
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Shao-An Xue,
Xi’an University, China

REVIEWED BY

Nausheen Ahmed,
University of Kansas, United States
Estefanı́a Garcı́a-Guerrero,
Institute of Biomedicine of Seville
(CSIC), Spain

*CORRESPONDENCE

Yongxu Jia

jiayongxu111@126.com

Yanru Qin

yanruqin@163.com

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 21 September 2022
ACCEPTED 08 December 2022

PUBLISHED 22 December 2022

CITATION

Wang Z, Chen C, Wang L, Jia Y and
Qin Y (2022) Chimeric antigen
receptor T-cell therapy for
multiple myeloma.
Front. Immunol. 13:1050522.
doi: 10.3389/fimmu.2022.1050522

COPYRIGHT

© 2022 Wang, Chen, Wang, Jia and
Qin. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 22 December 2022

DOI 10.3389/fimmu.2022.1050522
Chimeric antigen receptor
T-cell therapy for
multiple myeloma

Zehua Wang †, Chen Chen †, Lei Wang, Yongxu Jia*

and Yanru Qin*
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Multiplemyeloma (MM) is amalignant plasma cell disorder that remains incurable

for most patients, as persistent clonal evolution drives new mutations which

confer MM high-risk signatures and resistance to standard care. The past two

decades have significantly refashioned the therapeutic options for MM, especially

adoptive T cell therapy contributing to impressive response rate and clinical

efficacy. Despite great promises achieved from chimeric antigen receptor T-cell

(CAR-T) therapy, the poor durability and severe toxicity (cytokine release

syndrome and neurotoxicity) are still huge challenges. Therefore, relapsed/

refractory multiple myeloma (RRMM), characterized by the nature of

clinicopathologic and molecular heterogeneity, is frequently associated with

poor prognosis. B Cell Maturation Antigen (BCMA) is the most successful target

for CAR-T therapy, and other potential targets either for single-target or dual-

target CAR-T are actively being studied in numerous clinical trials. Moreover,

mechanisms driving resistance or relapse after CAR-T therapy remain

uncharacterized, which might refer to T-cell clearance, antigen escape, and

immunosuppressive tumor microenvironment. Engineering CAR T-cell to

improve both efficacy and safety continues to be a promising area for

investigation. In this review, we aim to describe novel tumor-associated

neoantigens for MM, summarize the data from current MM CAR-T clinical

trials, introduce the mechanism of disease resistance/relapse after CAR-T

infusion, highlight innovations capable of enhanced efficacy and reduced

toxicity, and provide potential directions to optimize manufacturing processes.
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1 Introduction

Multiple myeloma (MM) is a malignant plasma cell disorder

that displays a myriad of manifestations including

hypercalcemia, renal insufficiency, anemia, and bone

destruction (CRAB) (1, 2). MM is the second most common

hematological malignancy with an estimated 32270 new cases

and 12830 deaths in the United States in 2020 (3). Genetic

abnormities, mostly translocation and hyper-diploidy, result in

dysregulated cancer-immunity cycle that allows MM to escape

immune surveillance with an uncontrolled cell proliferation (4,

5). The past two decades have significantly refashioned the

therapeutic options of MM, such as the availability of

proteasome inhibitors (PI), immunomodulatory drugs

(IMiDs), histone deacetylase inhibitors (HDACi), anti-CD38

monoclonal antibodies (mABs), antibody-drug conjugates

(ADC), and selective inhibitors nuclear export (SINE) (6).

However, MM remains incurable for most patients, as

persistent clonal evolution drives new mutations which confer

MM high-risk signatures and resistance to standard care (7, 8).

Therefore, relapsed/refractory multiple myeloma (RRMM),

characterized by the nature of clinicopathologic and molecular

heterogeneity (9, 10), is frequently associated with poor

prognosis (11).

Chimeric antigen receptor T-cell therapy (CAR-T) has

shown exceptional success in the treatment of relapsed/

refractory B-cell acute lymphoblastic leukaemia (B-ALL), B-

cell chronic lymphoblastic leukaemia (B-CLL), and diffuse

large B-cell Lymphoma (DLBCL) (12, 13), thereby motivating

its application in RRMM (14). T cells are firstly isolated from the

patients’ or donors’ blood and genetically modified in the

laboratory to encode an artificial receptor, enabling CAR T

cells to identify targets better and precisely destroy cancer

cells. CAR T-cell functions with two major roles: 1) tumor-

associated antigen (TAA) binding; 2) MHC-independent T-cell

activation. Emerging as a novel immunotherapy, CAR T-cell

therapy consists of an extracellular antigen recognition domain

(scFv, Fab, Nb, and NKG2D ligand), a transmembrane domain,

and an intracellular domain incorporating co-stimulation

(CD28 or a 4-1BB) and signaling components (CD3zeta)

(Figure 1) (15, 16). The interplay between tumor cell and CAR

gives rise to an immunological synapse. This process could

attack target cells through various pathways, such as the

release of cytotoxic molecules, and the induction of apoptosis

signal pathway, eventually leading to the activation of effector T

cells and elimination of tumor cells (17).

Despite great promises achieved by CAR-T therapy, the poor

durability and severe toxicity are still huge challenges. The

mechanisms driving resistance and relapse after MM CAR T-

cell therapy remain uncharacterized. Consequently, this review

aims to describe candidate tumor-associated neoantigens for

MM, provide a summary of efficacy and safety data from clinical
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trials, introduce mechanisms of disease resistance/relapse to

CAR-T, and explore future innovations capable of enhanced

efficacy and reduced toxicity, and provide potential directions to

optimize manufacturing processes.
2 Candidate targets for multiple
myeloma CAR-T

The key to design a successful CAR is to select a surface

antigen that presents at high concentration on MM cells, but

absent in non-malignant hematopoietic lineages or other tissues

(18–21). The most important avenue is to discover novel TAAs

to improve CAR-T therapy. Several targetable antigens are

currently being evaluated regarding their safety and efficacy in

clinical trials (Tables 1, 2). Potential targetable antigens for MM

are summarized in Figure 2, including BCMA, CD19, SLAMF7,

GPRC5D, CD138, CD38, CD70, NKG2DL, Kappa light chain.
2.1 BCMA

B cell maturation antigen (BCMA), a transmembrane

glycoprotein belonging to tumor necrosis factor (TNF)

receptor superfamily, is the most commonly used surface

antigen target for multiple myeloma CAR-T. BCMA plays a

critical role in differentiating B-cell to plasma cell and

maintaining the survival of plasma cell (34, 35). BCMA is

preferentially expressed on plasma cells, though limited

BCMA-positive cells can be identified in normal tissues, such

as the spleen, lymph nodes, and the stomach (36, 37). A

European study involving 70 MM patients identified that

surface BCMA expression on plasma cells (normal or

malignant) was significantly higher (P<0.001) than non-

plasma cells (38). The high expression of surface BCMA is

associated with MM in several preclinical models and humans,

making it an attractive target for MM (39–41). However, BCMA

could be expressed at high or low concentrations in MM cells

(36, 42, 43). In a United Kingdom study, 28 evaluable MM

patients all expressed BCMA, and levels differed from low to

moderate (42). Similarly, a UK study reported that all 64 patients

with MM expressed surface BCMA at varying levels by

immunohistochemistry (43). Since there is a considerable

variation in BCMA expression on MM cells, patients may

respond differently to BCMA-targeted CAR-T therapy. As

surface BCMA level may serve as an independent prognostic

factor, cytogenetic assessments are of great importance (43). It is

anticipated that patients with high levels of BCMA may gain

more benefits from BCMA-targeted CAR-T therapy. Thereby,

all findings support that BCMA may be a promising target for

MM CAR-T therapy.
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The first BCMA-targeted MM CAR-T clinical trial was

conducted by National Cancer Institute (NCT02215967) (44).

