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Our review summarizes the evidence that COVID-19 can be complicated by

SARS-CoV-2 infection of immune cells. This evidence is widespread and

accumulating at an increasing rate. Research teams from around the world,

studying primary and established cell cultures, animal models, and analyzing

autopsy material from COVID-19 deceased patients, are seeing the same thing,

namely that some immune cells are infected or capable of being infected with

the virus. Human cells most vulnerable to infection include both professional

phagocytes, such as monocytes, macrophages, and dendritic cells, as well as

nonprofessional phagocytes, such as B-cells. Convincing evidence has

accumulated to suggest that the virus can infect monocytes and

macrophages, while data on infection of dendritic cells and B-cells are still

scarce. Viral infection of immune cells can occur directly through cell

receptors, but it can also be mediated or enhanced by antibodies through

the Fc gamma receptors of phagocytic cells. Antibody-dependent

enhancement (ADE) most likely occurs during the primary encounter with

the pathogen through the first COVID-19 infection rather than during the

second encounter, which is characteristic of ADE caused by other viruses.

Highly fucosylated antibodies of vaccinees seems to be incapable of causing

ADE, whereas afucosylated antibodies of persons with acute primary infection

or convalescents are capable. SARS-CoV-2 entry into immune cells can lead to

an abortive infection followed by host cell pyroptosis, and a massive

inflammatory cascade. This scenario has the most experimental evidence.

Other scenarios are also possible, for which the evidence base is not yet as
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extensive, namely productive infection of immune cells or trans-infection of

other non-immune permissive cells. The chance of a latent infection cannot be

ruled out either.
KEYWORDS
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infection, monocyte infection, pyroptosis, COVID-19 pathogenesis
Introduction

The SARS-CoV-2 virus has brought many surprises to the

scientific community. One of them is the virus’ ability to infect

immune cells. Numerous and rapidly growing evidence of this

ability inspired us to write this literature review. Studies

accumulated to date show that among immune cells SARS-

CoV-2 predominantly infects professional and nonprofessional

phagocytes. The observation that infecting cells are mostly

phagocytes may reflect the fact that they are simply at the

forefront of the body’s defense against viral infection. These

cells engage various mechanisms of pathogen internalization

and, in particular, phagocytosis.

Evolution has equipped some immune cells with the ability

to use various variants of pathogen internalization by

endocytosis, as a defense mechanism to destroy pathogens,

and to utilize their peptides for antigen presentation.

Phagocytosis is defined as the internalization process of

particles larger than 0.5 µm in diameter (1). This process is

the most ancient form of endocytosis, and the origin of proteins

involved in this type of endocytic pathway can be traced back to

prokaryotes (2, 3). The act of phagocytosis is a fundamental

process that is playing a key role in immunity (4). Phagocytosis

can be accompanied by activation of the inflammatory pathway,

which contributes to the elimination of the pathogen by

inhibiting its spread (5).

The cell that carries out the process of phagocytosis in an

animal or human body is called a phagocyte. Phagocytic cells

consist of many subsets that perform highly diverse functions to

maintain our health. At the same time, these cells also play a role

in pathology of infectious or endogenous nature (1, 6). Several

types of immune system cells are professional phagocytes, such

as neutrophils, macrophages, and dendritic cells (1, 6, 7). There

are also cells that can be called nonprofessional phagocytes. For

example, B-cells mainly internalize antigens through

endocytosis (8), but there is some evidence that these cells

have an active phagocytic capability and undergo immune

activation upon phagocytosis (9, 10).

Infection of phagocytes with a virus can lead to serious

malfunction of these cells, greatly undermining the protective

role of the immune system. Our review focused on phagocytes,
02
but we know that viruses capable of infecting phagocytes can be

internalized by host cells not necessarily by phagocytosis. Thus,

some viruses have learned to take advantage of different variants

of endocytic receptor-mediated internalization pathways,

including but not limited by phagocytosis, to enter and infect

the target cell (11–13).

Moreover, it has already been shown that SARS-CoV-2 can

transfer its replication competent RNA into the host cell

cytoplasm by rapid clathrin-mediated endocytosis (14).

Therefore, we consider the process of virus internalization,

which leads to viral infection of phagocytes, in terms of the

endocytosis and, in particular, phagocytosis mechanisms.

Some viruses can reprogram biology of phagocytic cells by

infecting and using them as vehicles for the spread, and/or

persistence in tissues of host organisms (15). In this review, we

focus on how SARS-CoV-2 hacks into endocytic pathways to

penetrate and infect an immune cell.

SARS-CoV-2 belongs to the category of enveloped viruses.

These viruses enter cells via fusion of their envelope with cellular

membranes, which might be represented by outer plasma or

endosomal membrane (12, 16, 17). For coronaviruses, including

SARS-CoV-2, entry into endosomes and its pH dependent

release from endolysosomes are key features of the host cells

entry (18).

SARS-CoV-2 cell penetration is initiated by binding of viral

S glycoprotein to host cell receptors. Angiotensin-converting

enzyme-2 (ACE-2) is the most studied and well characterized

SARS-CoV-2 cell entry receptor (19). The interaction of the

ACE-2 receptor with the viral receptor binding domain (RBD) of

the S-protein causes conformational changes in both protein

subunits (S1 and S2), after which the covalent bond in S2 subunit

is cleaved by the host protease, leading to fusion of the viral and

cell membranes, and allowing the viral genome to enter the

cell cytoplasm.

To achieve the membrane fusion two sequential cleavages of

the S glycoprotein are required. The first cleavage is performed

by a protease (Furin) at the S1/S2 site in the host cell during S

protein biosynthesis in the infected cells. The second cleavage is

performed by one of two transmembrane proteases at the S2′
cleavage site when the virus reaches the next target cell. One of

these proteases is the plasma membrane serine protease
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1050478
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Matveeva et al. 10.3389/fimmu.2022.1050478
TMPRSS2 and the other is the endosomal cysteine protease

cathepsin L (19). Cleavage of the S2′ site by TMPRSS2 occurs on

the cell surface, whereas cleavage of this site by cathepsin L

happens in the endosomal compartment after ACE2-mediated

endocytosis. SARS-CoV-2 virus like other coronaviruses (20)

can enter and leave cells through the endolysosomal system (19).

SARS-CoV-2 and some related viruses can leave this system and

replicate in autophagosomes in the cytosol [reviewed in (18)].

While it was discovered that there is little to no expression of

ACE-2 on most human peripheral blood immune cells it was

also found that ACE-2 is highly expressed on tissue

macrophages (21, 22) including alveolar macrophages, and

macrophages of arteries (21, 23).

Moreover, the research group of Sefik et al. revealed that

ACE2 expression was higher in infected human macrophages.

Blockade of ACE2 with antibodies significantly reduced the

ability of the virus to infect macrophages, suggesting that the

ACE2 receptor may mediate virus entry into some human

pulmonary macrophages (22).

It has been shown that monocytes can also express

detectable levels of ACE2 mRNA and protein (24).

However, SARS-CoV-2 transcripts were found in some

migratory dendritic cells, monocyte-derived alveolar

macrophages, and tissue resident macrophages, which do not

express ACE2 (25). Single-cell sequence analysis of myeloid cells

positive for SARS-CoV-2 RNA showed that most of them do not

express known viral entry factors (26). How does the virus get

into these cells? It is likely that other than ACE2 cell entry

receptors are also involved. They may play an additional role in

SARS-Cov-2 penetration mechanisms into different target cells,

including viral entry into immune cells (27).

It has been shown that several molecules can bind SARS-

CoV-2 and function as additional receptors or coreceptors,

helping the virus to attach to the cell surface. Among them C-

lectin proteins such as DC-SIGN, L-SIGN (28, 29), ACRG-1 (30,

31), and transmembrane proteins: KREMEN1 (30, 31),

Neuropilin-1 (32), AXL receptor tyrosine kinase (33), Basigin

(34, 35), and Dipeptidyl peptidase-4 (36). A list of these potential

receptors, their alternative names, and information on their

expression in immune cells is presented in Table 1.

