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Neoadjuvant chemoradiotherapy (nCRT) is widely used to treat patients with

locally advanced rectal cancer (LARC), and treatment responses vary. Fatty acid

metabolism (FAM) is closely associated with carcinogenesis and cancer

progression. In this study, we investigated the vital role of FAM on the gut

microbiome and metabolism in the context of cancer. We screened 34

disease-free survival (DFS)-related, FAM-related, and radiosensitivity-related

genes based on the Gene Expression Omnibus database. Subsequently, we

developed a five-gene FAM-related signature using the least absolute

shrinkage and selection operator Cox regression model. The FAM-related

signature was also validated in external validation from Fujian Cancer

Hospital for predicting nCRT response, DFS, and overall survival (OS).

Notably, patients with a low-risk score were associated with pathological

complete response and better DFS and OS outcomes. A comprehensive

evaluation of the tumor microenvironment based on the FAM-related

signature revealed that patients with high-risk scores were closely associated

with activating type I interferon response and inflammation-promoting

functions. In conclusion, our findings indicate the potential ability of FAM to

predict nCRT response and the prognosis of DFS and OS in patients with LARC.
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Introduction

Colorectal cancer (CRC) is one of the three most common

cancers and the second leading cause of cancer-related deaths

worldwide (1). Rectal cancer accounts for approximately

30% of all newly diagnosed CRC cases (2). Neoadjuvant

chemoradiotherapy (nCRT) followed by total mesorectal excision

is the standard treatment modality for patients with locally

advanced rectal cancer (LARC) (T3, T4, or N+) (3). nCRT has

been confirmed to be associated with better survival outcomes,

especially in improving disease-free survival (DFS) rates (4, 5).

Patients with pathological complete response (pCR) have been

confirmed to have much better overall survival (OS) and DFS.

However, treatment responses varied widely among patients. About

15%–30% of patients achieve pCR after nCRT (6, 7). Hence, it is

crucial to identify potential biomarkers to predict treatment

response and prognosis in patients with rectal cancer who

undergo nCRT.

Microbiomes and metabolites have been recognized as

indispensable cancer hallmarks (8, 9). The gut microbiome is

known to be related to tumor development, especially in

digestive system tumors (10, 11). Metabolic reprogramming

also plays an important role in cancer development (12–14).

In addition, gut microbiome dysbiosis and metabolic disorders

are associated with the development of CRC (15). The gut

microbiome and metabolites can be used to predict treatment

response to radiotherapy, chemotherapy, and immunotherapy

(16, 17). In addition, the gut microbiome and metabolites have

been shown to be useful in predicting nCRT response in patients

with LARC (18, 19). However, little is known about the

mechanisms by which the gut microbiome and metabolites

influence radiotherapy response in rectal cancer (20).

Fatty acid metabolism (FAM) has been the focus of related

research because of its close relationship with carcinogenesis and

cancer progression (21). Fatty acids (FAs) are a principal

structural component of the human body. They are also vital

secondary messengers and materials for energy production (22).

FAM has been confirmed to be associated with sensitivity to

chemotherapy, radiotherapy, and targeted therapy in cancers

(19, 23). Given the important role of FAM, therapies targeting

FAM are of great concern. Previous studies have shown the

potential ability of FAM-related genes to guide prognosis in

CRC (24, 25). However, evidence of FAM-related genes

predicting treatment response in patients with rectal cancer is
Abbreviations: ASV, amplicon sequence variants; AUC, area under the

curve; DFS, disease-free survival; FAs, fatty acids; FAM, fatty acid

metabolism; GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; LARC, locally advanced rectal

cancer; LASSO, least absolute shrinkage and selection operator; LDA, linear

discriminant analysis; MSEA, metabolite set enrichment analysis; OS, overall

survival; ROC, receiver operating characteristic; TRG, tumor regression

grade; VIP, variable importance in projection.

Frontiers in Immunology 02
lacking. Therefore, further exploration of the relationship

between FAM-related genes and clinicopathological

characteristics in patients with rectal cancer treated with nCRT

would be helpful in developing personalized regimens

and management.

In this study, we first analyzed the potential function of the gut

microbiome and its metabolites in rectal cancer patients with

different nCRT responses. Additionally, we established a reliable

signature for FAM-related genes. We fully evaluated its ability to

predict survival outcomes and treatment responses in rectal cancer

patients treated with nCRT based on the Gene Expression

Omnibus (GEO) database. The findings of this study provide

new insights that may be used to personalize the treatment of

patients with rectal cancer who have undergone nCRT.
Materials and methods

Study participants

The procedure used in this study is shown in Figure 1. This

study was approved by the Ethics Committee of the Fujian Cancer

Hospital (No. K2017-082-01). Between September 2020 and

September 2021, 42 patients with newly diagnosed rectal cancer

were administered nCRT before surgery at Fujian Cancer Hospital.

