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The crosstalk between
parenchymal cells and
macrophages: A keeper of
tissue homeostasis
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State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Proteome
Research Center, Beijing Institute of Lifeomics, Beijing, China
Non-parenchymal cells (NPCs) and parenchymal cells (PCs) collectively

perform tissue-specific functions. PCs play significant roles and continuously

adjust the intrinsic functions and metabolism of organs. Tissue-resident

macrophages (TRMs) are crucial members of native NPCs in tissues and are

essential for immune defense, tissue repair and development, and homeostasis

maintenance. As a plastic-phenotypic and prevalent cluster of NPCs, TRMs

dynamically assist PCs in functioning by producing cytokines, inflammatory and

anti-inflammatory signals, growth factors, and proteolytic enzymes.

Furthermore, the PCs of tissues modulate the functional activity and

polarization of TRMs. Dysregulation of the PC‐TRM crosstalk axis profoundly

impacts many essential physiological functions, including synaptogenesis,

gastrointestinal motility and secretion, cardiac pulsation, gas exchange, blood

filtration, and metabolic homeostasis. This review focuses on the PC‐TRM

crosstalk in mammalian vital tissues, along with their interactions with tissue

homeostasis maintenance and disorders. Thus, this review highlights the

fundamental biological significance of the regulatory network of PC‐TRM in

tissue homeostasis.
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Introduction

Tissues can be considered a collection of cell clusters and intercellular substances.

The communication between non-parenchymal cells (NPCs) and parenchymal cells

(PCs) creates different organ functions. As basic cellular units, PCs play significant roles

and continuously regulate the intrinsic functions and metabolism of tissues (1–4).

Hepatocytes account for approximately 60% of total liver cells and 80% of liver tissue

volume and perform a series of metabolic functions in the liver (2). Cardiomyocytes
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account for about 30% of whole cardiac cells in the heart, which

drive cardiac contraction and relaxation (3). Alveoli are the

functional units of the lungs performing gas exchange (4). The

alveolar wall, the main structure of the alveoli, is composed of

specialized alveolar type I cells that provide an extensive surface

area for gas exchange with the surrounding capillaries and

specialized alveolar type II cells that secrete surfactants and

other proteins (4). These specialized PCs support the liver in

orchestrating systemic metabolism, the heart in regulating blood

circulation, and the lung in exchanging carbon dioxide and

oxygen. Therefore, they are the primary cells responsible for the

organ’s primary function and are essential to tissue homeostasis

and systemic physiological processes.

In addition to PCs, NPCs are another large group of cells

that make up tissues, such as hepatic stellate cells and Kupffer

cells in the liver, macrophages and lymphocytes in the spleen,

alveolar macrophages and monocytes in the lung, and glial cells

in the CNS. NPCs act as mechanical scaffolds to guide

parenchymal repair and regeneration, maintain substance

metabolism and nutrition balance, regulate transmitter

function, and participate in the immune response (2, 5–7). For

example, hepatocytes perform the primary metabolic functions

in the liver, whereas NPCs serve regulatory functions, such as

pathogen clearance, apoptotic cell phagocytosis, and cytokine

secretion (8).

These tissue elements arrange and interconnect to form a

particular tissue (9). In tissue, the cell‐cell crosstalk develops a

“mutualistic” relationship and produces a specific function

output (9). Regarding the organism as an ecosystem, the

circulation of matter and energy flow is relatively stable under

steady-state conditions. In the short term, the out-of-balance

fluctuations can be self-corrected to maintain relative stability.

Nevertheless, the regulatory balance of homeostasis can be

exhausted in the long term (9, 10). Moreover, certain specific

cells will be recruited to generate proper signals and bring the

fluctuations back to equilibrium (9–11).