For effective viral entry into a host cell receptor expression in

this cell must be complemented by the expression of proteases

capable of cleaving the S-protein, as described above. Is anything

known about TMPRSS2 and cathepsin-L expression in immune

cells? Devaprasad et al. have shown that “a small fraction of

circulating immune cells (including dendritic cells, monocytes, T

cells) in the human peripheral blood mononuclear cells of COVID-

19 patients express ACE2 and TMPRSS2” (50). Cathepsin-L, like

other cathepsins B and H, is expressed constitutively in most

immune cells (51) and therefore most likely participates in the

promotion of SARS-CoV-2 entry into these cell.

The ability to infect immune cells is related to the disease

pathogenesis of many enveloped viruses, such as representatives
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of Orthomyxoviridae family (influenza virus), Rhabdoviridae

(rabies and vesicular stomatitis virus), Flaviviridae (Dengue,

Hepatitis C and Zika viruses) (15, 52). The list can be

expanded further with the representatives of Togaviridae

(Chikungunya virus), Herpesviridae (cytomegalovirus),

Paramyxoviridae (Respiratory syncytial virus), Retroviridae

(HIV-1), Coronaviridae, and many others (15).

For the Coronaviridae family the phenomenon of such

infection has been also documented for alpha- (53, 54) and

beta coronaviruses (55–59). Some of the viruses listed use

phagocytic immune cells as a repository for persistence in a

form of latent infection, but some viruses employ these cells for

productive infection (15).

It was hypothesized early in the pandemic that certain

phagocytic cells, such as monocytes and macrophages,

contribute to pathological local tissue inflammation and

cytokine storm in patients with COVID-19, presumably being

infected with SARS-CoV-2 (60). Subsequently, the hypothesis of

a link between the development of severe immunopathology in

patients with COVID-19 and infection of immune cells with the

virus was reinforced. Indeed, evidence has been obtained that

certain professional and nonprofessional phagocytes can be

infected with SARS-CoV-2 in vivo and ex vivo, and such

infection appears to be associated with severe inflammation.

Our review focuses on summarizing and analyzing this evidence.

We examined the possible mechanisms of infection, the

consequences of this infection, and its potential role in the

pathogenesis of COVID-19.
Main

SARS-CoV-2 infection of immune cells
(lines of evidence)

There are several lines of evidence demonstrating that SARS-

CoV-2 can infect and replicate in professional and

nonprofessional phagocytic immune cells. The detection of

viral replication and translation products in an immune cell is

interpreted as the presence of an infection.

The first line comes from autopsy reports, which arrived from

research teams of different countries (61–66). The second line -

derives from cell culture experiments (64–71). These lines of

evidence are complemented by testing of blood (66), as well as

bronchoalveolar lavage fluid samples from patients with COVID-19

(25) and analysis of transgenic mice model experiments (22, 67). In

a few studies the titers of the infectious SARS-CoV-2 virus produced

by different types of immune cells were measured (64, 70, 72, 73). In

some other studies, the infectivity of the SARS-CoV-2 pseudovirus

was assessed (74, 75).

Supplemental Table 1 summarizes the results of 19 studies in

which evidence of viral infection of immune cells was obtained.

The table lists the types of infected cells, as well as methods and
frontiersin.org
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techniques for detecting infection, and whether the virus titer

was determined when there was evidence of productive

infection. In addition, the table provides information on

studies showing antibody-dependent enhancement of SARS-

CoV-2 infection of immune cells (66, 72, 74, 75).

In summary, many researchers have concluded that immune

cells are vulnerable targets for SARS-CoV-2 infection.
Location of infected immune cells in
COVID-19 patients

SARS-CoV-2 infected macrophages can be found in the

lungs (25, 62, 63, 66) spleen, lymph nodes (61), as well as

adipose (fat) tissues (65) of deceased patients with COVID-19.

Information about adipose tissue infection is reported in the

preprint, the study which has not been peer-reviewed (65).

Infected cells were detected among macrophages from

bronchoalveolar lavage fluid samples (25) and among blood

monocytes taken from COVID-19 patients (66).
Type of immune cells that got infected
by SARS-CoV-2

Immune cells that are infected by the virus are mainly

represented by professional and nonprofessional phagocytes.
Frontiers in Immunology 04
The first category includes monocytes, macrophages, and

dendritic cells. The second category includes B-cells.

Let’s take a closer look at the representatives of cells, for

which SARS-CoV-2 infection was detected. The studies

described below most often point to an abortive viral

infection, which, however, triggers the production of many

pro-inflammatory cytokines. Supplemental Table 1 includes a

brief description of the studies we discuss in this review, listing

the cells for which evidence of virus infection was obtained, as

well as the methods used in the studies.

Monocytes
Monocytes are the largest circulating cells in the peripheral

blood. They are round cells with a kidney-shaped nucleus.

Monocytes can be recruited into tissues and differentiate into

macrophages as well as dendritic cells, which are the front line of

defense against invading pathogens. Monocytes are essential for

functioning of both innate and adaptive immune systems. In

addition to being precursors of other immune cells, they directly

regulate immune pathways and are capable of phagocytosis. In

the adult body monocytes differentiate out of precursors in bone

marrow under the cascade of growth factors and stay in the

circulation between 3 and 6 days patrolling the endothelial wall

for the possible signal to be recruited into damaged tissue.

Already in circulation, monocytes can perform their immune

defense functions, and start a differentiation process (76). In

blood monocytes are exposed to the number of circulating
TABLE 1 Potential receptors and co-receptors for SARS-CoV-2 entry into immune cells other than ACE-2.

Receptor Full name Characteristic Evidencefor SARS-
CoV-2(reference)

Immune cells expression

SIGLEC1(CD168) Sialic acid binding Ig like lectin 1,
Sialoadhesin

I-type lectin, cell adhesion
molecule

(29) Dendritic cells, macrophages,
and monocytes

(29,
37)

DC-SIGN (CD209) Dendritic cells-specific intercellular
adhesion molecule-grabbing non integri,

C-lectin, pattern- recognition
receptor

(28, 29) Dendritic cells, macrophages (29,
38,
39)L-SIGN (CD209L) Liver/lymph node-specific intercellular

adhesion molecule-3-grabbing integrin
Not reported

ACRG-1 Asialoglycoprotein receptor 1, C- lectin (30, 31) Peripheral Blood Monocytes (40)

KREMEN-1 Kringle containing transmembrane protein
1

Transmembrane receptor Neutrophils and basophils (41)

NRP1 Neuropilin-1 Membrane-bound coreceptor to
a tyrosine kinase receptor

(32) T cell subsets, T-reg.
macrophages and dendritic
cells

(42)

AXL AXL receptor tyrosine kinase Tyrosine-protein kinase
receptor

(33) Macrophages, Dendritic cells,
NK-cells

(43–
45)

Basigin (BSG,
EMMPRINб
CD147)

Extracellular matrix metalloproteinase
inducer

Multifunctional transmembrane
glycoprotein

(34, 35) Leukocytes (46)

DPP-4 (CD26) Dipeptidyl peptidase-4 Peptidase (36) Widely expressed in many
types of immune cells

(47)

TLR2 (CD282) Toll-like receptor 2 Pattern-recognition receptor (48) Neutrophils, monocytes,
macrophages, and dendritic
cells

(49)
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factors of endogenous and infectious origin and can be activated

by these factors (77). The lifespan of circulating monocytes is

rather short, and most of them, if they do not differentiate into

other cells, undergo programmed cell death approximately a few

days after leaving the bone marrow. After short term circulation

in blood vessels, monocytes are genetically programmed to

differentiate into tissue macrophages, monocyte derived

dendritic cells; alternatively, they must undergo apoptosis or

pyroptosis (76, 78, 79).