The inclusion criteria were 1) pathologically confirmed rectal

adenocarcinoma; 2) clinical T3, T4, and/or N+ without distant

metastasis; 3) long-course nCRT comprising 50 Gy in 25 fractions

and concurrent oral capecitabine chemotherapy; 4) surgery 6–8

weeks after nCRT; 5) Fujian Province resident for >10 years. The

exclusion criteria were as follows: 1) patients with metabolic

diseases; 2) incomplete clinical information; 3) treatment

interruption or did not accept nCRT before surgery; 4) antibiotic

or steroid therapy within 6 months before nCRT.

The histopathological responses to nCRT were classified

according to the American Joint Committee on Cancer tumor

regression grade (TRG) system, which is considered to be the

most accurate (26). Patients with TRG grade 0 (no residual

tumor cells) were classified as pCR, whereas patients with TRG

grades 1–3 were classified as non-pCR. These specimens were

examined by two experienced clinical pathologists.
16S rRNA gene sequencing and
bioinformatics analysis

The V3–V4 region of the rRNA gene was amplified using

primers 341F and 806R (27). The “DADA2” package was used to

convert the paired-end FASTQ files. Raw data were processed

using Quantitative Insights Into Microbial Ecology 2 (QIIME2,

v. 2021.11). Representative amplicon sequence variant (ASV)

sequences were classified into organisms using a naive Bayesian

model and the RDP classifier (v. 2.2), according to the SILVA

database (v. 132).
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The abundance statistics for each taxon were visualized

using Krona (v. 2.6). Venn analysis was performed using the R

project “VennDiagram” package. The biomarker features were

screened using linear discriminant analysis effect size (LEfSe)

software (v. 1.0). Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses of ASVs were performed using the

Phylogenetic Investigation of Communities by Reconstruction

of Unobserved States 2 (PICRUSt2) Tool (v. 2.1.4). Wilcoxon

rank sum tests were performed in the R package “vegan”.
Ultra-high-performance liquid
chromatography–tandem mass
spectrometry analysis and statistical
metabolism analyses

Ultra-high-performance liquid chromatography–tandem

mass spectrometry (UHPLC-MS/MS) analyses were performed

using a Vanquish UHPLC System (Thermo Fisher Scientific,

Waltham, MA, USA) coupled with an Orbitrap Q Exactive™

HF-X mass spectrometer (Thermo Fisher Scientific). The peaks

were then matched with the mzCloud (https://www.mzcloud.

org/), mz Vault (Thermo Fisher Scientific), and Masslist

databases (www.maldi-msi.org/mass) to obtain accurate

qualitative and quantitative results.
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A partial least-squares discriminant analysis (PLS-DA) was

conducted with the “ropls” package in R. Variable importance in

projection (VIP) based on PLS-DA was used to rank candidate

metabolites (p< 0.05, t-test; VIP ≥ 1). Metabolite set enrichment

analysis (MSEA) was used to evaluate pathway overrepresentation

using the MetaboAnalyst module with the R package “MSEAp”.
Date source

Gene expression and clinicopathological information were

downloaded from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). Two GEO cohorts (GSE56699 and GSE87211) were

used in our study. The RNA sequencing data of two cohorts were

corrected for batch effects by using the R package “sva”. A total

of 158 FAM-related genes were obtained from the Molecular

Signatures Database (MSigDB) (http://www.broad.mit.edu/gsea/

msigdb/, Supplementary Table 1). In addition, 82 frozen cancer

samples of patients with LARC at Fujian Cancer Hospital

(FJCH) between June 2016 to June 2021 were used for external

validation. All the patients received nCRT and radical surgery.