Homeostatic regulation operates based on negative feedback

mechanisms that correct deviations of the system state variables

from the desired range or setpoint values. When variations are

over-large, homeostatic mechanisms are insufficient to maintain

system stability. In such cases, inflammatory signals

complement homeostatic regulation and enforce the return to

homeostasis (9, 10). As a plastic-phenotypic cluster of NPCs,

macrophages dynamically participate in signal communication

with surrounding cells by producing cytokines, inflammatory

and anti-inflammatory signals, growth factors, and proteolytic

enzymes (1). Tissue-resident macrophage (TRM) populations

stem from yolk sac-derived erythromyeloid progenitors (YS-

EMPs) or fetal liver monocytes, which self-renew and proliferate

in the steady state (10–12), whereas the niche of TRMs can be

replaced with the macrophages generated from bone marrow-

derived monocytes (BM-monocytes) in a non-steady state. Some

TRMs, such as intestinal macrophages, can be gradually
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supplemented by Ly6Chi monocyte-derived macrophages

during development (10–12). Over the years, the regulation of

macrophages and PCs has gradually attracted increasing

attention. Growing research has demonstrated that disrupting

the balance of macrophage pools triggers tissue homeostasis and

development (13–18).

This review briefly summarizes the phenotypes and

funct ions of TRMs in seven organs , focus ing on

communication with PCs in steady and non-steady states, and

discusses how their crosstalk maintains organ homeostasis.

Exploring the relationship between PCs and TRMs in

homeostasis maintenance may increase our understanding of

the formation of non-homeostatic conditions.
Microglia and neurons coordinate
CNS homeostasis

In the CNS, embryonic yolk-sac progenitors generate

erythro-myeloid progenitors (EMPs, c-Kit+ CD45+ CX3CR1–

CSF1R+ F4/80–) and subsequently differentiate into embryonic

microglia (11, 19–22). Microglia (CD45low/int F4/80low/int

CX3CR1+ CD11b+) are the first line of defense against

infections in the CNS (23). In addition, microglia also

contribute to CNS development and homeostasis, such as

apoptotic neuron phagocytosis, neuron development,

vasculature development, and neuronal circuit formation (24–

26). Under physiological conditions, microglia are in a resting

state and on standby (25). However, “resting”microglia exist in a

process-bearing and ramified phenotype, progressing toward

and actively engulfing synapses (“synaptic pruning”) to control

their number and maintain proper neuronal functions (27, 28).

Additionally, microglia regulate programmed cell death, axon

fasciculation, neurite formation, and synaptogenesis (29, 30).

The signal communication between microglia and neurons

greatly depends on microglial signaling molecules (31–34).

Neurons talk to microglia through “off” and “on” signals,

respectively (Figure 1) (35). The “off” signals include

neurotransmitters, neurotrophins, and transforming growth

factor b (TGFb), which can keep microglia quiescent. The

“on” signals include glutamate, chemokines, purines, and

triggering receptors expressed on myeloid cells 2 (TREM2)

that may be induced by inflammation (35). These signals

activate microglia toward a beneficial or detrimental

phenotype to regulate neurons under pathological conditions

(35–38).

Moreover, microglia sense and catabolize neuron-derived

extracellular ATP during neuronal activation (39, 40). This

activates microglia in a region-specific manner, leading to the

suppression of neuronal activity (39, 40). Interleukin (IL)-33 is a

member of the IL-1 cytokine family that is generally secreted

into the nucleus. It can activate nuclear factor kB (NF-kB)
signaling in target cells after being released into the
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extracellular space (41). During the early stages of postnatal

synaptic maturation, the expression of IL-33 is increased only in

the spinal and thalamic astrocytes of the gray matter (42). In the

adult brain, IL-33 is widely expressed in the corpus callosum,

hippocampus, thalamus, granular layer, and cerebellum white

matter (43). Recent research suggests that microglia engulf the

extracellular matrix (ECM) under the regulation of neuronal IL-

33 in the adult hippocampus (43).

Microglia maintain a dynamic relationship with neurons.