There is substantial evidence that human monocytes

obtained from the blood of healthy donors can become

infected with the virus ex vivo (56–58). In addition, infected

monocytes have been found in individuals suffering from the

disease (25, 56, 57). Thus, the research of Junqueira et al, show

that about 6% of blood monocytes of patients with severe form

of COVID-19 have evidence of replicating SARS-CoV-2

genomes and viral proteins translation (66). Supplemental

Table 1 lists the studies that have provided evidence of

monocytes viral infection and the methods used in these studies.

Macrophages
Macrophages are a heterogeneous population of innate

immune scavenging cells. They use both endocytosis and

phagocytosis to provide protection against infection and

unwanted-self components. These large phagocytes, discovered

by Élie Metchnikoff, winner of the 1908 Nobel Prize, build an

innate immune network in all human and animal tissues. In

healthy status, macrophage dynamically controls tissue turn-over

(80). When trauma occurs or pathogens invade, resident

macrophages are first to provide anti-pathogen response and to

active acute inflammation. At this stage, circulating monocytes are

recruited to differentiate into dendritic cells and macrophages.

Once the danger is eliminated, local macrophages will signal

immune and somatic cells to resolve inflammation, heal the

damage, and restore tissue homeostasis (6). The lifespan of

macrophages varies from a few days to months or even years.

Especially long-lived are resident macrophages (63, 76).

Although macrophages offer protection against infection by

playing a key role in the immune defense system, they can cause

serious immunopathology. Among the immunopathological

conditions directly related to the improper functioning of

macrophages, which turn from friends into life-threatening

enemies, are sepsis (5), cancer (81), diabetes (82, 83), and

heart disease (84).

Macrophage-mediated chronic inflammation is another

immunopathological condition associated with malfunctioning

macrophages, and it is amplified by hyperglycemia (85, 86) and

dyslipidemia (87). Therefore, such inflammation is particularly

harmful and can even become life-threatening for people with

obesity (88), metabolic syndrome, and diabetes (89, 90). The

question of how these chronic diseases with metabolic

dysfunction particularly aggravate the course of COVID-19,

leading to life-threatening complications, must be addressed
Frontiers in Immunology 05
(91). Perhaps knowledge of the pathological function of

macrophages in chronic inflammation can help us find

answers to this question.

Ex vivo polarized macrophages can efficiently engulf SARS-

CoV-2. However, instead of being inactivated in these cells, the

virus sometimes starts replicating and translating its proteins

(67, 71).

According to the study of Lv at al. classically activated M1,

but not alternatively activated M2 macrophages can be

productively infected by SARS-CoV-2 and help spread the

virus (67). In contrast, Boumaza et al. found that M1 and M2

macrophages were equally infected and concluded that

macrophage polarization in vitro did not affect permissiveness

to SARS-CoV-2 (69).

Yuichi Mitsui et al. found that one factor in the

differentiation of macrophages into the type that is susceptible

to viral infection is the lymphokine IL-10. This lymphokine is

often found in elevated concentrations in the bloodstream of

patients with severe COVID-19. Thus, due to this lymphokine,

alveolar macrophages become M2c macrophages, which are

susceptible to SARS-CoV-2 infection, and the infection leads

to increased inflammation in the alveoli. The results of the study

are published in a preprint (92). Thus, considering research

results of (67, 71, 92) we cannot yet clearly say which type of

macrophages (M1 or M2) are more susceptible to SARS-CoV-2

infection. This is clearly an important question, and further

research should soon shed light on the problem and help find

an answer.

How does the virus get into the macrophages it infects? One

possible route of infection of residential lung macrophages is

phagocytosis of epithelial cells infected with SARS-CoV-2 (73).

However, FcgR-mediated phagocytosis of antibody-virus

complexes instead of infected cells may also be involved in

such infection (see below).

In the Supplemental Table 1 a brief description of the

studies, in which evidence of macrophage viral infection was

obtained is given. This table lists subsets of macrophages that

were found to be infected and includes their Cluster of

Differentiation (CD) markers as well as the methods used in

these studies.

Infected macrophages probably lose the ability to function

properly, and their dysfunction may play an important role in

the pathogenesis of COVID-19, which is described in more

detail below. Because of the viral infection, macrophages

infiltrating the lungs may be in a hyperactivated state. Such a

state probably contributes to a positive feedback loop of release

of proinflammatory cytokines by these macrophages and

attraction of cytotoxic effector cells, increasing tissue damage

at the site of infection (93). Some researchers have called the

massive macrophage activation phenomenon during COVID-

19, which leads to acute respiratory distress syndrome (ARDS),

the “macrophage activation syndrome”. ARDS is the major

cause of high fatality in SARS-CoV-2-associated pneumonia
frontiersin.org
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(94). It is highly likely that a viral infection of macrophages

contributes to their reprogramming and leads to this

pathological development.

Dendritic cells
Dendritic cells (DCs) have outer membranes that form

protrusions looking like tree-like structures, which is why they

got their name as dendritic. These cells are capable of amoeboid

movements that allow them to travel in tissues, including tight

junctions of epithelia. DCs enable bridging between innate and

the adaptive arms of the immune system (95). The main

function of these cells is the presentation of antigens to

immunocompetent cells. The antigen presentation may or may

not involve phagocytosis. DCs can digest pathogen proteins into

peptides that are getting represented on the major

histocompatibility complex molecules recognized by T cells

(95). The life span of DCs depends upon their belonging to

different subsets and is a subject of debate (96).

Ex vivo cell culturing demonstrated that monocyte derived

dendritic cells (moDC) can be targets of SARS-CoV-1 (97, 98)

and SARS-CoV-2 abortive infection (68). The observed infection

of DCs induced the production of multiple proinflammatory

cytokines capable of provoking interferon-mediated cell

death (68).

SARS-CoV-2 transcripts were found in some migratory

dendritic cells indicating likely viral infection (25). Larsen

et al. observed that the virus can effectively infect and replicate

in plasmacytoid dendritic cells (pDCs) causing their chronic

activation (73). Experimental evidence suggests that the virus

enters these cells via clathrin-mediated endocytosis (73).

According to Larsen et al, chronic activation of pDCs, which is

accompanied by their release of large amounts of IFN-I, can

hyper-stimulate macrophages, causing a cytokine storm in

patients with COVID-19 (73).

Supplemental Table 1 includes a brief description of the

studies in which evidence of dendritic cells viral infection was

obtained, the results of these studies, as well as the methods used.

There is also a mechanism for dendritic cells to participate in

the spread of the virus via the trans-dissemination pathway. DCs

capable of transferring their cargo in a form of intact pathogens

or protein complexes to other cells for antigen presentation.

During this process, DCs transport intact viruses, from the sites

of peripheral infection, in which the pathogen was encountered

to the lymphoid tissues, where the cargo can be transferred to

other antigen-presenting cells. This process is mediated by

endocytic uptake of antigens or intact pathogens into late

endosomal structures that are named multivesicular bodies/

endosomes. These multivesicular endosomes are becoming

exosomes, formed by “turned inside out” endosomes. After

cargo uptake, multivesicular endosomes are directed to antigen

processing through the lysosomal system or return to the cell

surface, where they excrete out their cargo, and recycle surface
Frontiers in Immunology 06
receptors by returning them back to the plasma membrane

[reviewed in (99)].

This process, created by evolution for efficient antigen

presentation, has been hijacked by some viruses such as HIV and

used for their dissimilation (99). The evidence is getting

accumulated that coronaviruses employ this mechanism as well.

DCs and many other immune cells express a C-type lectin receptor,

namely DC-SIGN, which can bind the viral S-glycoprotein glycans

(29). This binding possibly allows replication-competent SARS-

CoV-2 to travel as a passenger with C-lectin-expressing cells,

probably in multivesicular endosomes, without undergoing

inactivation. Thus, DCs or other immune cells can transport the

virus to the receptor-positive target cell, whereby the virus gains

access to the permissive cell. In this way, DC-SIGN molecules on

the surface of immune cells allow the virus not only to be taken up

by the cells, but also to travel and gain access to other cell types,

causing the so-called trans-infection. In this way, it has been

demonstrated that C-type lectin receptors mediate SARS-CoV-2

trans-infection and can contribute to the spread of the virus

(28, 29).