The clinical information of the GEO validation sets and FJCH set

is detailed in Supplementary Table 2.
Single-sample gene set
enrichment analysis

Single-sample gene set enrichment analysis (ssGSEA) was

performed using the R package “GSVA” to calculate the pathway

activity of “Hallmark_Fatty_Acid_Metabolism”. The patients

were then divided into high and low pathway activities based

on the median of all patients’ pathway activity.
Identification of differentially
expressed genes

FAM-related differentially expressed genes (DEGs) of patients

with high and low pathway activities were screened with an

adjusted p-value of<0.05 by using the R package “limma”. The

same method was used to identify the radiosensitive (RS) DEGs

between nCRT-sensitive and nCRT-resistant patients. Univariate

Cox regression analysis was performed to select prognosis-related

DEGs based on DFS by applying the Kaplan–Meier R package

“survival” with a p-value of <0.05.
Development of the fatty acid
metabolism-related signature

The intersection of FAM-related DEGs, RS DEGs, and

prognosis-related DEGs yielded candidate FAM-related genes.
FIGURE 1

Workflow of this study. pCR, pathological complete response;
UHPLC-MS/MS, ultra-high performance liquid chromatography–
tandem mass spectrometry; RS, radiation sensitivity; FAM, fatty
acid metabolism; RT, radiotherapy.
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To avoid overfitting, the least absolute shrinkage and selection

operator (LASSO) Cox regression algorithm was applied using

the R package “glmnet”. Finally, the risk score of FAM-related

genes was calculated using the following formula:

Risk score =o
n

i−1
(Coefficienti � Expressioni)

The patients were divided into high-risk and low-risk groups

based on the median values. A heatmap of the model-related

genes was generated for the two cohorts.
Assessment of fatty acid
metabolism-related signature

FAM-related signatures were divided into two cohorts

(GSE56699 and GSE87211). Patients in both cohorts were

divided into high- and low-risk groups based on their FAM-

related signature. Patients in both groups were then evaluated

using the Kaplan–Meier survival analysis of DFS and OS by

using the R package “survival”. The time-dependent receiver

operating characteristic (ROC) curve was calculated using the R

package “timeROC” to evaluate the predictive accuracy of the

FAM-score prognostic model.
Evaluation of fatty acid
metabolism-related signature and
clinicopathological features

Multivariate Cox regression analysis and Wilcoxon rank

sum tests were performed to identify the relationship between

risk scores and clinical features. The area under the curve (AUC)

analysis was calculated by using the R package “pROC” to

evaluate the accuracy of using risk scores in predicting nCRT

response in patients with rectal cancer.
Function enrichment analysis of fatty
acid metabolism-related signature

Gene Ontology (GO) function enrichment analysis and

KEGG function enrichment analysis were performed based on

DEGs between high-risk and low-risk patients.
Relationship between fatty acid
metabolism-related signature with
tumor microenvironment and
immune-related analysis

The R package “GSVA” was applied to calculate the

abundance of 28 immune-infiltrating tumor cell types in each
Frontiers in Immunology 04
patient. The Wilcoxon test was used to assess the differences

between patients with high-risk and low-risk scores. The

ESTIMATE algorithm was used to evaluate the immunity,

tumor purity, and stromal scores of each patient. Furthermore,

we analyzed the differential expression levels of immune

checkpoints between high-risk score patients and low-risk

score patients by applying the R package “limma”.
Tissue samples and quantitative
real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qRT-

PCR) was performed on 82 rectal cancer samples from FJCH.

Total RNA was extracted from paraffin sections of tumor tissues

using the E.Z.N.A. FFPE RNA Isolation Kit (R6954-01; Omega

Bio-Tek, Doraville, GA, USA). The primer sequences are listed

in Supplementary Table 3. Quantitative real-time PCR (qPCR)

was used to determine RNA levels using SYBR Green

(29139149001; Roche, Basel, Switzerland). RNA levels were

normalized to those of b-actin. All the qRT-PCR analyses were

performed in triplicates, and the average value was calculated by

the Livak method.
Statistical analyses

R (version 3.6.1) was used to perform statistical analyses in

this study. Bioinformatics analyses were performed using

Omicsmart, which is a real-time interactive online data

analysis platform (http://www.omicsmart.com). Pearson’s c2

test and Student’s t-test were used to compare normally

distributed variables, whereas the Kruskal–Wallis test and

Wilcoxon rank sum test were used to compare non-normally

distributed variables. Statistical significance was set at p< 0.05.
Results

Relationship between baseline gut
microbiome and neoadjuvant
chemoradiotherapy response in
patients with rectal cancer

Data from 14 patients were analyzed according to the

inclusion and exclusion criteria. Detailed clinicopathological

characteristics of the 14 patients are shown in Supplementary

Table 4. There were 134 species included in the pCR group and

155 species in the non-pCR group (Supplementary Figure 1B).