The “quiescent”microglia are more like “nannies” that take care

of the growth and development of neurons. When neurons

encounter stressful conditions, microglia become “fighters”

against the hostile environment. Sometimes the weapons of

these warriors may accidentally injure innocent victims. To

confront pathogen invasion, microglia are activated and

release several bioactive molecules to strike down pathogenic

bacteria (44–46). These active molecules from amoeboid-like

microglia may mis-strike the healthy neurons. The extracellular

ATP released by neurons during neuronal activation is sensed

and catabolized by microglia (39). This activates microglia in a

highly region-specific manner, leading to the suppression of

neuronal activity (39). In brief, ATP promotes the recruitment of

microglial protrusions whereas the microglial ectoenzyme CD39

hydrolyzes ATP into AMP (40). AMP is converted into

adenosine by CD73 and subsequently suppresses neuronal

responses (40). Additionally, the “resting” microglia prevent

sympathetic overactivation by maintaining Kv4.3 (a potassium

channel) on presympathetic neurons (47).

Acting as a “double-edged sword,” microglia play a pivotal

role in maintaining tissue homeostasis while partially promoting

neurological disease development when exposed to external and

internal insults (36, 48, 49). A release of diverse nucleotides

accompanies nerve injury, and some of these nucleotides act as

“find/eat-me” signals in mediating neuron-glial interplay (46). As

mentioned above, the nucleotides ATP and ADP are predominant

signal transmitters in mechanical stimulation-induced

intercellular Ca2+ wave (ICW) communication by acting on

P2Y12/13 receptors in BV-2 microglia (46). Once microglia are

activated, they participate in developing, spreading, and

potentiating low-grade neuroinflammation (50). The

inflammatory-activated glial cells exhibit cellular changes that

alter their communication with each other and neurons and

render neurons more excitable (50). Thus, pain transmission is

enhanced and prolonged (50). In neurodegenerative diseases, such

as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease

(AD), a unique population of microglia is termed disease-

associated microglia (DAM) (21). Similar to DAM, aged

microglia exhibit an elevated expression of transcripts

upregulated in neurodegenerative diseases, including Cxcr4,

Clec7a, Axl, Lgals3, and MHC-II, which are linked to neuronal

loss and exacerbation of the disease (51, 52).

Overall, strategic communication exists in the microglia–

neuron axis in physiological and pathological states. However,
Frontiers in Immunology 03
how dysfunctional microglia–neuronal communication affects

disease progression or onset at various stages is still unclear.

Using the high-dimensional techniques, a map of microglial

diversity has been described on a temporal and spatial axis (24,

53–55). Thus, it is better to use various research methods to

comprehensively understand the multi-omics states of

condition-specific microglia, which may be essential for

understanding the physiological heterogeneity of microglia–

neuron interactions and controlling CNS diseases.
Crosstalk between macrophages
and epithelial cells maintains
gastrointestinal motility
and secretion

The gastrointestinal (GI) tract, consisting of the small

intestine (SI) and colon, is the center of nutrient digestion.

Intestinal macrophages are an abundant immune member in the

gut and play a crucial role as function keepers and adjusters (56,

57). Different from Kupffer cells and microglia, intestinal

resident macrophages (CD45+ F4/80+ CD64+ CX3CR1hi/int

CD11b+) are derived from fetal liver monocytes and gradually

become supplemented by Ly6Chi monocytes during

development (57–59). They maintain self-renewal and reside

mainly in the lamina propria (LP macrophages, CD11c+ CD14+)

and muscularis (muscularis macrophages, CD11clo CD4+

TIMD4+ RELMa+) (Figure 1) (57–59).

Gastrointestinal secretion is essential for the movement and

absorption of nutrients and ions across intestinal epithelial cells

(IECs) (60). Intestinal macrophages significantly influence

epithelial integrity and mucosal permeability by secreting

cytokines to IECs and submucosal neurons (60). A recent

study demonstrated that monocyte-derived PTGER4+

intestinal macrophages promote the healing and repair of the

intestinal mucosa by CXCL1 secretion (61). Moreover,

macrophages found in the submucosa can maintain the

integrity of the submucosal vasculature (62, 63). The intestinal

macrophages at the distal colon protrude into the epithelium via

balloon-like protrusions that prevent the absorption of fungal

toxins to preserve mucosal integrity (63).