A total of 24 patients with RRMM were enrolled. The notable

findings of this study were the dose-dependence of efficacy and

toxicity. The ORR was 20% among 10 patients receiving the

lowest dose of 0.3-3.0 × 106 CAR-T cells/kg. However, of 16

patients treated with high-dose level, the ORR was 81% with

62.5% having very good partial response (VEGF) or better.

Notably, the toxicity of low-dose CAR-T was generally modest

and no patient with grade 3 or 4 cytokine release syndrome

(CRS). By contrast, grade 3-4 CRS and neurotoxicity (NTX)

were 25% and 4% among patients treated with highest dose (9 ×

106 CAR-T cells/kg). Further, a statistically significant

relationship (P = 0.04) between plasma cell burden and severe

CRS had been reported from patients with high-dose level of

CAR-T cells. Many BCMA-targeted CAR-T clinical trials are

ongoing or completed (Table 1). Additionally, combination

therapies are evaluated as well, such as associating BCMA

CARs with tyrosine kinase inhibitor (NCT04603827),

immunomodulators (NCT03070327, NCT04287660),
Frontiers in Immunology 03
nonspecific immune inhibitors (NCT03943472), and gamma-

secrete inhibitor (NCT03502577).
2.2 Non-BCMA targets

Though a majority of MM CAR-T clinical trials target

BCMA, but there are several studies focused on non-BCMA

MM-associated neoantigens (Table 2).
2.2.1 CD19
Human CD19 antigen belongs to type-I transmembrane

glycoprotein of the IgG immunoglobulin superfamily. In normal

tissues, CD19 is specifically expressed throughout the development

of B-cell lineage except for hematopoietic stem cells and terminal

plasma cells, whereas it is absent on other hematopoietic lineages.

In B-cell malignancies, its expression is widely distributed in

relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-

ALL) and relapsed/refractory B-cell non-Hodgkin lymphoma (R/R

B-NHL) (45). Despite low expression of CD19 on MM cells, CD19

is expressed on the minor multiple myeloma stem cell (MMSC)

subset that has been reported (46). MMSC is capable of self-

renewal and drug-resistance. Thus, CD19 might be a potential

target for MM. One clinical trial (NCT02135406) indicated that

autologous stem cell transplantation (ASCT) followed by CD19-

targeted CAR-T therapy (CTL019) infusion was safe and available

in RRMM, leading to a longer PFS compared to patients with

ASCT alone (47, 48).
2.2.2 SLAMF7
SLAMF7 belongs to the signaling lymphocyte activation

molecule family (SLAMF). SLAMF7 is firstly documented in

natural killer cells (49). It is also expressed on T cells, B cells,

monocytes, macrophages, and dendritic cells. Over 95% of

normal or malignant plasma cells of MM expressed SLAMF7

(50). Since SLAMF7 is also expressed in normal plasma cells,

specific attacks on this target inevitably cause normal cell death.

Thereby, SLAMF7 is an alternative but suboptimal choice for

CAR-T cell therapy.

The function of SLAMF7 is poorly understood, but previous

evidence indicates its similar role as growth factor contributing

to myeloma cell proliferation (51, 52). It has been reported that

SLAMF7-CAR T cells attack myeloma and confer selective

fratricide of SLAMF7-positive normal lymphocytes (53). A

conceivable side effect is the depletion of SLAMF7+

lymphocytes, including a substantial proportion of T cells, B

cells, and NK cells. It would be reasonable to engineer SLAMF7-

CAR T cells with a safety switch to terminate fratricide of normal

lymphocytes. Inducible caspase 9 or herpes simplex virus

thymidine kinase might be preferable choices for safety switch

(54, 55).
FIGURE 1

The structure of CAR-T cells. The antigen-binding domain is
usually a single-chain variable fragment (scFv) but also has other
structures; intracellular signaling domain include both co-
stimulatory domain (CD28, 4-1BB) and activation domain
(CD3zeta). TAA, tumor-associated antigen; MM cell, multiple
myeloma cell.
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TABLE 1 Selected BCMA-targeted CAR-T clinical trials for MM.

Identifier Target Status Phase Enrollment Study
Population

Efficacy Safety Reference

ORR
(%)

Median
PFS

(month)

Grade >
3 CRS
(%)

Grade >
3 NTX
(%)

NCT02215967 BCMA Completed I 24 RRMM 81 7.75 25 4 (22)

NCT02546167 BCMA Completed I 25 HRMM 48 2.7 32 12 (23)

NCT02658929 BCMA Active I 67 RRMM 76 8.8 6 3 (24)

NCT03274219 BCMA Active I 72 RRMM 55 11.9 4 6 (25)

NCT03975907 BCMA Recruiting I 62 RRMM 87.5 18.8 6 3 (26)

NCT03302403 BCMA Active I 18 RRMM 87.5 unknown 0 4 (27)

NCT03093168 BCMA Unknown I 10 RRMM 86 unknown 0 0 (28)

NCT04322292 BCMA Recruiting I 10 RRMM 95.2 unknown 5 0 (29)

NCT03661554 BCMA Unknown I 15 RRMM 88.2 12.1 2.9 0 (30)

NCT03090659 BCMA Active I-II 74 RRMM 87.8 18.04 9.5 0 (31)

NCT03548207 BCMA Active I-II 97 RRMM 96.9 unknown 4.1 9.3 (32)

NCT03716856 BCMA Active I 24 RRMM 87.5 unknown 0 4.2 (26, 33)

Abbreviations: RRMM, relapsed or refractory multiple myeloma; HRMM, high risk multiple myeloma; CRS, cytokine release syndrome; NTX, neurotoxicity; ORR, overall response
rate; PFS, progression-free survival.
F
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TABLE 2 Selected non-BCMA-targeted CAR-T clinical trials for MM.