We first determined community composition at the species level

in the top 10 microbiomes of the pCR and non-pCR groups

(Supplementary Figure 1A). To further identify the significantly

different gut microbiomes in patients with rectal cancer with
frontiersin.org
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different nCRT responses, we performed LEfSe with |log10 LDA|

≥ 2 (Figure 2A; Supplementary Table 5). The microbiome of the

phylum Proteobacteria, including the class Betaproteobacteriales

and the families Xanthobacteraceae and Burkholderiaceae, was

enriched in the pCR group, which may be associated with

treatment response.

Functional analysis was performed, and the results are

shown in a streamgraph (Supplementary Figure 1C). We

found that the functions of each patient were enriched in the

metabolism-related pathways. Finally, the difference analysis

between the pCR and non-pCR groups showed significant

differences in linoleic acid metabolism, which is included in

lipid and FAM (p< 0.05, Figure 2B).
Characteristic of baseline metabolites
of patients with rectal cancer
with different neoadjuvant
chemoradiotherapy responses

PLS-DA significantly segregated the patients into the pCR and

non-pCR groups (Supplementary Figure 1D). We then screened

themetabolites by combining theVIP scores based onPLS-DAand

the p-values based on the t-test for the pCR and non-pCR groups.

We found 72metabolites with different abundance in patients with

different nCRT responses at baseline (Figure 2C; Supplementary

Table 6). Further functional enrichment analysis showed that

different metabolites were primarily enriched in FAM

(Figure 2D). Finally, propanoate and glycerol lipid metabolism
Frontiers in Immunology 05
were significantly different in patients with different nCRT

responses (p< 0.05, Supplementary Figure 1E). Based on the

analysis of the baseline gut microbiome and metabolites, we

hypothesized that FAM may influence the response to nCRT in

patients with rectal cancer.
Identification of different expression
genes and construction of fatty acid
metabolism-related signatures

We first scored 72 patients in GSE56699, based on 158 FAM-

related genes (FAM-related genes). Patients who received pCR

after nCRT had a higher score based on FAM-related genes than

those who did not achieve pCR after nCRT (p< 0.05, Figure 3A).

Once again, the results showed the vital role of FAM in

influencing the treatment response in patients with rectal

cancer. Thus, we divided the patients into two groups based

on the median FAM-related genes score.

We identified 2,734 DEGs between the two groups with

different FAM-related gene scores (Supplementary Table 7).

Additionally, 2,912 RS DEGs were identified in patients with

different nCRT responses (Supplementary Table 8), and 1,032

prognosis-related genes based on DFS were identified in patients

from the GSE56699 dataset (Supplementary Table 9). Finally, 34

genes at the intersection of three parts of DEGs were recognized as

potential candidate genes (Figure 3B; Supplementary Table 10).

With the use of LASSO regression analysis, five genes (CYP1B1,

DDC, ANO1, DAPL1, and RIOK3) were screened based on their
A

B
D

C

FIGURE 2

Gut microbiome and metabolism characteristics at the baseline associated with neoadjuvant chemoradiotherapy treatment response.
(A) Differentially abundant taxa between pCR and non-pCR groups analyzed by LEfSe (Kruskal–Wallis test; p< 0.05; LDA > 2). (B) Differences in
KEGG pathway analyses between pCR and non-pCR groups (p< 0.05). (C) The bar plots show upregulated and downregulated metabolites of
patients with different nCRT responses. (D) MSEA of metabolites from each patient showed significantly enriched signaling pathways. nCRT,
neoadjuvant chemoradiotherapy; pCR, pathological complete response; LEfSe, linear discriminant analysis (LDA) effect size; KEGG, Kyoto
Encyclopedia of Genes and Genome; MSEA, metabolite set enrichment analysis.
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minimum lambda values (Supplementary Figure 2, Supplementary

Table 11).Among thesefive genes, twowereprotective genes (DDC

and DAPL1) and three were risk-related genes (CYP1B1, ANO1,

and RIOK3). Therefore, the FAM-related risk score was calculated

using the following formula:

FAM risk score = Expression of CYP1B1� 0:2566 + Expression of

DDC � ( − 1:8227) + Expression of ANO1� 1:2239 + Expression of

DAPL1� ( − 0:0843) + Expression of RIOK3� 7:5436

According to the FAM-related risk score, patients with a

score lower than the median risk score were classified into the

low-risk group, whereas those with a score higher than

the median risk score were classified into the high-risk group.