Gut motility is potentially modulated by crosstalk among

enteric neurons, intestinal macrophages, and smooth muscle

cells (64). For example, the interaction between muscularis

macrophages and intestinal smooth muscle cells is mediated

by TRPV4 channels (65). After activating TRPV4 signaling,

muscularis macrophages release prostaglandin E2 (PGE2),

which directly activates intestinal smooth muscle cells to

trigger muscle contraction in a paracrine manner (65). In

addition, a subset of intestinal macrophages that reside in the

lamina propria (LP) is responsible for the clearance of apoptotic

and senescent epithelial cells (66). They promote epithelial
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FIGURE 1

Cell communication between tissue-resident macrophages and parenchymal cells in different tissues. The parenchymal cells can be deemed
the “primary cells,” which are responsible for performing the primary function of the tissue. During functions, parenchymal cells can release
signals to inform the demand for or the accumulation of metabolites. Tissue-resident macrophages can be deemed “supportive cells,” which
sense signals from the environment and parenchymal cells. In turn, tissue-resident macrophages respond to cell demand or modify the
microenvironment to maintain the normal physiological functions of primary cells. The crosstalk between tissue-resident macrophages and
parenchymal cells maintains tissue homeostasis.
Frontiers in Immunology frontiersin.org04

https://doi.org/10.3389/fimmu.2022.1050188
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen and Tang 10.3389/fimmu.2022.1050188
integrity by expressing metalloproteinases and cytokines that

stimulate tissue remodeling and the renewal of epithelial stem

cells, such as hepatocyte growth factor (HGF), PGE2, and WNT

ligands (66). Moreover, intestinal macrophages and enteric

neurons interact through bone morphogenetic protein (BMP)

and colony-stimulating factor 1 (CSF1). Previous research has

shown that macrophage-derived BMP2 promotes neuronal

activity (67). Reciprocally, enteric neurons can maintain the

self-renewal capability of intestinal macrophages through CSF1

(64). Then, local macrophages can adjust intestinal muscle

contraction by inducing the production of neurotransmitters,

thereby controlling peristalsis (67).

The unique environment of the GI tract is likely to shape the

heterogeneity of intestinal macrophages (both resident and

recruited macrophages) (56). However, except for immune

functions, how the spatial molecular communication of

intestinal macrophages senses signals and regulates IECs or

other cells to coordinate gut activity remains unclear. How

intestinal macrophage subsets play heterogeneous roles in

various gastrointestinal diseases also remains unknown.

Several chronic inflammatory conditions affect the GI tract

and are referred to as inflammatory bowel disease (IBD) (68,

69). IBD is characterized by recurrent bouts of inflammation in

the GI tract (68, 69). Endogenous damage-associated molecular

patterns (DAMPs) released from injured intestinal epithelial

cells activate intestinal macrophages to release abnormal

inflammatory factors, recruit monocytes, and promote their

proinflammatory transformation, consequently aggravating

inflammation and tissue damage (68, 69). In addition, at the

onset of the disease, the intestinal epithelium is damaged and the

glial cells and neurons in the enteric ganglia are injured or

overactivated, resulting in gastrointestinal motility disorders

(69). Nevertheless, depleting mature intestinal macrophages

alone can cause the death of intestinal epithelial cells and

inflammation (63). How macrophage function is affected by

gastrointestinal inflammation remains to be studied in

the future.
Adipose tissue macrophages
and adipocytes regulate
energy metabolism

Adipose tissues are the primary reservoir for storing energy

substrates and have adapted to respond rapidly to caloric

fluctuations. According to physiological functions,

morphology, characteristics, and localizations, adipose tissues

are divided into three types: brown adipose tissue (BAT), beige

adipose tissue, and white adipose tissue (WAT) (70–72).