Neoantigen
Expression
on MM
cells

Expression on
hematopoietic

cells

Expression
on other
cells

Identifier Status Phase Enrollment Efficacy Safety

CD19
weak
expression

B-cell lineage cells absent NCT02135406 completed I 10
ORR:
80%

AE: 0%

SLAMF7
increased
expression

NK cells, T cells, B
cells, dendritic cells,
monocytes,
macrophages

absent NCT03958656 completed I 13 NA NA

GPRC5D
high
expression

B cells and plasma
cells

epithelial cells NCT04555551 active I 17
ORR:
83%

G3+
CRS:
8%

CD138
high
expression

Plasma cells epithelial cells NCT01886976 recruiting I-II 10
ORR:
80%

AE: 0%

CD38
increased
expression

NK cells, T cells,
dendritic cells,
neutrophils, and
progenitor cells

epithelial cells NCT03464916 active I 72 NA NA

CD70
increased
expression

germinal center B
cells, T cells

stromal cells
of the thymic
medulla

NCT04662294 recruiting I 108 NA NA

NKG2D
increased
expression

NK cells, T cells absent NCT02203825 completed I 12 NA AE: 0%

MM, multiple myeloma; ORR, overall response rate; AE, adverse event; CRS, cytokine release syndrome; G3+, Grade 3-4; NA, not available.
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Several anti-SLAMF7 CAR constricts are evaluated in

clinical trials, mostly as monotherapy (NCT03710421,

NCT04142619, NCT04541368, NCT03958656, NCT04499339),

or as dual CARs targeting both BCMA and SLAMF7

(NCT04795882, NCT04156269).

2.2.3 GPRC5D
The G protein-coupled receptor, class C group 5 member D

(GPRC5D), is expressed on 98% of the CD138+ cells by

quantitative immunofluorescence (56). Also, this surface

receptor is primarily expressed on hair follicles, but also in

multiple myeloma cells. Therefore, GPRC5D-targeted CAR-T

was constructed by Smith et al., which displayed potent anti-

MM effects on MM cell lines and xenografted models (56). Anti-

GPRC5D was deemed safe and effective as no alopecia or any

skin-related disorders were detected in a preclinical study (57). A

series of GPRC5D-CAR T trials are ongoing, such as

NCT05219721, NCT04555551, NCT05016778. MCARH109, as

the first-in-class GPRC5D-targeted CAR T-cell therapy for MM,

has a manageable safety profile and high rates of clinical

response (ORR: 83%). More importantly, all 6 patients who

re l apsed a f t e r BCMA-targe ted CAR-T responded

to MCARH109.

2.2.4 CD138
As a major extracellular matrix (ECM) receptor, CD138

(syndecan-1) plays an important role in cell-cell and cell-matrix

adhesion, and cell proliferation (58, 59). CD138 is widely

expressed on normal and malignant plasma cells (60), but also

expressed on the surface of mature epithelial cells that might
Frontiers in Immunology 05
cause skin toxicity. A prior study found that a high

concentration of CD138 might be poor prognostic factor for

MM (61). A CD138-directed CAR-T (CART-138) has been built

incorporating with a 4-1BB domain (62). Relevant CD138-

targeted CAR trials include single-target (NCT01886976,

NCT03672318, NCT03196414, NCT03778346) and multi-

target CAR-T products (NCT03271632). Based on current

data (NCT01886976), the ORR achieved 80% and no toxicity

has been reported, manifesting a good efficacy and tolerability.

However, CD138 shedding and skin toxicity are major barriers

for wide application of CD138-targeted CAR-T.

2.2.5 CD38
CD38, a transmembrane glycoprotein, is known to mediate

cell adhesion, signal transduction, and Ca2+ regulation (63).

CD38 is highly expressed on the surface of MM cells, though its

expression in normal hematopoietic cells also have been

detected, such as T cells, precursors of B cells, NK cells, and

myeloid precursors (63). Some monoclonal antibodies against

CD38 have been approved by FDA to treat multiple myeloma,

such as Daratumumab. The success of mAb targeting CD38 in

the treatment of MM has encouraged the development of CD38-

targeted CAR T cells. Light-chain exchange technology brings

potential to avoid accident damage to CD38+ normal cells (64).

A clinical trial (NCT0346491) investigated CD38-targeted CAR-

T as a monotherapy for RRMM. In addition, dual CAR products

are also tested in clinical trials, combing CD38 and BCMA

(NCT03767751), CD38 and CD19 (NCT03125577).

2.2.6 CD70
Aberrant expression of CD70 has been found in

hematological malignancies and solid tumors (65). Because of

its limited expression on normal cells, CD70 holds great

promises for monoclonal antibody-based therapy. A preclinical

study supported that CD70-targeted CAR T-cell therapy was

safe and effective (66). Further, related publications manifested

that CD70 targeting CAR-T cells caused robust anti-tumor

activity in both human cancer cells and animal models (67,

68). It is worth noting that a clinical trial (NCT04662294) on

CD70 is recruiting RRMM patients, although no data has been

reported yet. Importantly, an obvious advantage is a low risk of

fratricidal killing caused by CD70 antibody, mainly because of

the transient expression of CD70 on immune cells (8).
2.2.7 NKG2DL
NKG2D, a cell surface receptor binding to several ligands, is

predominantly expressed on immune cytotoxic cells, such as NK

cell and CD8+ cytotoxic T cells. NKG2D ligands, such as MIC-A,

MIC-B, and UL-16, are upregulated in many solid tumors or

hematologic malignancies but absent on healthy tissue. NKG2D

binds to corresponding ligands to prompt the secretion of

proinflammatory cytokines and the activation of cytotoxic cells,
FIGURE 2

Candidate surface antigens found on MM cells and studied in
clinical trials.
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leading to immune elimination of MM cells (69). Due to the

presence of a natural costimulatory domain, DAP10, there is no

need to add this specific domain to NKG2D CARs. But a potential

challenge is the poor persistency of T cells. To resolve this

problem, patients should be treated with high doses or multiple

infusions without compromising the toxicity (70). Satisfactorily,

higher doses have the same safety profile with low doses, with no

reports of CRS or NTX so far. We have identified one NKG2D

CAR study (NCT03018405) in MM with an enrollment of 12

patients, but efficacy profile has not been published.

2.2.8 Kappa light chain
Although cell surface immunoglobulins are not expressed on

all plasma cells, it is recognized that MM stem cells express

surface immunoglobulins (71). Thereby, kappa light chain might

be an ideal target for MM (71). Several monoclonal antibodies

targeting kappa light chain have been developed and tested in

clinical trials, such as MDX-1097 (72). But CAR-targeting kapa

light chain is still a less explored field. In one trial conducted by

Ramos et al., 4 of 7 RRMM patients responded to kappa-targeted

CAR-T cell therapy, keeping disease stable for 2-17 months. In a

phase-I trial of k-CAR-T cells (NCT00881920), 16 patients with

non-Hodgkin lymphoma/chronic lymphocytic leukemia or MM

were enrolled. Notably, 4 of 7 patients with relapsed or refractory

MM kept disease stable for 2-17 months (71).
3 Mechanisms of disease resistance/
relapse after MM CAR-T

Despite the impressive ORR, over 50% of patients after

BCMA-directed CAR-T would relapse or progress within 1-

year (73). Another study showed a consistent preliminary trend

that most MM patients who achieved MRD-negative to bb2121

have progressed in follow-up period (74). Thus, though CAR-T

cells have the robust cytoreductive capacity to treat multiple

myeloma, they cannot produce lasting immune surveillance.