Interestingly, this spread infection mechanism has been

shown for SARS-CoV-1. Experimental evidence has been

obtained that S-glycoprotein-mediated virus entry into some

host cells can be enhanced by DCs virus transmission via the

viral coreceptor DC-SIGN (100).

B lymphocytes
B-lymphocytes, also called B-cells, are round-shaped cells

that play a critical role in the functioning of the adaptive

humoral immune system. They are responsible for the

production of antigen-specific antibodies. B-cells internalize

antigens through endocytosis (8), or phagocytosis (9, 10). Life

span of B-cells depend on the category they belong to: there are

short-lived B-cells with a lifespan of a few days and there are

those that live years (101).

To date, two research teams have provided evidence that B-

lymphocytes can be susceptible to SARS-CoV-2 infection ex vivo

(64, 75). Pontelli et al. (64) demonstrated that the infection can

be productive. Interestingly, a close relative of SARS-CoV-2

namely SARS-CoV-1 virus is capable of infecting human B-

cells in vitro. Infection occurs through antibody mediated FcR-

dependent infection route (102).

Supplemental Table 1 includes a brief description of the

studies in which evidence of B-cells viral infection was obtained,

their results, as well as the methods used in these studies.
Maintaining replication competence after
internalization into the phagocyte

Phagocytic immune cells, including macrophages and

monocytes, have an effective system for inactivating ingested
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pathogens. During internalization, the pathogen is captured by the

cell into the endosome/phagosome, which then, together with the

captured pathogen inside, undergoes several changes that include

‘maturation’ steps, with the internal pH gradually decreasing,

making it more and more acidic. These steps represent a chain of

fusion and fission events with endocytic organelles through a

“kiss-and-run” mechanism to obtain the molecules needed for

each endosome/phagosome stage. The stages of endosome

maturation include the early, intermediate, and late phase (103,

104). At the end of the maturation process the endosome/

phagosome with its contents fuses with the lysosome forming

an endolysosome or, in particular phagolysosome, with acidic,

hydrolytic contents, which can effectively kill and digest the

pathogens consumed (104, 105).

Obviously, viruses that survive in immune cells after

internalization use this important process of endosome

maturation to their advantage. Some of them have developed

escape mechanisms that allow not only to survive this

endosome/phagosome transformation process, but also to start

replication in the phagocytic cell.

Interestingly, it has been shown that the SARS-CoV-2 is

internalized through the pH-dependent endocytic pathway (106,

107). Moreover, blocking transportation of the endosome and its

acidification can inhibit SARS-CoV-2 infection (106, 107). To

enter the permissive cell through endocytic pathway, the viral S-

protein must undergo proteolytic cleavage by host membrane

protease cathepsin L along with conformational changes. The

fact that blocking acidification inhibits viral infection may

indicate that the S protein cleavage by cathepsin L along with

S protein conformational changes are pH dependent.

As mentioned in the introductory section of this review,

enveloped viruses penetrate host cells by fusing their envelopes

with cell membranes, which can be represented by endosomal

membranes. Membrane fusion mechanisms can be of two types:

pH-independent and pH-dependent (17). In the pH-dependent

case, which we are more interested in, the interaction between

the virus and the cell entry receptor leads to the obligatory

endocytosis of the virus-receptor complex. Then the gradual

step-by-step acidification of the endosomes, during their

maturation process, promotes the viral glycoprotein cleavage

by host proteases, its conformational change, followed by the

fusion of the viral and endosomal membranes along with the

release of the viral genetic material into the host cell (17).

It is appealing to think that a similar pH dependent

mechanism is used by SARS-CoV-2 to escape the endosome/

phagosome during its maturation process. Most likely, the

pathogen internalization pathway with gradual stepwise

acidification can provide the necessary low pH to promote

proteolytic cleavage along with the conformational change in

the S-protein required for the fusion of the viral and endosomal

membranes followed by the entry of viral genomic RNA into the

host phagocytic cell.
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Infection cycles in the immune
cell, trans-infection, and the Trojan
horse hypothesis

At the beginning stages of COVID-19 pandemic Matthew

Park wrote a short commentary entitled “Macrophages: a Trojan

horse in COVID-19?”. The commentary summarized

experimental evidence by Feng et al. [published as a preprint

(61)] that according to Park suggests that infected by SARS-

CoV-2 macrophages could contribute to viral spread, and

excessive inflammation during COVID-19 (108). It is possible

that infected monocytes could play a similar role. Monocytes can

become important and specialized viral reservoirs distributed

throughout the body that store large amounts of viral genetic

material, keeping it infective.

Indeed, according to experimental evidence [reviewed in

(15)] infected monocytes can cross the blood-tissue barrier and

deliver virions “as specific parcels” into the central nervous

system, playing the role of the “Trojan horse”, which is a

known way of dissemination for HIV, HCV, HCMV and

Japanese encephalitis viruses.

However, to use the immune cell as a vehicle for spreading

infection, the virus must undergo a productive infectious cycle

or, in the case of the virus persistence, its infectivity in the host

immune cell must be maintained. Indeed, several types of viruses

can travel with immune cells, retaining viral replicative and

infectious capacity until these immune cells meet permissive

target cells that can be infected by these viruses (15). Therefore,

immune cells may serve as a virus transport device.

Some immune cells express C lectin proteins such as

SIGLEC1 (CD168), and/or DC-SIGN (CD209) on their surface

(Table 1). These proteins have a high affinity for the outer

glycoproteins of some viruses. As mentioned above, a subset of

DCs belong to this kind of immune cells. They express DC-

SIGN, which can bind the S-glycoprotein SARS-CoV-2.

The ability to bind and transport viruses through this and

other mechanisms is an evolutionary acquisition of DCs for the

antigen presentation process. However, this binding, sometimes

allows the virus to hijack the adaptive evolutionary created

mechanism, with the result that immune cells transport

replication competent virus and promote the infection of other

cell types (28, 29). Thus, lectin molecules on the surface of one

cell type, such as immune cell, can be utilized by the virus to

travel and access cells of another type, causing what is called

trans-infection. Being involved in the process, immune cells may

spread the virus but do not themselves become infected. These

kinds of scenarios can lead not only to the spread of the virus to

permissive cells, but also to severe functional abnormalities of

immune cells.

Lv et al. observed the release of virions from infected alveoli

macrophages ex vivo, and these virions were capable of infecting

other cell types (67). In a humanized transgenic mouse model,
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M1 macrophages were found to promote lung infection with

SARS-CoV-2. This research group concluded that SARS-CoV-2

can complete its life cycle in macrophages. This group's

researchers strongly suspect that these immune cells are

involved in spreading the infection within the tissue by acting

as a vehicle (67). The suspicion that strengthens the Trojan horse

hypothesis was further tested in a transgenic mouse model, in

which alveolar macrophages were found to be able to promote

SARS-CoV-2 infection of the murine lungs. Another research

group showed in ex vivo cell culture experiments that the virus

infects monocytes and macrophages without forming new

infectious virions in these immune cells, but with retained

infectivity for other target cells. This is how trans-infection

occurs, when non-permissive immune cells associated with

SARS-CoV-2 infect other permissive non-immune cells (109).

Many studies (64, 69, 71) demonstrate that immune cell

virus infection proceeds abortively, without formation of

infectious virions. Similar abortive infection of human

immune cells, which included blood monocytes and lung

macrophages was discovered by Junqueira et al. (66). The

authors of the study found that up to 6% of blood monocytes

in COVID-19 patients can be infected with SARS-CoV-2.

However, the infectious virus was not detected in the cultures

of infected monocytes, instead the signs of monocytes pyroptotic

deaths were noticed that were consistent with observation of the

study of Sefik et al. (22).

Abortive SARS-CoV-2 infection of human monocyte-

derived immune cells such as macrophages and dendritic cells
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was also shown in research of Zheng et al. group (68). Therefore,

spread of the virus by immune cells through productive infection

in these cells seems unlikely, but transinfection of other target

cells is probable.