Adipocytes are the main site of energy metabolism in adipose

tissues, such as energy intake and fatty acid release, which have

been intensively studied. In WAT, macrophages comprise 30%–
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50% of the immune cells (70, 73). Through scRNA-seq analysis,

five subpopulations of adipose tissue macrophages (ATMs,

CD45+ F4/80+ CD11b+ CD64+) have been found, including

vascular-associated macrophages (VAMs, CD9– MHC-IIlo

LYVE1hi), lipid-associated macrophages (LAMs, CD9+ MHC-

IIhi LYVE1lo), infiltrated monocyte-derived macrophages

(CD11b+ Ly6C+), and two additional minor subpopulations of

ATMs (73–75). ATMs are derived from YS-EMPs and BM

monocytes and are mainly distributed around adipocytes (76).

ATMs account for 5%–10% of stromal cells in lean adipose

tissue (76). The crosstalk between macrophages and adipocytes

coordinates the functions of adipose tissues (Figure 1) (70).

When sensing excessive free fatty acids (FFAs), ATMs facilitate

the secretion of PDGFcc to increase lipid storage in white

adipocytes (77). PDGFcc blockade redirects unstored lipids in

BAT and increases thermogenesis (77). Old adipocytes send out

“find-me” and “eat-me” signals, which trigger phagocytosis and

IL-6 secretion by macrophages (70, 78, 79). The phenotype of

ATMs changes under different conditions. Alternatively

activated (M2) ATMs may be predominant in physiological

homeostasis, and classically activated (M1) ATMs are

increased in conditions of obesity (70). M2 macrophages

rebuild the microenvironment and regulate systemic glucose

homeostasis via TGFb (80). In addition, M2 ATMs can affect

adipocyte thermogenesis, contributing to the regulation of

energy storage and ready response to energy demands in

WAT (71). M2-derived slit guidance ligand 3 (Slit3) stimulates

the release of norepinephrine by binding to the specific receptor

in sympathetic neurons, thereby improving adipocyte

thermogenesis for cold adaptation (81). In addition to

maintaining metabolic homeostasis, ATMs also orchestrate the

source of some bona fide adipocytes by promoting the

hematopoietic-to-mesenchymal transition (82). CD206+ ATMs

are predominantly M2 macrophages, and ablation of these

ATMs improves systemic insulin sensitivity through TGFb
signaling (81).

However, under conditions of obesity, chemokines secreted

by hypertrophic adipocytes recruit large numbers of monocytes

that differentiate into ATMs, which account for 40%–50% of the

stromal cell population (76). Recruited monocyte-derived ATMs

often surround damaged adipocytes and form a crown-like

structure (CLS) (83–85). These ATMs clear dead cell debris

and lipid droplets and contribute to maintaining the integrity of

adipose tissue (76). During CLS formation, adipocyte death

locally induces ATM metabolic activation and increased lipid

metabolism, which may be involved in meta-inflammation

development (86, 87). In hypertrophic adipocytes, monocyte-

derived macrophages act as early sensors of metabolic changes

and produce tumor necrosis factor a (TNFa) and IL-1b, which
mediate hepatosteatosis and insulin resistance (77, 88).

Moreover, the signals released from adipose tissues, such as

exosomes (adipocyte-derived exosomes, ADEs), adipokines,

cytokines, and lipids, can affect peripheral tissues and
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macrophages in an endocrine manner (77, 89). Interestingly,

ADEs carrying Sonic Hedgehog (Shh) promote the development

of insulin resistance by stimulating macrophage activation to

secrete inflammatory cytokines (89, 90). ADEs also act as

carriers of miR-34a, exacerbating obesity-induced systemic

inflammation and metabolic dysregulation (89, 90). However,

during high-fat-diet (HFD)-induced epididymal white adipose

tissue (eWAT) remodeling, ATMs are most closely associated

with blood vessels, preventing the dysregulation of ECM

composition and the formation of tissue fibrosis (91).