Currently, exact mechanism of disease resistance/relapse after

MM CAR-T remains elusive, but there are several deductive

mechanisms stated as following: 1) T cell-dependent resistance;

2) antigen-driven resistance (antigen escape, antigen shedding);

3) TME-related resistance. Some mechanisms are presented

in Figure 3.
3.1 Poor persistence of CAR T cells

One study suggested that CAR-T cells were detectable up to

3 months after CAR-T injection and were gradually eliminated

(73). At 12 months after infusion, only approximately 20% of

patients had detectable engineered T cells (73). A lot of efforts
Frontiers in Immunology 06
have been made to figure out potential mechanisms leading to

short persistence of CAR-T cells (73).

3.1.1 T cell clearance
CAR-T cells are immunogenicity, thereby they might be

eliminated by adaptive immune response over time. Single-chain

fragment variable (ScFv) is the most common antigen-binding

counterpart in CAR-T constructs. Most of ScFvs in BCMA-

directed CAR-T are derived from non-human species (73),

which induce immunogenicity and thereby potentially limit

the T-cell persistence. In legend-2 study (75), anti-ScFv

antibodies were detected in 7 of 17 MM patients after

receiving bi-epitope BCMA-targeting CAR-T (LCAR-B38M),

and 6 of them had decreased CAR-T cells and experienced

tumor recurrence. More specifically, camelid-derived ScFvs were

used to assemble LCAR-B38M, specifically targeting two

different epitopes of BCMA on MM cell surface. There are

agreements that non-human ScFv can induce immunological

reaction to produce anti-CAR antibodies, which eventually lead

to T-cell clearance and constitute a higher risk of relapse after

CAR-T. This observation also highlights the importance of

manufacturing humanized ScFV.

3.1.2 Lack of memory characteristics
The differentiation stage of CAR-T cells affects their

proliferation and survival, strongly correlating with their anti-

tumor activity (76–78). The immunophenotype of T-cell used to

manufacture CAR-T is considerably pivotal for T-cell

persistence. Each subset of T cells possessed heterogeneity of

proliferation and longevity (79). For example, naïve T-cells, stem

memory T-cells, and central memory T-cells present the best

proliferation capacity and delayed exhaustion or senescence

(80). The enrichment of CD27+/CD45RO-/CD8+ T cells with

memory-like features is correlated with long-term remission (81,

82). Also, a high percentage of cytotoxic CD8+ T cells with a

naïve or stem memory characteristic are found to persist much

longer and expand better in vivo, achieving superior outcomes

after BCMA-targeted CAR-T treatment (23).

This view keeps in line with a previous finding that longer

persistence of CAR-T cells in vivo expansion has been associated

with better clinical remission and survival for recipient patients

(83–86). One study also indicated that persistent CAR-T cells

detected in peripheral blood tend to generate superior clinical

response even among patients with high-grade diseases (87).

Therefore, naïve cells and memory cells are important for CAR-

T cell manufacture, mainly because they display sustained

proliferation and longer persistence in vivo.

3.1.3 Impaired T cell fitness
The quality of T cells also profoundly affects their life span in

vivo. Notably, malignancy itself and chemotherapy-related

myelosuppression could hamper T-cell fitness (88). When
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patients receive many lines of myeloma treatments, the

composition of T cells would change over time. Furthermore,

patients who underwent more lines of chemotherapies tended to

have less early memory T cells in vivo (89).

3.1.4 T cell exhaustion
T-cell exhaustion is another potential culprit, mainly

because of constitutive antigen-independent tonic signaling by

CAR-T. A variety of factors are able to induce tonic signaling to

form activating clusters, leading to off-target activation and T-

cell exhaustion (90, 91). Optimizing the CAR to limit antigen-

independent tonic signaling and increase antigen-dependent

recognition could be beneficial for T-cell persistence. In an

anti-GPRC5D model of CAR-T, an IgG4/IgG2-derived spacer

with modifications has been raised by Smith and colleagues,

which might delay T-cell exhaustion (57).
3.2 Antigen escape and shedding

Antigen escape and shedding are the most common causes

of the failure of CAR-T cell strategy. First, downregulation of

tumor antigen reduces the CAR-T cell targeting ability,

weakening the tumor-killing effects. Second, increased antigen

shedding into a soluble form could negatively affect the efficacy

of CAR-T therapy.

BCMA represents an important target. Theoretically, nearly

all MM patients express BCMA irrespective of newly diagnosed

or relapsed (38). It remains controversial about whether BCMA

expression level is associated with the response rate to BCMA-

directed CAR-T cells. However, loss of BCMA expression was

suspected in post-treatment residual MM cells. Based on existing

findings, there is a transient phenomenon that BCMA

disappeared after initial response and subsequently remerged
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over MM progression (92). Though MM relapse is mainly

caused by BCMA-positive clones, cases of recurrence led by

BCMA-negative target cells have been noticed (22, 93). For

example, a recent study pointed out that BCMA-negative was

suspected in 3 of 71 patients at disease progression (94).

BCMA shedding from plasma cells is mediated by g-
secretase, producing the soluble-BCMA (sBCMA) that serves

as a circulatory biomarker. Previous literatures have

demonstrated that sBCMA is associated with the tumor

burden and the prognosis (41, 95). High levels of soluble-

BCMA might competitively bind to ScFv and consequently

interfere the precise recognition of MM cells by CAR-T cells

(96). Inhibitors of g-secretase avoid BCMA shedding from MM

cells and reduce the interference of soluble BCMA. Intriguingly,

based on preclinical data, soluble BCMA does not affect the

function of novel BCMA-CAR T in vitro and in vivo (37). Up to

date, there is no clear clinical evidence that the level of sBCMA

could negatively affect the efficacy of BCMA-targeted CAR-

T therapy.

Likewise, high levels of soluble SLAMF7 are associated with

a worse response to elotuzumab, along with a shorter survival

(97). In addition, soluble CD38 could reduce the anti-MM

response of daratumumab (98). However, as a seven-

transmembrane protein, the likelihood of GPRC5D shedding

into serum is low (57, 99). It is interesting to find that GPRC5D

expression is independent from BCMA, therefore it might be an

alternative target for relapsed MM patients after BCMA-directed

therapy due to BCMA loss or shedding (57).
3.3 TME suppression

The tumor microenvironment (TME) plays a critical role in

drug-resistance mechanism. CAR T cells need to overcome
B CA

FIGURE 3

Mechanism of resistance/relapse to BCMA-targeted CAR-T cell therapy. (A) BCMA escape and BCMA shedding are blocking the antigen
recognition by CAR-T cells. Membrane BCMA can be cleaved by g–secretase and released to the plasma as soluble BCMA (sBCMA). (B) Poor
persistence of CAR-T cells is mainly caused by T cell exhaustion and T cell clearance. (C) The tumor immunosuppressive microenvironment is
mainly led by inhibitory ligands (PD-1 and CTLA-4) and suppressive immune cells (MDSC and Treg cells). MM, multiple myeloma; MDCS,
myeloid-derived suppressor cells; Treg cell, T regulatory cells.
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inhibitory signals and immunosuppressive cells existing in the

TME. Immunosuppressive cells consist of T regulatory cells

(Treg), B regulatory cells, myeloid-derived suppressor cells

(MDSC), and plasmacytoid dendritic cells. These subsets may

negatively affect the function of CAR-T cells (100–102). Besides,

inaccessibility of MM cells by CAR-T cells forms another barrier.