Different research teams observe diverse scenarios under

various experimental settings. Both the stages of myeloid-lineage

cell differentiation, the vectors as well as states of their

polarization and activation can create restrictive or permissive

cellular conditions for the virus. For example, the type of

infection, namely, whether the monocyte and its progeny can

be infected productively or undergo programmed cell death in

the form of pyroptosis, whether they will be an effective carrier of

the intact virus to other target permissive cells or not, depends

on the state of monocyte differentiation (15).

Monocytes, predominantly derived from the progenitors in the

bone marrow, differentiate into macrophages or dendritic cells

after circulating in the bloodstream for about 3-6 days. This

differentiation is characterized by changes in the transcriptome,

epigenome, metabolism, and secretome, which determine the key

regulatory activities of macrophages and DCs in tissues (76, 78, 79).

Summarizing the experimental data one can imagine that in

some immune cells the infection is abortive, in others it has a

latent or productive form. There is the possibility of trans-

infection of target cells by attaching the virus to the C lectins

of immune cells, transporting it as a passenger on or in these

cells and then infecting the target permissive cells of other type

(28, 29, 109). Some possible scenarios of immune cell infection

are shown in Figure 1.
FIGURE 1

Three scenarios of SARS-CoV-2 infection of immune cells: (I) entry of SARS-CoV-2 into immune cells triggers pyroptosis and inflammatory
cascade, (II) entry of virus into cells leads to productive infection or, (III) entry of virus promotes its transfer to primary permissive target cells,
causing their infection. The second and third scenarios are consistent with the "Trojan horse" hypothesis.
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The role of viral infection of immune
cells in the pathogenesis of disease and
immune dysfunction

Pyroptosis as a trigger of inflammation
cascade and COVID-19 pathology factor

Studies performed on transgenic humanized mice and in cell

culture showed that SARS-CoV-2 replication in macrophages

triggers inflammatory death (pyroptosis) of these cells, which

likely stimulates the hyperinflammatory cascade associated with

COVID-19 (22). Pyroptosis is a form of lytic programmed cell

death that happens most frequently during infection with

pathogens having the capability to enter and survive in the

cells of the host organism (110, 111). This type of suicide cell

death occurs mainly in immune cells such as macrophages that

are responsible for the inflammatory process, however other cell

types such as epithelial cells can also undergo pyroptosis (110,

112). Thus, infection-induced pyroptosis probably represents an

important line of defense, carried out not only by immune cells,

but also by epithelial barrier tissues.

The pyroptosis promotes the release of immunogenic

cellular content, including damage-associated molecular

patterns, and inflammatory cytokines such as interleukin-1b
(IL-1b) (110). The cytokine release provokes inflammation,

which, being part of the body’s normal immune defense

mechanism against infection, can be harmful if it is

dysregulated. For example, increased uncontrol led

inflammation can lead to sepsis (110).

The physiological function of inflammation and pyroptosis

is to trigger the expression of immune genes and attract

lymphocytes to the site of infection, thereby controlling

pathogen invasion (113). In addition, pyroptosis of infected

cells prevents the virus from completing its replication cycle,

therefore it is an important part of the antiviral immune defense

mechanism (113, 114).

Not surprisingly, because of these properties of

pyroptosis, the release of infectious virions by the infected

macrophage is largely prohibited and was observed only after

treatment of the cell with inhibitors of the inflammasome

pathway, which prevent pyroptosis (66). Thus, there is no

evidence of a complete viral cycle naturally occurring in

macrophages in the study by Junqueira et al. (66). However,

despite the lack of detection of the productive cycle of the

virus, the study showed that signs of pyroptosis in the blood

plasma of COVID-19 patients correlate with the development

of severe disease. Therefore, Junqueira et al. concluded that

abortive viral infection of macrophages, due to pyroptosis,

triggers the excessive production of inflammatory cytokines,

which enhances the hyperinflammatory response to SARS-

CoV-2.

These findings were further supported by experimental data

that the virus induces inflammasome formation and activation,
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which leads to pyroptosis in experimentally infected primary

monocytes from healthy donors and COVID-19 patients (70).

Inflammasomes are cytosolic multiprotein complexes that are a

functional part of the mechanisms of the innate immune system

(113, 115). Activation of the inflammasome stimulates secretion of

pro-inflammatory cytokines such as IL-1b and interleukin 18 (113,

115). Therefore, it is not surprising that SARS-CoV-2-infected

blood monocytes and lung macrophages had activated

inflammasomes. It has been demonstrated that these activated

inflammasomes and programmed cell death via pyroptosis

increases the secretion of proinflammatory cytokines, including

IL-1ß by SARS-CoV-2-infected monocytes (70). Super elevated

cytokine secretion promotes tissue immune cell infiltration, which

through over secretion of proteases and reactive oxygen species can

cause damage to the lung and other human organs.

To what extent does a physiological immune defense

mechanism, such as pyroptosis, whose purpose, among other

things, is to prevent the spread of infection, become

dysfunctional because of infection with SARS-CoV-2

macrophages, monocytes, or other immune cells? To what

extent does this infection contribute to the aberrant

inflammatory feedback loop? These questions need answers.

The authors of the study Junqueira et al. examined whether the

macrophages in the lung autopsies of diseased COVID-19 patients

were infected with SARS-CoV-2 and whether they had activated

inflammasomes. They found that a smaller proportion of

macrophages were infected, but a larger proportion had activated

inflammasomes. This ratio indicates that pyroptotic death of

infected cells leads to the release of potent inflammatory

mediators, causing activation of inflammasomes in the larger

macrophage population (66).

The observation of this phenomenon and other evidence led to

the development of the idea that viral infection of immune cells,

triggering death of these cells through pyroptosis, is the massive

driving force behind the development of particularly severe forms of

the disease and fatal COVID-19 cases. The idea is becoming more

and more popular in the research community (22, 66, 70).

Productive virus infection in
immune cells

Lv et al. observed the release of infectious virions from

infected macrophages ex vivo (67). Interestingly, it has been

shown that the N-protein SARS-CoV-2 can antagonize cellular

inflammatory responses by inhibiting pyroptosis in human

monocytes (116). It remains to be shown if this inhibition can

lead to a productive viral infection of immune cells.

Inhibition of IFN-b production may contribute to
COVID-19-associated pathology

It has been demonstrated earlier that SARS-CoV-1 infected

macrophages induce little or no IFN-b, suggesting that

suppression of the immune response leads to uncontrolled
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viral replication in the respiratory epithelium cells (117).

Perhaps a similar scenario is realized with SARS-CoV-2.
Mechanism and cell entry receptors

Direct infection through cell entry receptors
(not antibody mediated)

Infection of immune cells can occur in two ways, which are

probably synergistic. That is, a cell can become infected with a virus

by viral interaction with a cell receptor without assistance of

antibodies or with such assistance. In the case of the latter,

antibodies help to infect the immune cell. Below we will discuss

these two pathways, but it should be remembered that they are not

mutually exclusive and, most likely, each of these pathways of virus

penetration into the cell increases the probability of infection. In the

“Introduction” section, we gave a list of receptors and co-receptors

(Table 1) that, in addition to the ACE 2 receptor, can be used by

SARS-CoV-2 to penetrate immune cells.

Direct infection of primary human SARS-CoV-2 monocytes

using cell entry receptors and without any antibody assistance

was demonstrated by Rodrigues et al. (71). This group, like Sefik

et al. (22), found that the virus can replicate in healthy donor

monocytes cultured ex vivo, and this process causes NLRP3

inflammasome activation as well as cell death. NLRP3 is a

protein mainly expressed in macrophages and is encoded by

the NLRP3 gene located on human chromosome 1. The protein

acts as a sensory molecule and, together with other proteins,

forms the NLRP3 inflammasome, a protein complex essential to

the innate immune system functioning (118).

The process of monocyte infection detected by Sefik et al. (22)

and some other research teams (68) did not require antibodies for

the virus cell entry. Similar finding was done by Pontelli, et al. This

research team revealed that monocytes, as well as both B and T

lymphocytes, were susceptible to direct SARS-CoV-2 infection in

vitro that didn’t require antibodies. The discovery of the

phenomenon raises the question related to the identification of

receptors that can be used by the virus to enter the cell.