As mentioned above, the regulation of physiological and

metabolic homeostasis and the inflammatory response in

adipose tissue have been described. However, more detailed

molecular mechanisms of the macrophage‐adipocyte crosstalk

and their roles in obesity-related diseases still need to be

investigated. In addition, how the macrophage populations

surrounding the distinct parts of adipose tissue accumulate

and function differently is still unclear.

Kupffer cells collaborate with
hepatocytes to contribute to
liver homeostasis

The liver is a multitasking organ that assumes diversified

functions, such as protein synthesis, lipid metabolism,

detoxication, and amino acid metabolism (2). In mice, there

are two types of liver macrophages: yolk sac (YS)-derived

macrophages and monocyte-derived macrophages (92–95).

Specifically, KCs (CX3CR1– TIMD4+ CLEC4F+) are the only

YS-derived macrophages in the liver (93). Self-renewing KCs are

distributed along the hepatic sinusoids (Figure 1). Hepatic

stellate cells (HSCs), hepatocytes (HCs), and endothelial cells

(ECs) compose the KC niche and imprint identity (96). It has

been reported that stimulatory signals in the tissue environment

contribute to hepatic macrophage differentiation (97). During

liver development, EMPs occupy most liver niches and are

generated in KCs, whose identity and self-renewal are

maintained through BMP9/BMP10/ALK1 signaling and

Smad4-dependent pathways (98–102).

Macrophages play a pivotal role in maintaining immune

defense and liver homeostasis. An increasing number of studies

have suggested that the crosstalk axis of KC‐HC modulates

metabolic homeostasis. Lipid metabolism is a critical functional

feature of the liver. During fasting and feeding, the liver regulates

lipid fluxes through lipogenic and oxidative pathways to adjust

to the altered energy state. In the physiological state, excess lipids

are mainly stored by adipose tissue and not the liver. KC-derived

IL-1b contributes to suppressing the expression of hepatokines

in hepatocytes and lipolysis in adipose tissue (103). This suggests

that macrophages can promote the proper storage of excess

lipids and play an essential role in liver–adipose tissue

communication. TNFa, another proinflammatory cytokine
Frontiers in Immunology 06
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and the ketogenesis pathway in HCs (104). Thus, hepatic

ketogenesis is inhibited when the body has enough energy

sources during feeding (104). During fasting, macrophage GR

suppresses the expression of TNFa (104). The limited

production of TNFa promotes the mutual intercellular

crosstalk between liver macrophages and HCs, directly

influencing glucocorticoid signaling and ketogenesis by

reshaping the hepatic transcriptional response to coordinate

fasting homeostasis (104). In contrast, HCs generate

acetoacetate (AcAc) from fatty acid-derived acetyl-CoA via a

series of enzymatic reactions (105). AcAc acts as a shuttle

between HCs and M2 macrophages (105). These studies

suggest that crosstalk between HCs and liver macrophages is

related not only to cytokines but also to cellular metabolites.

Liver macrophages can produce exosomes containing insulin-

sensitizing miR-690 that directly inhibits de novo lipogenesis and

insulin resistance in HCs through the miR-690–Nadk axis (106,

107). However, the accumulation of anti-inflammatory

macrophages in the liver may drive insulin resistance by

increasing cytokine secretion (108, 109). Additionally, KCs

were found to act as central regulators in cholesterol

homeostasis. Under iron overload, KCs transfer LDL-derived

cholesterol to HCs in an Abca1-dependent manner (110).

Moreover, macrophages can synthesize anti-inflammatory fatty

acids by activating the LXR signaling pathway and SREBP1

signaling pathway, regulating the functions of surrounding HCs

in a paracrine manner (111, 112).