It is true MM cells generally reside in bone marrow

microenvironment involving various cell types and

extracellular matrix (ECM), which make CAR-T cells difficult

to access MM (103). A recent study (104) about B-cell

lymphoma reported a similar observation that many CD19-

targted CAR-T cells did not successfully reach their target

destination. Although mature CAR-T tracing method are still

unmet needs, it is widely accepted that MM exploits

immunosuppressive TME to block the efficacy of CAR-T cells

and consequently lead to high risks of recurrence. PD1-PDL1

axis is another major cause of CAR T-cell dysfunction (105,

106). PD-1 expressed on activated T cells, is capable of binding

with PD-L1 expressed by MM cells, eventually leading to

exhausted state of T cells (107).
4 Strategies to improve the efficacy

For RRMM patients, poor persistence of T cells, antigen

escape, and TME suppression restrict the durability of immune

response and consequently limit the efficacy of CAR-T therapy

in clinical settings. However, recently initiated studies have

incorporated innovations to address above barriers

(Figure 4, Table 3).
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4.1 Enhancing CAR-T cell persistence

Optimizing CAR-T design is a potential strategy to enhance

CAR-T cell persistence. The utility of fully human recognition

domains, rather than those derived from mouse antibodies, is an

attempt to reduce immunogenicity which usually leads to

clearance of CAR-T cells by patients’ immune system (22, 44,

75, 108, 109). Importantly, this strategy not only improves CAR-

T cell persistence, but also simultaneously reduces cytokine

storm. Besides, several studies demonstrated that the

transmembrane region and co-stimulatory domain confer

different properties of CAR-T cells that may influence efficacy

and toxicity as well (110–125).

Another promising approach is to use less-differentiated T

cells subsets that have a good proliferative capacity, such as naïve

T cells, stem cell memory T cells (TSCM), central memory T

cells (TCM). According to preclinical studies, CAR-T cells with

memory phenotype presented superior engraftment,

proliferation, and longevity compared to general CAR-T

components (126, 127). Further, those who are treated with a

defined ratio (1:1) of CD4+/CD8+ CAR-T cells, were monitored

with more potent T cell expansion and fewer toxicities in vivo

(128, 129).

In addition, lymphodepleting regimen may enhance the

expansion of adoptively transferred T cells leading to superior

persistence (130). First, lymphocytes depletion therapy before

CAR-T could greatly reduce the risk of anti-CAR immune

response. Second, a lymphodepleting environment is suitable

for CAR-T cell expansion and persistence (80). It is known that

IL-7 could assist CD8+ cytotoxic T-cell to preserve a stem
B CA

FIGURE 4

Strategies to improve the efficacy of MM CAR-T cell therapy. (A) CAR-T cell products are designed to target multiple TAAs to overcome antigen
escape. The monospecific CAR has a single scFv; the dual-target CAR construct includes two separate monospecific CARs on the surface of T
cells; the tandem CAR has two antigen-binding domains that are linked tandemly on one CAR protein; the mixture of CAR-T cells describes the
simultaneous transduction of different types of CAR-T cells in vivo. (B) The persistence of CAR-T cells can be enhanced by using less-
differentiated T cell subsets. (C) CAR-T cells can be engineered to overcome the immunosuppressive microenvironment by using immune
checkpoint inhibitors or direct gene knockout.
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memory phenotype in vivo (131), which is critical for T-cell

expansion. All these data support the conclusion that more

intense lymphodepletion may induce better CAR-T persistence

and expansion.
4.2 Countering antigen escape

Increasing the density of BCMA expression is a critical area to

counter antigen escape. The use of g-secretase inhibitor (GSI) is
able to increase BCMA expression on MM cells and reduce

sBCMA levels by inhibiting the cleavage of surface BCMA

(132). Preclinical models (133) have demonstrated that the

presence of GSI could lead to a threefold to fivefold increase of

BCMA expression level in MM cell lines. Particularly, when the

density of BCMA is relatively low on the target cells, the

administration of GSI may enhance the capacity of identifying

MM cells. Great advancements in the efficacy of BCMA-targeted

CAR T cells in combination with GSI have been observed in

mouse models (133). Currently, several GSIs are being tested in

clinical trials, even including patients with solid tumors (134).

Future studies might discover other approaches to upregulate

BCMA expression.

To address BCMA-negative clones, targeting two or more

distinct antigens is underway. Due to the heterogeneity nature,

targeting only one antigen at a time may not produce a long-

lasting immunosurveillance in a large number of MM patients

(135–137). More specifically, single target CAR-T only displays

one single-chain variable fragment (ScFv) for antigen

recognition, whereas dual-target CAR-T simultaneously

contains co-stimulatory domain or tandem CAR molecules to

overcome antigen escape and guarantee better identification.

There are several strategies to achieve dual-target CAR-T

products: 1) sequentially infusion of two CAR-T cells that

respectively target different MM-associated antigen; 2) the

same T cell displays two different CAR products; 3) One

tandem CAR construct containing two antigen recognition

moieties incorporated with one activation region (138).

Available dual CAR products involved a combination of

BCMA and CD19 (NCT04236011, NCT04162353), BCMA

and SLAMF7 (NCT04662099, NCT04156269), BCMA and

CD38 (NCT03767751). More details could be seen in Table 4.
4.3 Overcoming immunosuppression in
the TME

CAR-T cells should preliminarily overcome direct T cell

inhibitory signals presented in the TME. PD1-PDL1 is the best

characterized pathway. Inhibition of the PD-1 signals could

produce dramatic clinical benefits in a variety types of tumors

(139). Recent studies have demonstrated that coadministration

of immune checkpoint inhibitors (ICI) with CAR-T therapy
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brought increased efficacy in preclinical models (105). In

addition to ICI, knockout of the PD-1 coding gene could be

engineered by gene silencing techniques, such as short hairpin

RNAs (140) and CRISPR-Cas9 (141). Also, armoured CAR T

cells secreting cytokines or chemokines are able to alter the

inflammatory microenvironment and support the functionality

of CAR T cells (142). Further, the metabolic competition

between tumor and immune cells in the TME may restrict

nutrient availability and cause microenvironment acidosis,

which could trigger T cell inhibitory pathways or otherwise

hinder immune cell function (143). Intriguingly, the expression

of the antioxidant enzyme catalase in CAR-T cells may

overcome granulocyte-mediated oxidative stress in vitro (144).

