miR-

146a derived from human umbilical cord MSCs increased the

sensitivity of SKOV3 ovarian cancer cells to docetaxel and

paclitaxel via the LAMC2-mediated PI3K/Akt axis (108).

Human ovarian cancer cell lines OVCAR3, A2780, A2780/

DDP and A2780/Taxol were exposed to paclitaxel or cisplatin

transfected with or without miR-186, and miR-186 was found to

induce sensitivity of ovarian cancer cells to paclitaxel and

cisplatin by targeting ABCB1. This finding demonstrates for

the first time that miR-186 increases the sensitivity of ovarian

cancer cells to paclitaxel and cisplatin by targeting ABCB1 and

regulating the expression of GST-p (115). MiR-770-5p was

significantly reduced in cisplatin-resistant patients, and it acts

as an anti-oncogene that increases chemosensitivity in ovarian

cancer patients by downregulating ERCC2. Thus miR-770-5p

may be a useful biomarker for predicting sensitivity to cisplatin

chemotherapy in ovarian cancer patients (116, 118). Activin

receptor-like kinase 7 (ALK7) and its ligand Nodal induce

apoptosis in human epithelial ovarian cancer cells. Ye et al.

examined the regulation of ALK7 by miRNA and demonstrated

that miR-376c was able to target ALK7. Overexpression of miR-

376c blocked cisplatin-induced cell death, while anti-miR-376c

enhanced the effect of cisplatin (119).
Discussion

The past research that suggested that cancer develops only

from changes in tumor cells has been replaced by the fact that

the cellular microenvironment plays a key role in these
Frontiers in Immunology 08
processes. Therefore, new studies are needed to better explain

the relationship between tumor cells and other cells that make

up TME. Tumorigenesis and progression have causes in the

tumor cells themselves as well as in TME. In recent years,

miRNAs have been extensively studied, either as biomarkers

or to demonstrate their potential to inhibit cellular processes.

Because of this, miRNAs have great potential for the

development of new cancer therapies. It was found that

miRNAs are widely involved in various biological processes,

including their regulatory roles in ovarian cancer progression.

Several studies have demonstrated the involvement of miRNAs

in the interaction between TME and ovarian cancer cells. The

specific mechanisms of miRNAs are still being explored, but

some miRNAs have been considered as biomarkers of tumors

and have become therapeutic targets. For example, miR-204-5p,

miR-484 and miR-21 promote ovarian cancer progression by

regulating tumor angiogenesis in TME; miR-29b and miR-214

inhibit ovarian cancer progression by regulating CAFs; miR-

125b, miR-1246 and miR-221-3p are able to inhibit/promote

ovarian cancer progression by regulating immunosuppression

and immunoreactive cells. These miRNAs serve as regulatory

factors not only as clinical biomarkers, but also as potential

therapeutic targets. It has been widely recognized that exosomes

are rich in miRNAs and that exosomal miRNAs are significant in

TME as signaling molecules for intercellular communication.

Tumor cells transmit exosomal miRNA to cancer cells or normal

cells, and conversely, fibroblasts, macrophages, etc. can also

deliver exosomes to cancer cells. Exploring the role of

miRNAs in TME can contribute to the search for biomarkers

and probe the pathogenesis of tumors. Although many advances

have been made in this area, many problems are still faced. More

clinical data are needed to support the application of miRNAs as

biomarkers for clinical diagnosis and detection, as well as to

develop appropriate formulations for clinical treatment.

In summary, we have highlighted recent advances in the

understanding of tumor microenvironmental interactions

mediated by miRNAs. This article summarizes several

miRNAs target important cancer cell–regulatory molecules

and are involved in a complex network of signaling between

cancer cells and the tumor microenvironment. In addition to

their involvement in direct cell-to-cell signaling, several miRNAs

are secreted through microvesicles or exosomes and affect cancer

cell growth and metastasis. Some of the current challenges in

miRNAs therapeutics involve selecting the right target and

optimizing the delivery systems. Advances in miRNAs

therapeutics have enabled us to target miRNAs alterations in a

highly specific and robust manner in preclinical models.

Nevertheless, studies of miRNAs-mediated interactions,

specifically those focused on understanding the origin of

miRNAs alterations, are needed to improve targeted therapy.
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