Antibody mediated infection route
via Fcg receptors

Antibody-dependent enhancement (ADE) of infection is a

phenomenon in which virus-antibody complexes interact with

immune cells carrying complement or Fc-receptors and promote

internalization of the virus, maintaining infectivity and virus

potential for latent, abortive, or productive infection (119–122).

In other words, antiviral antibodies facilitate the entry of the

virus into immune target cells by hijacking the phagocytic FcgR
or complement pathways, which naturally evolved to fight

infection. Although antibodies are usually protective and

beneficial to organisms, surprisingly, they can promote a viral

infection instead of stopping it. It has been shown that virion

binding to non-neutralizing or sub-neutralizing antibodies can
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lead to more efficient FcgR mediated viral uptake by the target

cell causing ADE (121).

The ADE phenomenon has been described for many viruses

including representative of families Flaviviridae (Dengue virus),

Retroviridae (HIV-1), Orthomyxoviridae (Influenza virus),

Paramyxoviridae (Respiratory syncytial virus), Filoviridae

(Ebola virus), and Togaviridae (Chikungunya virus) (122–124).

The ADE has been also documented for Coronaviridae

including alpha- (53, 54) and beta coronaviruses (55–59). ADE

could increase the severity of several viral infections (75)

although no definitive role for ADE in human coronavirus

infections has been demonstrated so far. However, it is well

established that feline infectious peritonitis virus can replicate in

monocytes and macrophages, entering these cells via antibody

dependent mechanism. This replication can trigger fatal

peritonitis in cats (53, 54). Therefore, some researchers

hypothesize that the pathogenesis of SARS (56–59) and

COVID-19 (55, 125–127) diseases may be associated with

ADE. Its role in establishing potential latent virus infection is

also discussed (55).

Interestingly, the research group of Junqueira et al.

discovered that monocyte SARS-CoV-2 infection can be

dependent on antiviral antibodies. It is worth noting that only

antibodies from COVID-19 infected patients, and not from the

plasma of vaccinated individuals, were able to contribute to the

type of cellular infection observed by this group (66).

It is well established that in many viral diseases, prior

sensitization of the humoral immune response, in the form of

prior infection or vaccination, is a prerequisite for ADE upon

subsequent antigen exposure (121). However, according to

Junqueira et al. (66), for SARS-CoV-2 the scenario is different;

antibody mediated virus entry can occur during primary

viral infection.

Sanchez-Zuno et al. (128) suggested that currently there is

no sufficient evidence that ADE promotes the spread of SARS-

CoV-2 in infected host organisms. Therefore, ADE in COVID-

19 is best described as “virus antibody dependent entry into the

cell”, or “antibody-dependent inflammation”, which does not

necessarily lead to productive viral infection, meaning that ADE

can lead to abortive or latent SARS-CoV-2 types of infection

instead. Other research team suggested the name Fc-mediated

viral entry (FVE) (129).

However, as mentioned above, even abortive infection of

immune cells can lead to powerful amplification of

inflammatory cascades with aberrant feedback loops, which

can promote severe form of COVID-19. A similar scenario

occurs with other viruses, particularly the Dengue virus, for

which it has been noted that ADE has been associated with the

development of a “cytokine storm”, which involves the massive

release of inflammatory cytokines and other mediators (130).

How does a virus use antibodies to enter an immune cell?

The process resembles the piggybacking approach, in which

“piggyback” is an IgG antibody and the entry gates to a pig barn
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are Fcg receptors (FcgRs) of immune phagocytic cells (131, 132).

It is thought that myeloid cells expressing FcgRs, such as

monocytes and macrophages, dendritic cells, and some

granulocytes, can become ADE targets through phagocytic

uptake of immune complexes (128).

Most likely cooperation between conventional cell entry

receptors such as ACE2 and Fc receptors occur and both types of

receptors areworking synergistically. For example,Wang et al. found

that ACE2 can function as an additional receptor in the FcgR-
dependent ADE of SARS-CoV-2 infection (74). A possible

mechanism of antibody-mediated infection via Fcg receptors is

shown in Figure 2. The virus probably escapes the endosome/

phagosome during the maturation of this organelle, which is

accompanied by its acidification, as shown in Figure 2A. Two

scenarios can be imagined of this escape (Figure 2B). They differ in

the affinity of the antibody and the resistance of this affinity to a pH

decrease in an endosome/phagosome. The first scenario: in the case

of high antibody affinity, which is also unaffected by a pH decrease,

the virus is reliably retained by the antibodies within the immune

complex in the endosome/phagosome. It cannot escape. However,

second scenario is possible: in the case of low antibody affinity, which

can be further decreased with the acidification of the endosome/

phagosome during its maturation, the antibodies are losing their

“grasp” and the virus acquires the ability to escape from the immune

complex and consequently, also the endosome/phagosome.

FcgRs belong to the family of immunoglobulin proteins.

They are located on the surface of immune cells and function as

molecules that bind Fc-chains of the IgG molecule (133). This

binding might trigger phagocytosis of the virus-antibody

complex (131). One of the natural functions of FcgRs is to

help phagocytic immune cells to capture, and “ingest” the

pathogen. Internalization of the pathogen should lead to its

inactivation and presentation of the pathogen derived antigens

by the phagocytic cell. However, some viruses have developed

the ability to avoid inactivation in the immune cell.

Three FcgR groups have been described for human cell types:

FcgRI (CD 64), FcgRIIA/B (CD32), and FcgRIIIA/B (CD16). All

receptors are expressed in various combinations on the surface

of different immune cells (133). FcgRs vary in their affinity for

IgG, such as FcgRI is a high-affinity activating receptor that

binds to monomeric IgG molecules, FcgRII and FcgRIII are low-
affinity receptors that require high avidity binding by IgG-

pathogen immune complexes. Among FcgRII receptors

FcgRIIA and FcgRIIC are activating receptors and FcgRIIB is

an inhibitory receptor (122, 133).

Experimental evidence suggests that SARS-CoV-1 can start

replication in immune cells after entering via FcgRII (CD32) (56,
102, 134). It was specifically shown that the expression of two

types of receptors by immune cells: FcgRIIa and FcgRIIb induces
ADE by SARS-CoV-1 (56). The author of another study, while

observing SARS patients, found that the severity of the disease

correlates with the FcgRIIa allelic polymorphism. In patients

with FcgRIIa allelic isoform that can interact with both IgG1 and
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IgG2, the disease was more severe compared to patients with the

FcgRIIa isoform capable of binding only IgG2 (134). Thus, it

appears that obtained evidence points to CD32 as the major

receptor for SARS-CoV-1 entry.

It has been discovered that FcgRIIB is involved in infection

of B-cells by SARS-CoV-2 (75). However, it is likely that

additional receptors function in antibody-mediated immune

cell entry of SARS-CoV-2 compared to SARS-CoV-1. Thus,

team of Junqueira et al. found that blocking CD16 or CD64

strongly inhibited infection by SARS-CoV-2 of monocytes,

whereas blocking the other receptors had no major effect (66).

This experimental evidence points to CD16 or CD64 as major

virus entry receptors for SARS-CoV-2.

The Fcg receptors used by MERS-CoV, SARS-CoV-1, and

SARS-C0V-2 for immune cell infection are listed in Table 2.

IgG afucosylation contributes to Fc-mediated virus
phagocytic uptake, infection, and disease severity

Immune responses in severe COVID-19 patients stand out

with a predominance of low fucosylated IgG antibodies (141).

Although Fc afucosylation is supposed to be a regulatory layer of

adaptive immunity (142), many studies reported its role in

COVID-associated pathology (141, 143–145).

Core fucose is a component of N-linked glycans within the

Fc fragment of the antibody. Addition of fucose does not cause

structural changes (146) but strongly decreases the affinity of

receptor binding (147) and the efficiency of antibody-dependent

reactions (148). A schematic representation of the interaction of

an antibody with the phagocytic Fc gamma RIII receptor and the

effect of a fucose residue on this interaction is shown in Figure 3.