Modifying T cell metabolism is a promising area to boost

efficacy, but further validation is needed in clinical application.
5 Strategies to reduce the toxicity

Overall, treatment-related toxicity of MM CAR-T therapy

involves two major categories: 1) general toxicity caused by T cell

activation and following systemic cytokine storm; 2) specific

toxicity caused by the interaction between CARs and TAAs

expressed on non-tumor cells, which is also termed as ‘on-target,

off-tumor’ toxicity.
5.1 Systemic cytokine storm

The rapid immune activation responsible for the success of

CAR-T strategy also stimulates treatment-related toxicity. The

clinical complications caused by different CAR-T in MM are

similar to those led by CD19-targeted CAR-T in ALL and

DLBCL (84, 145, 146), including cytokine release syndrome

(CRS) and neurotoxicity (NTX), and hematologic cytopenia,

which might limit the wide application of CAR-T cell therapy

in MM.

The most frequent toxicity is cytokine release syndrome

(CRS), a constellation of symptoms involving fever, myalgia,

hypoxia and hypertension, resulting from increased

inflammatory cytokines like IL-6. IL-6 receptor antagonism via

Tocilizumab and short-course steroids could be used for CRS

management (147). Besides, CAR-T cell-associated HLH/MAS

is a more severe systemic hyperinflammatory syndrome. CAR-T

cell-induced HLH/MAS may be resistant to IL-6 receptor

inhibitors, of which condition chemotherapy would be

required (145).

Neurotoxicity (NTX), is the second major adverse effect,

mainly because of the disruption of the blood-brain barrier and

increased cerebrospinal fluid cytokine levels (148). NTX

frequently occurs with or following CRS, presenting

encephalopathy, delirium, aphasia, seizures, and life-

threatening cerebral oedema (149). The consensus grading
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scheme proposed by ASBMT was applied extensively (149).

Notably, the grade 3-4 CRS and NTX could be effectively

managed by tocilizumab and supportive care. Also,

management of NTX comprises of corticosteroids and IL-6

pathway antagonisms (145). A special form of NTX is referred

to immune effector cell-associated neurotoxicity syndrome

(ICANS), as transient encephalopathy, which is attributed to

off-target cytokine production, as well as immune response of

central nervous system (CNS). A mounting evidence suggests

that ICANS could be characterized by atypical features and

prolonged timeframes (150). And its management coincides

with CRS interventions, such as cytokine inhibitors and

corticosteroids. However, current understanding of ICANS is

still limited. The mechanisms for ICANS after BCMA-targeted

therapy need further elucidation (151).
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Hematologic cytopenia is commonly reported following

BCMA CAR-T cell therapy, manifesting as leukopenia,

lymphopenia, anemia, neutropenia, and thrombocytopenia,

which could increase the risks of infection, bleeding, fever, and

bruising (146, 152–154). After infusion, CAR-T cells not only

activate tumor-specific T-cell, but also induce non-specific T or

B clones that target hematopoietic stem cell (HSC), neutrophils,

platelets, and erythroid cells (155). Besides, the release of

cytokines could drive differentiation but arrest maturation of

HSC (156). Therefore, the IL-6 blockade may control

hematologic cytopenia as well. The management of cytopenia

also includes transfusion of blood cells and growth factors of

hematopoietic stem cell transplantation (HSCT) (157, 158).

To counter systemic cytokine toxicity, CAR-T cells must

reach a threshold level for activation but not exceed the level that
TABLE 4 Dual-target or multi-target strategy tested in early clinical trials.

Antigen Identifier Status Enrollment Population

BCMA × CD19 NCT04935580 recruiting 20 NDMM, HRMM

BCMA × CD19 NCT04714827 recruiting 24 RRMM

BCMA × CD19 NCT04236011 recruiting 15 RRMM

BCMA × CD38 NCT03767751 recruiting 80 RRMM

BCMA × SLAMF7 NCT04156269 unknown 12 RRMM

BCMA × CD38 × CD138 × CD56 NCT03271632 recruiting 20 RRMM

BCMA × CD19 × CD38 × NYESO-1 NCT03638206 recruiting 73 RRMM

RRMM, relapsed or refractory multiple myeloma; HRMM, high risk multiple myeloma; NDMM, newly diagnosed multiple myeloma.
TABLE 3 Mechanisms of resistance to MM CAR-T and strategies to overcome the resistance.

Resistance Mechanism Strategies Clinical
Trial

T-cell
intrinsic

Poor persistence

T cell clearance due to
Immunogenicity

Manufacturing humanized ScFv with decreased
immunogenicity

NCT03602612

Lack of memory
characteristics

Memory T cell-enriched product
• Culture with PI3K inhibitors
• Transduction with stem-cell memory T cell
• CAR constructs with specific CD4:CD8 ratio

NCT03274219
NCT03288493
NCT03338972

Impaired T cell fitness
• Allogeneic CAR-T cells
• Receiving treatment at earlier MM stage

NCT04093596
NCT04196491

T cell exhaustion
Limit antigen-independent tonic signaling and increase
antigen-dependent recognition

NA

MM
intrinsic

Antigen Escape
BCMA escape
BCMA shedding

• Dual-/Multi-target design
• Increased BCMA expression with gamma-secretase
inhibitors

NCT04935580
NCT03502577

TME
Inhibitory signals and
immunosuppressive cells

PD1-PDL1-mediated T cell
dysregulation
Immunosuppressive cells:
Treg, MDSC

• Combined with immune checkpoint inhibitors
• Combined with immunomodulatory drugs

NA

MM, multiple myeloma; TME, tumor microenvironment; Treg, T regulatory cells; MDSC, myeloid-derived suppressor cells; NA, not available.
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would result in a series of cytokine secretion. Thus, therapeutic

window for each CAR should be carefully considered.

Researchers are currently engineering several innovations to

control CAR expression or activity (Figure 5).

Firstly, 4-1BB co-stimulatory domain is associated with a

much slower onset of T cell activation, increased T cell

durability, and a lower risk of cytokine-related toxicity

compared to CD28 domain. Therefore, inclusion of 4-1BB co-

stimulatory domains might be less toxic in patients with heavy

tumor burden. But CD28 is necessary to achieve the required

threshold for T cell activation, especially for MM with a

relatively low density of antigen or a low-affinity antigen-

binding domain. Overall, the choice of co-stimulatory domain

is critical to balance the efficacy and safety in CAR-T

cell therapy.

Secondly, engineering ‘suicide genes’ into the CAR construct

could induce apoptosis to eliminate CAR-T cells when

treatment-related toxicity occurs. Co-expression of suicide
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receptors on MM CAR-T cells, such as CD20 and EGFR,

could be attacked by rituximab (159–161) and cetuximab

(162), respectively. Therefore, these FDA-approved antibodies

provide a mean to deactivate CAR-T cells. Another strategy is to

incorporate apoptosis-triggering fusion protein into CAR-T

cells. iCasp9 is a well-characterized example, which can be

triggered by dimerizing agents and subsequently drive rapid T

cell depletion (163).