The expression levels of the five genes are described in the

heatmap of the GSE56699 and GSE87211 datasets (Figures 3C,

D). DDC and DAPL1 showed lower expression levels than

CYP1B1, ANO1, and RIOK3 in patients in the high-risk group.
Prognostic analysis based on fatty acid
metabolism-related signature

We evaluated the prognostic ability of FAM-related

signatures in patients with rectal cancer from the training

(GSE56699) and testing (GSE87211) datasets. All patients
Frontiers in Immunology 06
from the two datasets underwent nCRT. The distribution

graph shows that the mortality rate of patients increased with

an increase in the FAM-related risk score in the GSE56699

dataset (Figure 4A). The Kaplan–Meier survival curves revealed

that patients in the low-risk group had significantly better DFS

than those in the high-risk group (p< 0.05, Figure 4C). In

addition, the AUC values of the 1-, 2-, and 3-year survival

rates of the FAM-score prognostic model were 0.780, 0.910, and

0.942, respectively (Figure 4E). To further evaluate the

prognostic ability of the FAM-score prognostic model, we

calculated the FAM score in the test dataset (GSE87211).

Similarly, patients with a low-risk score had a significantly

favorable survival rate and DFS (p< 0.05, Figures 4B, D). The

AUC values of the 1-, 2-, and 3-year survival rates in the test

dataset were 0.736, 0.710, and 0.702, respectively (Figure 4F).

Univariate and multivariate Cox regression analyses showed that

the FAM score was an independent risk factor for DFS (both p<

0.05, Figure 4G).

In terms of OS, the same phenomenon was observed in both

the training (GSE56699) and testing (GSE87211) datasets. The

survival rates decreased with increasing risk scores

(Supplementary Figures 3A, B). In the training cohort, OS was

not significantly different between the high- and low-risk groups

(p = 0.2, Supplementary Figure 3C). In the testing cohort,

patients in the high-risk group had a worse OS than those in
A B

DC

FIGURE 3

Construction of the FAM-related signature for patients with rectal cancer treated with neoadjuvant chemoradiotherapy. (A) The expression of
FAM-related genes in relation to nCRT response. (B) Venn diagram identifying the intersection of genes among RS DEGs, FAM-related genes,
and prognostic genes. (C, D) The expression levels of five FAM score-related genes in GEO database (GSE56699 and GSE87211). nCRT,
neoadjuvant chemoradiotherapy; RS, radiation sensitivity; DEGs, differentially expressed genes; FAM, fatty acid metabolism; LASSO, least
absolute shrinkage and selection operator.
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the low-risk group (p = 0.04, Supplementary Figure 3D). The

AUC values of 1-, 2-, and 3-year overall survival rates in the

training dataset were 0.933, 0.596, and 0.739, respectively, and in

the testing dataset, they were 0.907, 0.868, and 0.864, respectively

(Supplementary Figures 3E, F). Therefore, we considered that

the FAM-score prognostic model has an excellent ability to

predict DFS and OS in patients with rectal cancer who have

undergone nCRT. Similarly, the FAM score was an independent

risk factor for OS (p< 0.05, Figure 4H).
Association between clinicopathological
features and fatty acid
metabolism-related signature

FAM-related signatures were significantly associated with

patient age (Supplementary Figure 4A). Patients who are less

than 65 years of age had a higher FAM-related risk score than
Frontiers in Immunology 07
those older than 65 years (p = 0.039, Supplementary Figure 4B).

In addition, patients who achieved pCR after nCRT had a lower

risk score than nCRT-resistant patients (p = 0.002, Figure 5A).

In predicting the nCRT responses of patients with rectal cancer,

the FAM-related risk score showed promising predictive ability

(AUC = 0.706, Figure 5B). Once more, our observations reflected

the ability of the FAM score to predict nCRT response in

patients with rectal cancer.
Comparison of fatty acid
metabolism-related signature
and previously published
multi-gene signatures

The FAM-related signature showed the potential ability to

predict DFS, OS, and even nCRT response in patients with rectal

cancer. To further evaluate the predictive ability of the FAM-
A

B
D

E

F

G H

C

FIGURE 4

Evaluation of the ability of FAM-related signatures to predict prognosis in training and validation cohorts. (A, B) The association between DFS
and FAM-related risk score in the training cohort (GSE56699) and the validation cohort (GSE87211). (C, D) Kaplan–Meier survival analyses of DFS
between patients with high-risk scores and low-risk scores in the training and validation cohorts. (E, F) Time-dependent ROC curves used to
evaluate the prognostic value of risk score in training and validation cohorts. (G) Univariate Cox analysis and multivariate Cox analysis of
clinicopathological features and FAM-related signature in DFS. (H) Univariate Cox analysis and multivariate Cox analysis of clinicopathological
features and FAM-related signature in OS. FAM, fatty acid metabolism; DFS, disease-free survival; ROC, receiver operating characteristic. OS,
overall survival.
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related signature, we compared it with previously published