Afucosylation is not the stripping of existing fucose, but simply

fucosylation that has not happened. Core afucosylation seems to

be an adaptive mechanism for the response to membrane-bound

antigens (142). Since afucosylated IgG are shown to have a

higher receptor-binding affinity and thus more pronounced

effector functions, Fc afucosylation might be a regulatory

feature to adjust adaptive humoral immunity to fight

enveloped pathogens. However, it can also promote

autoimmune pathology (149–151) and aggravate infectious

diseases (152–154).

Afucosylated IgG antibodies have been shown to contribute to

the pathogenesis of COVID-19 through their proinflammatory

action (141). In particular, Chakraborty et al. showed the link

between low fucosylation of viral S protein-specific antibodies and

the release of proinflammatory cytokines, such as IL-6 and TNFa,
during SARS-CoV-2 infection (143). Another study confirmed

these results and revealed that high titers of afucosylated IgG

antibodies targeting S protein induce inflammation promoted by

alveolar macrophages and activate platelets as well as endothelial

cells (144). Authors observed the normalization of antibody

fucosylation in several weeks after infection.

In their next study, Chakraborty et al. found out that

afucosylated IgG antibodies were non-neutralizing and could
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be detected in severe COVID-19 patients but not in those with

mild disease or vaccinated (145). Noteworthy, van Coillie et al.

reported in their preprint that the first dose of mRNA vaccine

induced transient formation of low fucosylated IgG1 in people

naive to SARS-CoV-2, but not in people who encountered this
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antigen, although the extent of this formation was lower than in

those with severe COVID-19 (155).

Immune complexes with low fucosylation from patients with

severe COVID-19 induced immune cell infiltration of lung tissue

in model animals, whereas highly sialylated and fucosylated
frontiersin.org
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FIGURE 2

Hypothetical ways in which the virus escapes phagosomes. (A) The virus leaves the endosome/phagosome during its maturation and
acidification. (B) Antibodies that firmly retain the virus in the immune complex most likely prevent it from leaving the organelle as shown in the
upper part of the figure. Antibodies not firmly holding the virus allow it to escape from the organelle into the cytoplasm, as shown in the lower
part of the figure. Perhaps acidification of the endosome/phagosome during its maturation reduces the affinity of some antibodies to the virus,
promoting the exit of the virus from the immune complex and facilitating its exit from this organelle.
TABLE 2 FcgRs receptors involved in the antibody-dependent infection of immune cells by beta-coronaviruses.

Receptor
group

Affinity to Fc region of
IgG(reference)

Subgroup Cells, expressing the receptor,
among those that can be infected

by a coronavirus(reference)

Virus Cells that are targets for the virus
infection via Fc receptor(reference)

FcgRI
(CD64)

High (135) Un
specified

Macrophages, DCs (133, 135, 136),
Monocytes (72)

SARS-
CoV-2

Monocytes, macrophages (66)

FcgRII
(CD32)

Low (135, 137) FcgRIIa Monocytes, Macrophages, DCs
(138) (133, 135),,
B-cells (72)

MERS-
CoV

Model nonimmune cells, model cells transfected
with FcgRIIa encoding gene and macrophages
(139)

SARS-
CoV-1

B-cells-Raji (Burkitt’s lymphoma B lymphoblast),
Daudi (Burkitt’s lymphoma, B lymphoblasts),
Monocytes (56, 102)

FcgRIIa Monocytes, Macrophages, DCs
(133, 135, 138)

Cells were not tested but a significant association
was found between the Fcgamma RIIA-R/R131
genotype and a severe course of SARS (134)

FcgRII
(CD32)

Low (135) FcgRIIa Monocytes,Macrophages, conventional DC
(133, 135, 138)

SARS-
CoV-2

Model cells transfected with FcgRIIa encoding
gene (129)

SARS-
CoV-2

Model cells transfected with FcgRIIa encoding
gene, established cell culture of B-cells (Raji cells)
(74)

Low (135) FcgRIIb B-cells, Monocytes, Macrophages, DCs
(133, 135)

SARS-
CoV-2

Model cells, B-lymphocytes (Raji cells) and
lymphoblasts (Daudi cells) (75)

FcgRIII
(CD16)

Low for fucosylated Fc
fragments and high for
afucusylated fragments
towards CD16a
(135, 140)

FcgRIIIa Small minority of blood monocytes (10%)
and resident macrophages in some tissues
(66, 135, 138), B-cells (72)

SARS-
CoV-2

Monocytes CD16+, CD 64+, lung macrophages
(22, 66)
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mRNA vaccine-elicited IgG did not cause inflammation in lungs

or proinflammatory cytokine release (145).

Junqueira et al. investigated how SARS-CoV-2 infects

monocytes and observed that highly afucosylated antibodies

from COVID-19 patients but not from vaccinees significantly

increased virus uptake through FcgRIII (66).
Thus, there is growing evidence that IgG antibodies with

afucosylated Fc fragments play an important role in the

pathogenesis of viral infections and particularly in COVID-19.
SARS-CoV-2 entry into a cell via complement
receptors. Complement-and antibody mediated ADE

Preliminary data indicate that a pathway other than FcgR-
mediated cell entry may be involved in SARS-CoV-2 ADE. Okuya

et al. obtained evidence that an antibody-dependent pathway of

virus entry mediated by the complement component 1q plays a role

in cell infection with this virus. However, immune cells were not

investigated as target cells in this study (156).

Complement component 1q (C1q) is a protein complex

involved in the bridging of innate and adaptive immune systems.

Okuya et al. provide a review of the literature showing that C1q-

mediated ADE has been proposed for several viruses, including

HIV, EBOV, Marburg virus, and human parvoviruses (156). This

ADE mechanism is based on the binding of C1q receptors on the

cell surface with virus-antibody C1q complexes, which results in

enhanced attachment of the virus to target cells. The mechanism is
Frontiers in Immunology 13
like FcgR mediated virus cell entry, but instead of FcgR another

cellular receptor is used namely - C1q receptor. Therefore, C1q

serves as an additional bridge connecting virus-antibody complexes

to the cell plasmamembrane. These complexes are then taken up by

the phagocytic cel l and end up in the endosome/

phagosome (Figure 4).

Junqueira et al. observed that patient plasma promoted viral

infection of healthy donor monocytes in vitro much more than

purified IgG antibodies against S-protein (66). The authors of

the study concluded that an antibody-independent plasma

component may contribute to the infection (66). It is possible

that C1q is the plasma component responsible for the effect

observed by the study authors.
ADE associated antigenic determinants
and antibodies: a comparison of SARS-CoV-1 and
SARS-CoV-2

ADE of coronaviruses can be promoted by antibodies to the

spike (S) glycoprotein. This observation was done for SARS-

CoV-1 (59, 102, 157) and SARS-CoV-2 (127, 158).

A high neutralization titer of antibodies to the SARS-CoV-2

spike-protein in the plasma of patients with COVID-19 has been

shown to predict survival (159). However, different antibodies

have various potential to neutralize the virus and cause ADE; a

neutralization potential does not exclude a potential for ADE. Anti

S-protein immune serum, while inhibiting receptor mediated viral
FIGURE 3

Distinction between fucosylated and afucosylated antibodies. Fucosylated antibodies have a lower affinity for the cellular receptor FcgRIIIa
(CD16a) compared to afucosylated antibodies. Consequently, these antibodies contribute less to the internalization of the pathogen by cells
possessing this receptor than do afucosylated antibodies.
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entry into a permissive host cell, may increase infection of human

monocyte-derived macrophages (59) and cultured B-cells (102,

157) by SARS-CoV-1 via Fc-receptor binding.

Some antibodies can have both neutralizing and ADE effects.