Thirdly, administration of small-molecular agents could

control ‘on or off switch’ on CAR-T cells. Dasatinib, a tyrosine

kinase inhibitor for CML and ALL. This agent enables the

inhibition of LCK or intracellular signaling cascade, followed

by destroying the downstream signal of activated CD3zeta. It has

been demonstrated that dasatinib rapidly and reversibly hinder

CAR-T cell activation, which provides a well-tolerated

pharmacological toxicity switch without eradication of T cells

(164). Alternatively, switch-off CARs (SMASh-CARs) provide

another strategy to dynamically regulate T cell functionality via
B

A

FIGURE 5

Strategies to overcome systemic cytokine toxicity. To counter systemic cytokine storm, several approaches are engineered to adjust CAR
expression or activity. (A) Suicide gene system enables the elimination of CAR-T cells by following strategies: a) the activation of antibody-
dependent cellular cytotoxicity (ADCC) or complement-dependent cytotoxicity (CDC); b) the induction of apoptosis pathway. (B) The ‘ON/OFF
switches’ of CAR-T cells could be regulated by small molecular agents. scFv, single chain fragment variable; MAC, membrane attack complex;
iCasp9, inducible caspase 9.
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embedding a protease target, a protease, and a degron moiety

(165). In the ‘OFF’ state, the degron moiety promotes the

degradation of CAR-protease-degron complex. Protease

inhibitors may function as the similar role to retain the degron

structure. In the ‘On’ state, the protease target site is cleavage by

protease leading to the removal of the degron from CAR protein,

and consequently the CAR is expressed on the surface of T cells.

In addition, a more direct antagonism way is knockout of

cytokine genes or expression of cytokine antagonists, both of

which might provide opportunities to avert systemic toxicities.

For example, the macrophage-activating and monocyte-

activating cytokine GM-CSF can be antagonized by mutational

inactivation and antibody lenzilumab, both of which can

increase CAR T cell persistence while decreasing the risk of CRS.
5.2 On-target, off-tumor toxicity

Typically, CAR T cells are designed to target tumor-

associated antigens (TAA). However, some TAAs are also

expressed on the normal cells, leading to mistaken recognition

and attack by CAR T cells. BCMA is a prominent TAA for CAR-

T cell therapy in MM. However, the public transcriptomic

datasets confirmed BCMA RNA expression in the caudate of

normal human brains (166), indicating an on-target effect of

anti-BCMA CAR-T therapy. Given the reports of phase-II cilta-

cel study, 12 of 97 patients were reported with non-ICANS

neurotoxicity. 5 of 97 (5.2%) patients suffered from a cluster of

movement and neurocognitive symptoms (3 with ≥ Grade 3

parkinsonism) (167). Among them, one patient developed a

progressive movement disorder with symptoms of parkinsonism

around three months after BCMA-targeted CAR-T cell infusion.

By analyzing this case, one study demonstrated that BCMA

expression on neurons and astrocytes in the basal ganglia (166).

Therefore, BCMA-targeted CAR-T cells may hold the potential

to cross the blood-brain barrier and induce a progressive

neurocognitive or movement disorder by targeting the basal

ganglia. Close monitoring of neurotoxicity is necessary in

patients with BCMA-targeted CAR-T cell therapies.

Engineering strategies aims to overcome on-target, off-

tumor toxicity mediated by CAR-T cell therapy (Figure 6).

The first strategy is to enhance the specificity of antigen

recognition. Targeting multiple TAA is a promising approach.

Specifically, CAR protein could be disassembled into two

separate receptors, one with CD3zeta domain and another

with a co-stimulatory domain. Both receptors need to

recognize different TAAs for CAR T cells activation.

Preclinical models have observed the promises in such a

strategy (168–170). Alternatively, the inhibitory CAR (iCAR)

contains a special inhibitory region that is generally derived from

immune checkpoint proteins, such as PD-1 and CTLA-4. The

inhibitory signal could recognize an antigen expressed on

healthy tissues but absent on tumor cells (171). Moreover,
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engineering chimeric co-stimulatory receptor enables T cells to

recognize antigens that are enriched on tumor cells. The second

strategy is to utilize logic gating or conditional system to control

CAR-T cell activation, such as the phospho-antigens that could

be identified by T cell receptor. For example, HIF-1a
degradation pathway is exploited to restrict CAR expression to

CAR-T cells located in hypoxia TME, thereby avoiding adverse

effects on healthy tissues which are normally non-hypoxic (172).
6 Innovations of MM
CAR-T manufacture

Novel agents and CAR-T manufacture platforms are

especially noteworthy. Table 5 specifically focused on data of

novel therapeutic agents for RRMM presented at major

oncology meeting between 2020 and 2022, including Annual

Society of Hematology (ASH) and American Society of Clinical

Oncology (ASCO).
6.1 Role of allogeneic CAR-T

Currently, all FDA-approved CAR-T constructs are

manufactured within autologous T cells isolated from the

patients’ blood. However, this individualized production

process is somewhat costly and time-consuming, limiting the

number of MM patients who can benefit from CAR-T therapy.

First, the manufacture time of autological CAR-T cells is lengthy.

Many patients with advanced stage of MM may be unable to

benefit from this therapy (84, 186). Second, the production

failure may be attributable to the insufficient T cells obtained

from MM patients, as patients who previously received

chemotherapy tend to undergo bone marrow suppression and

lymphodepletion (88, 187). Third, the heterogeneity of apheresis

CAR product is another underlying cause of preparation failure.

There is a phenomenon that dysfunctional T subsets could result

in inferior CAR-T products, consequently leading to poor

efficacy and response rates (81, 188–191).

Allogeneic donor T cells provides an alternative to

autological CAR-T cell therapy, which might potentially solve

the manufacturing issues of inadequate T-cell number and

suboptimal T-cell fitness for CAR-T production. CAR-T cells

could be derived from HLA-matched allogeneic hemopoietic

stem cell donors. Nevertheless, allogeneic CAR-T cell therapy

has been associated with graft-versus-host (GVHD) and graft

rejection. The engrafted allogeneic donor cells could launch an

attack on recipient cells (192), whereas the host immune cells are

able to eliminate allogeneic CAR-T cells. Recently, genetic

modifications are explored to cope with T cell alloreactivity,

such as TCR disruption and safety switch insertions (176).

Genome-editing technologies include ZFN, TALEN, and

CRISPR-Cas 9, all of which are used to generate universal
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CAR-T cells (193). Ongoing clinical trials provide novel

armamentarium for MM immunotherapy.