multi-gene signatures. The FAM-related signature showed a

better predictive ability for nCRT responses than the other

previously published multi-gene signatures (Figure 5C). FAM-

related signatures were more efficient in predicting the 1-, 2-,

and 3-year DFS and OS of patients who received nCRT than

other signatures (Figures 5D–F; Supplementary Figures 5A–C).

Furthermore, the decision curve analysis (DCA) curves also

suggested that the FAM-related signature outperformed the

other signatures in predicting 1-, 2-, and 3-year DFS and OS

(Figures 5G–I; Supplementary Figures 5D–F). Therefore, the

FAM-related signature shows promising potential not only in

predicting the prognosis of DFS and OS but also in predicting
Frontiers in Immunology 08
the nCRT response of patients with rectal cancer who

underwent nCRT.
Function enrichment of differentially
expressed genes between high- and
low-risk groups

GO and KEGG enrichment analyses were used to reveal the

biological processes and functions of the DEGs between the

high- and low-risk groups based on FAM-related signatures. GO

enrichment analysis revealed that the functions of DEGs were

enriched in the biogenesis and targeting of proteins, including
A B

D E F
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FIGURE 5

Comparison of FAM-related signature and previously published multi-gene models. (A) FAM-related risk score association with nCRT response.
(B) ROC curves used to evaluate the ability of predicting nCRT response using FAM-related signature. (C) The ability of the FAM-score model to
predict nCRT response of patients with rectal cancer treated with nCRT is better than previously published multi-gene models. (D–F) AUC
values at 1-, 2-, and 3-years DFS of FAM-score model and previously published multi-gene models. (G–I) The DCA for FAM-score model
compared with previously published multi-gene models. nCRT, neoadjuvant chemoradiotherapy; FAM, fatty acid metabolism; AUC, area under
the curve; DCA, decision curve analysis.
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the biogenesis of ribonucleoprotein complexes and calmodulin

binding (Figure 6A). KEGG enrichment analysis revealed that

the cAMP signaling pathway and neuroactive ligand–receptor

interaction metabolic pathways were significantly enriched

based on the DEGs between the two groups (Figure 6B).
The landscape and evaluation of immune
checkpoints based on fatty acid
metabolism-related risk score

To further reveal the relationship between FAM-related

signatures and tumor features, we first evaluated the tumor

microenvironment (TME) score, including the estimated score,
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immune score, and stromal score, of patients with rectal cancer

who underwent nCRT (Figures 6C–E). Patients with high FAM

scores were closely associated with higher estimated and

immune scores (both p< 0.05). Interestingly, we found that the

number of immune-related cells, including interdigitating

dendritic cells (iDCs), macrophages, and NK cells, was much

higher in patients with a high FAM score (Figure 6F). We next

analyzed the immune checkpoints to determine why patients

with high-risk scores had higher immune cell infiltration but

showed a worse treatment response. We observed that patients

with high-risk scores were associated with high-level expression

of genes associated with immune checkpoints, including BTLA,

CD160, CD200, CD274 (PD-L1), HHLA2, IDO2, LAG3, and

LGALS9 (p< 0.05, Figure 6G). These results also showed that
A B

D E
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C

FIGURE 6

Functional analysis of differentially expressed genes and the immune landscape of fatty acid metabolism-related signatures. (A, B) The enriched
GO and KEGG terms based on DEGs between low-risk and high-risk groups. (C–E) Correlation between estimate scores, immune scores,
stromal scores, and risk scores. (F) The expression of immune checkpoints in low-risk and high-risk groups. (G) The ssGSEA score of immune
cells and immune-related functions with low-risk and high-risk groups. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;
DEGs, differentially expressed genes. ns: not significant; *: P< 0.05; **: P< 0.01; ***: P< 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1050721
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2022.1050721
patients with high-risk scores might respond better to therapies

targeting the above checkpoints, especially PD-L1.
Validation of the fatty acid
metabolism-related signature in
the Fujian Cancer Hospital cohort