Antibodies targeting S-protein that neutralized most variants of

SARS-CoV-1 viruses enhanced immune cell entry of the mutant

virus. The mechanism of enhancement might involve the

interaction of antibodies with conformational epitopes in the

viral ACE-2-binding domain (160). Antibodies targeting

different S-protein variants of the SARS-CoV-1 virus can

neutralize the virus or facilitate its entry into the cell. If anti-S

antibodies target a human-derived virus protein, they neutralize

the virus. The same antibodies enhance virus entry into the cell if

the virus has been adapted for growth in palm civet and acquired

a mutated gene encoding the S-protein in the process

of adaptation.

The ACE-2 receptor-binding domain of S-protein can

mediate antibody-dependent virus entry. Five amino acid

substitutions in the S-protein region from positions 248 to

501 in adapted human and civet viruses are probably

responsible for this effect (60). Interesting, human

immunodominant epitopes of the SARS-CoV-1 have been

shown to cause both enhancing and neutralizing effects in

non-human primates. In rhesus macaques, the S-protein

peptides S471–503, S604–625, and S1164–1191 triggered
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antibodies that efficiently prevented infection. In contrast,

peptide S597–603 elicited antibodies that enhanced infection

both in vitro and in vivo (57).

Wang et al. noticed that two neutralizing monoclonal

antibodies enhanced the ability of the SARS-CoV-2

pseudovirus to infect B-lymphocytes, but another neutralizing

monoclonal antibody was not able to help the virus infect these

cells (75). Interestingly, the antibody that was unable to cause

ADE was capable to bind only “up” position of RBD of S-

protein, while antibodies associated with ADE could bind to

RBDs in S-trimer with both “up” and “down” states (75).

Certain epitopes of the S-protein are particularly prone to be

targeted by antibodies that promote ADE. These observations

were done by Zhou at al. using convalescent plasma from

donors. The group revealed that enhancement versus

neutralization by SARS-CoV-2 antibodies associates with

distinct epitopes on the RBD of S-protein (127).

Effect of antibody concentration and epitope-antibody
binding constant on the ADE effect

When studying the ADE phenomenon in vitro, researchers

noticed the so-called antibody concentration effect, which

perhaps is related to the fate of the virus-antibody complex

inside the phagocytic cell (157) (Figure 5). This effect is that

some antibodies can neutralize the virus in a wide range of
FIGURE 4

Hypothetical mechanism of SARS-CoV-2 entry into a cell via complement receptors. The low affinity of the antibody, which causes a loose
connection to the virus, allows the virus to escape the complex and fuse its envelope to the phagosome membrane, thus introducing its
genome into the cell cytoplasm.
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concentrations and others in a narrow range; they can neutralize

the virus at a high concentration but help the virus to infect cells

at a lower concentration. Fc-mediated SARS-CoV-2 uptake by

cell (causing ADE) might peak as neutralization potency of the

relevant antibody decreases (129). In other words, ADE might

happen at sub-neutralizing antibody concentrations.

The existence of this effect indicates that the binding

constants of viral antigenic epitopes to antibodies play a key

role in determining whether an antibody will neutralize the virus

or become an ADE trigger in complex with the virus.

There is evidence that the binding constant between the Fc

region of an antibody and the Fc receptor of a phagocytic cell

also plays an important role in promoting ADE. Antibody

fucosylation lowers the FcgRIIIa/CD16a affinity (140). As was

mentioned above patients with severe acute COVID-19 have

increased concentration of antiviral IgGs that are afucosylated

in their Fc region (141, 143, 144). These antibodies bind much

better to CD16, and this enhanced binding probably facilitates

antibody-mediated entry of SARS-CoV-2 cells into CD16+
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immune cells, ultimately promoting infection of these

cells (66).

How common ADE effects for COVID-19?

How common are antibodies that are capable of ADE of SARS-

CoV-2 in the human population? ADE-capable antibodies were

found in almost half of the acute COVID-19 patients (156) and in a

significant proportion of convalescent plasmas of recovered patients

(129). Among 93 plasma samples tested, 90 were capable of

inducing ADEs ex vivo (74).
Four scenarios of virus internalization by
phagocytic cells

Summarizing the above information, we can identify several

scenarios of phagocyte interaction with the virus (Figure 6). The

first scenario involves the normal, natural course of events,

designed by evolution to protect hosts from pathogens. The
FIGURE 5

Distinction between antibodies that are more or less likely to cause ADE. Antibodies capable and incapable of causing ADEs differ both at the level of
epitope recognition and by the type of antibody itself. Thus, antibodies to certain antigenic epitopes are more prone to cause ADEs than antibodies
directed at other viral epitopes. In addition, afucosylated antibodies are more likely to cause ADEs compared to fucosylated antibodies. However, even
antibodies capable of inducing ADE at one concentration can neutralize the virus at another and be protective against the virus.
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virus in complex with antibodies is taken up by the phagocyte

via the Fc-receptor and enters the endosome/phagosome, which

fuses with the lysosome to form the endo- or phagolysosome.

During this fusion process, the virus is inactivated and

destroyed, its proteins are used for antigen presentation (161)

or released from the cell by degranulation (Figure 6A). The

second scenario involves the survival of the virus (Figure 6B),

which might result in the phagocyte infection (Figure 6C). In

such a case, nature has developed a backup plan that programs

the phagocytic cell to commit suicide by pyroptosis (I). This cell

program prevents infection spread and attracts other immune

cells to a site of infection. However, mass cell pyroptosis can

cause uncontrolled inflammation, tissue damage, and severe
Frontiers in Immunology 16
complications of the disease. Alternatively, a productive virus

infection of an immune cell can occur (II). Finally, trans-

infection is possible. Such infection occurs when immune cells

deliver a replication-competent virus as a parcel to the

permissive cells. The harm to the host organism from all of

these scenarios is obvious.
Conclusions and perspectives

Available information indicates that SARS-CoV-2 is capable

of infecting of phagocytic immune cells. There is evidence that

professional phagocytes, such as monocytes, macrophages, and
B

C

A

FIGURE 6

Antibody-dependent phagocytosis of SARS-CoV-2 in norm and pathology. (A) The phagocyte destroys the internationalized pathogen through the
phagolysosomal pathway and presents its antigens via the major histocompatibility complexes (MHC I and MHC II). (B) The phagocyte engulfs but
cannot inactivate SARS-CoV-2 and becomes infected. It is likely that the infection occurs due to the synergistic action of cell entry receptors and Fc
receptors. (C) The virus escapes from the endosome/phagosome and the escape results in (I) abortive or (II) productive viral infection.
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dendritic cells, as well as nonprofessional ones, such as B cells,

can be targets of viral infection, which can be abortive or

productive. Viral entry can be direct via cell-entry receptors or

mediated by antibodies and Fc-receptors of immune cells. Most

likely both types of receptors act synergistically and cooperate in

helping the virus to infect a phagocytic immune cell.

In addition, trans-infection of target cells with SARS-CoV-2

virus has been demonstrated. The virus can attach itself to the

receptors of an immune cell, travel with this cell as a passenger,

maintaining the status of replication ability, reach the permissive

target cell and infect it.

Regardless of how a virus enters immune cells or travels with

them, it can cause pathological reactions. They can manifest

themselves in the spread of a viral infection and/or in mass death

of phagocytic cells via pyroptosis, accompanied by uncontrolled

inflammatory cascades.

The mechanisms of penetration of replication-competent

SARS-CoV-2 into immune cells deserve careful study because

there are many blind spots related to the identification of cell

receptors, proteases, and other molecules that may promote

this process.

The ability of the virus to cause ADE by infecting immune cells

should be particularly studied. SARS-CoV-2 most likely uses

multiple mechanisms to enter cells via Fc receptors and cause

enhanced inflammation.We also have a poor understanding of why

some antibodies may contribute to ADE and some may not.

Perhaps the difference in conformational stability of S protein

epitopes (162), which can be facilitated by lowering pH during

pathological development of COVID-19 (163–165) plays a role in

increasing the probability of ADE. The role of afucosylated

antibodies in the ADE process also deserves special attention.

Finally, the most important question that must be addressed

is how ADE affects the severity of COVID-19.
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