At ASH 2021, updated results of an open-label, phase-I

clinical study (UNIVERSAL, NCT04093596) were reported to

validate the feasibility of allogeneic anti-BCMA ALLO-715 for

RRMM (176). ALLO-715 is a genetically modified anti-BCMA

CAR-T product which employed TALEN technology to disrupt

the TCR constant gene and CD52 gene to prevent GVHD and

allow the use of anti-CD52 based lymphodepletion (194). At the

time of data cut-off, 47 patients were enrolled; 42 patients

received ALLO-715 infusion. Efficacy outcomes presented

61.5% ORR among patients with high doses. Safety prolife

showed CRS occurred in 52.4% and there was no grade 4-5

CRS. Overall, the UNIVERSAL trial demonstrates the proof for

allogeneic CAR-T therapy for MM, which might bring

meaningful efficacy and tolerable toxicity. But this trial

continues to enroll more patients and follow-up data will be

updated in the future (176).
6.2 Rapid CAR-T manufacture platform

In the process of commercial manufacture, patients need to

wait for around 3-4 weeks until CAR-T infusion, in whom

disease might progress while waiting for CAR production. The

first-in-human dual BCMA and CD19 targeted CAR was

manufactured by a novel platform (FAST CAR platform) that

significantly reduced the production time to only 24-36 hours

(195). Latest results of this trial (NCT04236011) showed a high

response with 100% (DL-1: 1×105/kg), 80% (DL-1: 2×105/kg),
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and 93.8% (DL-1: 3×105/kg) ORR, respectively. Also, 23 out of

28 patients (82.1%) suffered from grade 1-2 CRS and 2 patients

(7.1%) with grade 3. The data presented promising efficacy and

favorable safety of the BCMA-CD19 dual fast CAR-T for RRMM

patients (182). This clinical trial is still ongoing and recruiting

more patients.

At ASH 2021, a rapid manufacturing process that could both

preserve the stemness of T cells to ensure longer durability and

provide timely access for patients with aggressive disease, has

been presented (28). Researchers developed a superior anti-

BCMA CAR-T construct (PHE885) carrying a fully human

anti-BCMA ScFv fused to 4-1BB/CD3zeta signaling domains

and an innovative T-Charge manufacturing platform, which

enables rapid and reliable patient access. More specifically, this

novel manufacturing platform allows PHE885 to preserve a

higher percentage of naïve/TSCM cells, leading to effectively

engraft, expand, and reject tumors. Based on this principle, a

phase-I trial (NCT04318327) has been initiated and early data of

this study will be presented in the future.
6.3 Modified manufacturing process to
harvest early memory T-cell

CAR-T cells start to disappear at first 3-6 months after

infusion, subsequently leading to the loss of disease control. An

innovation is to enrich early memory T cells by modification of

manufacturing process. JCARH125 is a well elaborated example.

Its production is optimized to harvest early memory T-cell and

increase T-cell fitness. Relevant clinical trial (EVOLVE) data
BA

FIGURE 6

Strategies to overcome on-target, off-tumor toxicity. The expression of tumor-associated antigens on healthy tissues can lead to ‘on-target, off-
tumor’ toxicity. (A) The specificity of CAR T cells is enhanced by targeting multiple TAAs. The activation domain and co-stimulatory domain
should respectively bind to different antigens on MM cells for CAR T cell activation. (B) Alternative strategy is to use the inhibitory CAR against a
specific non-tumor antigen, requiring the absence of this antigen on MM cells.
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have been previously presented in ASH 2018. According to the

latest reporting at ASCO 2020 (174), a total of 44 patients who

received higher doses (300 × 106, 450 × 106, 600 × 106)

respectively achieved the ORR of 95%, 94%, and 71%. A

promising finding is that functional CAR-T cells could be

detected in 69% of cases at 6 months. P-BCMA-101 is an

autologous BCMA-targeted CAR construct that consisted of a

large number of stem cell memory cells. P-BCMA-101 was
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manufactured by a novel virus-free transposon “piggy-Bac”

technology that preferentially transfect early memory T cells

(196), thereby increasing efficacy while minimizing toxicity

(173). A phase I-II study of P-BCMA-101 (NCT03288493) is

being tested in RRMM patients and early data were reported in

ASH 2018 (197). Current clinical data keep consistent with

preclinical findings that the modifications of CAR production

appear to have notably improved efficacy.
TABLE 5 Clinical trials of novel therapeutic agents for MM at recent oncology meetings, 2020-2022.

Product
Name Identifier Target Phase Enrollment Study

Population Country Innovation Clinical
Update

P-BCMA-
101

NCT03288493 BCMA I-II 43 RRMM
United
States

Using transposon-based system to
enrich early memory T cells

ASH 2020
(173)

Orva-cel
NCT03430011
(EVOLVE)

BCMA I-II 62 RRMM
United
States

Fully human binder
ASCO
2020
(174)

JNJ-4528
NCT03548207
(CARTITUDE-1)

BCMA I-II 17 RRMM
United
States,
Japan

A CAR-T therapy containing two
BCMA-targeting single-domain
antibodies

ASCO
2020
(175)

ALLO-715
NCT04093596
(UNIVERSAL)

BCMA I 47 RRMM
United
States

Allogeneic CAR-T product; Using
TALEN technology to disrupt TCR
constant gene

ASH 2021
(176)

CT053
NCT03975907
(LUMMICAR)

BCMA I-II 14 RRMM China
A fully human autologous CAR-T
product

ASH 2021
(177)

ARI0002H NCT04309981 BCMA I-II 35 RRMM Spanish
A lentiviral autologous second-
generation CAR-T product

ASH 2021
(178)

PHE885 NCT04318327 BCMA I 56 RRMM
United
States

A novel CAR construct with an
innovative T-charge manufacturing
platform

ASH 2021
(179)

CT103A ChiCTR1800018137 BCMA I-II 71 RRMM China
A fully human BCMA-specific
CAR-T product

ASH 2021
(180)

bb2121
NCT03361748
(KarMMa)

BCMA II 140 RRMM Multicenter Updated data of KarMMa trial
ASCO
2021
(181)

bb2121
NCT04196491
(KarMMa-4)

BCMA I 13 NDMM
United
States

Aiming at high-risk newly
diagnosed MM patients

ASCO
2021 (24)

GC012F NCT04236011
BCMA ×
CD19

I 28 RRMM China Rapid manufacture platform
ASCO
2022
(182)

CART-
ddBCMA

NCT04155749 BCMA I 25 RRMM
United
States

An autologous CAR-T product that
utilizes a novel, synthetic binding
domain

ASCO
2022
(183)

OriCAR-
017

NCT05016778 GPRC5D I 11 RRMM China
A novel CAR-T product with
improvement in expansion and
durability

ASCO
2022
(184)

Cilta-cel
NCT04133636
(CARTITUDE-2)

BCMA II 19 RRMM Multicenter
Update and supplement of
CARTITUDE-1

ASCO
2022
(185)

RRMM, relapsed or refractory multiple myeloma; NDMM, newly diagnosed multiple myeloma; MM, multiple, myeloma; ASCO, American society of clinical oncology; ASH, American
society of hematology.
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7 Conclusion

In this review, we summarized the current status and future

innovations in CAR-T therapy for multiple myeloma. Clinical

benefits of using CAR-T therapy to treat MM has been confirmed,

but it does not lead to favorable durability and safety with current

technologies. Numerous promising engineering approaches are

underway to improve the efficacy and safety of CAR-T cell

therapy, expanding this technology for a wider range of

application and bring more benefits for MM patients.
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