To confirm the ability of the FAM-related signature to

predict DFS and OS, qPCR was used to examine the

expression of five genes (CYP1B1, DDC, ANO1, DAPL1, and

RIOK3) in 78 tumor tissues. The patients in our independent

cohort were divided into high- and low-risk groups based on

their FAM-related risk scores. Consistent with the training

dataset, patients in the low-risk group had better DFS and OS

rates (Figure 7A; Supplementary Figure 6A). The FAM-related

signature also had the potential to predict DFS and OS based on

ROC analysis (AUC values of 1-, 2-, and 3-year DFS rates were

0.813, 0.767, and 0.808, respectively; AUC values of 1-, 2-, and 3-

year OS rates were 0.813, 0.735, and 0.762, respectively)

(Figure 7B; Supplementary Figure 6B). Univariate and

multivariate Cox regression analyses showed that the FAM

score was an independent risk factor for DFS and OS (both p<

0.05, Figure 7C; Supplementary Figure 6C). In addition, patients

with lower risk scores tend to achieve pCR in the FJCH cohort

(p = 0.021, Figure 7D). The FAM-score model also showed a

satisfactory ability to predict the response to nCRT (AUC =

0.718, Figure 7E).
Discussion

Metabolism is considered a hallmark of cancer and is

closely associated with tumor occurrence and development

(28, 29). FAM has also been linked to cancer development and

treatment response (30, 31). To the best of our knowledge, this

is the first report revealing the important role of FAM in locally

advanced rectal cancer that applies gut microbiome,

metabolome, and human transcriptome sequencing based on

the GEO database in patients with rectal cancer treated with

nCRT. In addition, the FAM-related signature composed offive

genes showed excellent ability not only in predicting DFS and

OS but also in predicting nCRT response in patients with rectal

cancer treated with nCRT.

At the baseline of patients with rectal cancer who underwent

nCRT, we observed that the gut microbiome from the phylum

Proteobacteria, including the class Betaproteobacteriales and the

families Burkholderiaceae and Xanthobacteraceae, was strongly

associated with favorable nCRT response. Proteobacteria are a

major constituent of the human gut microbiome and are associated

with the synthesis of medium-chain fatty acids and long-chain fatty

acids (32–34). Anaerotruncuscolihominis_DSM_17241, which is also
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enriched in the pCR group of Ruminococcaceae, produces butyric

and acetic acids (35, 36). Functional enrichment analysis based on the

significantly different gut microbiomes also confirmed that linoleic

acid metabolism, a part of FAM, was significantly different between

patients in the pCR and non-pCR groups. Linolenic acid is inversely

associated with the development of CRC (37). In addition, functional

enrichment based onmetabolism analysis showed a vital role of FAM

in our study. FA intake has been associated with the occurrence of

CRC (37, 38). Furthermore, peroxidase damage to polyunsaturated

fatty acids drives ferroptosis, which is strongly related to

radiotherapy-induced cell death (39, 40). Recently, targeting FAM

has become a potential method for radiation sensitization of cancers

(23, 41).

A previous study reported an association between FAM-

related genes and CRC (41). Nevertheless, no similar multi-gene

signature that can predict prognosis and treatment response has

been developed based on FAM-related genes in patients with

rectal cancer treated with nCRT. According to our results,

previous models for predicting the prognosis of rectal cancer

did not perform the same ability in such patients. In the current

study, a FAM-related signature was constructed using CYP1B1,

ANO1, RIOK3, DDC, and DAPL1, with favorable AUC at 1-, 2-,

and 3-year DFS and 1-, 2-, and 3-year OS. In addition, it showed

a high AUC for predicting nCRT response in patients with rectal

cancer treated with nCRT. Cytochrome P450 1B1 (CYP1B1), a

member of the cytochrome P450 (CYP) family, is highly

expressed in tumor tissues, including in CRC, but its

expression is lower than in normal tissues (42). A previous

study confirmed a significant relationship between CYP1B1

expression and poor prognosis in patients with CRC, which is

similar to our result (43). CYP1B1 is considered to be an

important modulator of FAM and a potential therapeutic

target in cancer therapy because of its ability to activate

procarcinogens (44, 45). Anoctamin 1 (ANO1) is upregulated

in CRC and is associated with cancer development by activating

the mitogen-activated protein kinase signaling pathway (46, 47).

Furthermore, Fusobacterium nucleatum has been found to

promote the expression of ANO1 in CRC cells, which prevents

CRC cell apoptosis caused by chemotherapy (48). Right open

reading frame kinase 3 (RIOK3) has been reported to be involved

in cancer invasion and metastasis (49, 50). In addition, the

expression level of RIOK3 increases with hypoxia, which is an

important factor in preventing effective radiotherapy and

immunotherapy of cancer (51, 52). L-DOPA decarboxylase

(DDC) has been proposed in recent research to serve apoptotic

and antiproliferative functions with phosphatidylinositol 3-

kinase (PI3K) (53, 54). Moreover, high expression of DDC is

closely associated with better prognosis in CRC (55). Death-

associated protein like-1 (DAPL1) has also been confirmed to be

associated with cell death in previous studies (56, 57). In our

study, CYP1B1, ANO1, and RIOK3 were negatively associated

with prognosis and nCRT response in rectal cancer.
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Nevertheless, DDC and DAPL1 were positively associated with

prognosis and treatment response in rectal cancer. This five-

gene FAM-related model thus assists in predicting prognosis and

guiding therapeutics in patients with rectal cancer treated

with nCRT.

nCRT is undoubtedly an important treatment for LARC that

can improve sphincter preservation and down-staging and decrease

local recurrence. An increasing number of researches have shown

that radioresistance is closely related to altered tumor metabolism

(58, 59). Current evidence has confirmed the value of glycolytic
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metabolism in improving the sensitivity to radiation therapy for

tumors (60), although the mechanism of fatty acid metabolism in

improving the radiosensitivity of tumors is not clear. The extensive

network of tumor metabolism is interconnected and plays an

important role in affecting tumor radiosensitivity. Irradiation

induces tumor cell death and can activate the immune response

in the TME (61, 62). Interestingly, in this study, we observed that

patients with high-risk scores had a higher abundance of immune

cells and higher immune scores, which contradicted their higher

immune cell infiltration and poor prognoses. However, further
A B

D E

C

FIGURE 7

Evaluation of the ability of FAM-related signatures to predict prognosis and nCRT response in the FJCH set. (A) Kaplan–Meier survival analyses
of DFS between patients with high-risk and low-risk scores in the independent cohort. (B) Time-dependent ROC curves used to evaluate the
prognostic value of risk score. (C) Univariate Cox analysis and multivariate Cox analysis of clinicopathological features and FAM-related signature
in DFS. (D) FAM-related risk score associated with nCRT response. (E) Evaluation of FAM-related signature to predict nCRT response. FAM, fatty
acid metabolism; DFS, disease-free survival; OS, overall survival; ROC, receiver operating characteristic.
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exploration of immune checkpoints yielded an explanation. We

found that immune checkpoints showed higher expression levels of

CD274 (PD-L1) in patients with high-risk scores. Overexpressed

PD-L1 in cancer cells binds to PD-1 on tumor-infiltrating

lymphocytes with impaired T-cell activation (62, 63). In addition,

some types of cells in the TME, including dendritic cells, also

express PD-L1, which orchestrates the immunosuppressive

microenvironment that supports tumor growth (64). Therefore,

immune-related cells cannot act efficiently because of PD-L1

overexpression, although there is a higher abundance of immune

cells. In addition, high expression levels of PD-L1 are associated

with a poor prognosis of rectal cancer (65, 66). Currently, the PD-1/

PD-L1 axis is considered an immunotherapeutic target for cancers

(67). With intense research on immunotherapy, a combination of

conventional cancer treatment methods with PD-L1 may benefit

patients with rectal cancer (68). Thus, the overexpression of PD-L1

may provide a new therapeutic strategy for rectal cancer patients

treated with nCRT.

Despite these promising results, some limitations remain.

First, the FAM-related signature was constructed based on the

GEO database and examined in an independent cohort;

however, multicenter, large-scale prospective research is still

needed to confirm the ability of FAM-related signatures to

predict prognosis and nCRT response in patients treated with

nCRT. Furthermore, this was a retrospective study, and clinical

data were in some cases incomplete or unavailable, which caused

a selection bias and incomplete analysis. The potential

mechanism by which FAM impacts prognosis and treatment

response in patients with rectal cancer needs to be explored. In

the future, the results of the present study, including the

microbiome, metabolism, and high-throughput sequencing,

must be validated both in vitro and in vivo.
Conclusion

In conclusion, FAM is an important link between the gut

microbiome and treatment response. A novel FAM-related

signature was constructed that has an excellent ability to

predict prognosis in patients with rectal cancer treated with

nCRT. In addition, the FAM-related risk score can also be

recognized as a potential biomarker of nCRT response in such

patients. Finally, the findings of this study provide innovative

insights into the individualized management of patients with

rectal cancer treated with nCRT.
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