However, KCs may exert dual actions on lipid metabolism in

hepatocytes. The FFAs released from adipose tissues promote

hepatic triglyceride storage, and fatty acid oxidation is inhibited

by KC-derived IL-1b in a PPARa-dependent manner (113). The

increased secretion of KC-derived IL-1b promotes hepatocyte

damage and the progression of ethanol-induced liver diseases

(114). Additionally, pyroptotic hepatocytes release IL-1b to

stimulate KCs; in turn, KC-derived proinflammatory signals

amplify liver inflammation (115). Moreover, DAMPs are

sensed by KCs, leading to the release of KC-secreted tumor

necrosis factor a (TNFa) to promote chemokine expression in

HCs (116). Under HFD conditions, CD11b+ F4/80+

macrophage-derived TNFa triggers Sarm1-dependent

sympathetic neuropathy and insulin insensitivity in HCs (117).

Lipid overload in HCs induces lipotoxicity and oxidative stress,

resulting in damage to HCs with the concomitant release of

DAMPs (118). HC-derived FFAs induce the production of IL-1b
mtDNA in KCs (119). Reciprocally, this may aggravate the

accumulation of hepatic lipids and fatty degeneration (119, 120).

KCs also play a dual role in the immunocompetent mouse

model of acute hepatitis B viral (HBV) infection. The

stimulation of KCs with IL-6 or TNFa suppresses the

expression of LSECtin and accelerates the clearance of liver

adenovirus. In contrast, the activation of IL-4, IL-10, or IFN-g in

KCs upregulates LSECtin expression and delays viral clearance
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(121). Additionally, macrophages engulf apoptotic cells and

produce anti-inflammatory/tissue repair factors in an LSECtin-

dependent manner in IBD (122). However, LSECtin is

upregulated in the liver after HBV infection, implying that

KCs are hijacked by HBV and have to protect the liver from

inflammation by delaying viral clearance (121).

Briefly, we introduce the signal communications between

KCs and HCs in metabolic homeostasis and inflammation.

Under non-homeostatic conditions, the hepatic niche occupied

by KCs is gradually supplemented by Ly6Chi monocyte-derived

macrophages (10–12). The differential functions of KCs and

monocyte-derived macrophages in diseases, such as NAFLD,

remain unclear. In addition, studies on the crosstalk between

KCs and HCs in homeostasis have focused more on the unsteady

state than the steady state. There is still plenty to discover about

the KC‐HC interaction axis.
Cardiac macrophages and
cardiomyocytes maintain cardiac
pulsation and energetics

The heart is composed of four chambers and is a complex and

vital organ. The cardiovascular system includes blood vessels and

blood and is responsible for transporting nutrients and oxygen

throughout the body and removing metabolic wastes in cells.

During the steady state, cardiac macrophages (CMs, CD11b+ F4/

80+ MHC-IIhigh/low CD64+ MerTK+) occupy most of the immune

niche in the cardiac interstitium (Figure 1) (123, 124). Multiomics

and fate-mapping studies revealed that CM subsets can be

identified as TLF+ CMs, CCR2+ CMs, and MHC-IIhi CMs (123).

The heart requires the precise regulation of heterogeneous cell

populations for intense metabolic and mechanical demands. The

complex crosstalk between CMs and cardiomyocytes controls

cardiac impulse (125). CMs are closely connected with

cardiomyocytes and crucially maintain cardiac impulse

conduction through gap junctions supported by Areg (coding

amphiregulin) (126). During the acute phase of myocardial

infarction (MI), leukocytes and monocytes are recruited to the

ischemic area by CMs (127). The RNA-seq data of single AV node

macrophages show that macrophages have an electrical connection

with cardiomyocytes through Cx43-containing gap junctions (16,

128). These results suggest that CMs may significantly contribute

to conduction abnormalities. In addition, CMs may impact

morphogenesis and development in the cardiac conduction

system (129, 130). For example, CM ablation in a Cd11bDTR

mouse induces a progressive atrioventricular block (16). A flow

cytometric analysis of Cx3cr1GFP/+ fetal hearts, combined with

EGF-like module staining, revealed the active recruitment of

macrophages at E12.5-16.5 and proliferation throughout the time

course of cardiac development (129).
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Similar to TRMs in other tissues, cardiac macrophages have

a potent phagocytic capacity to remove necrotic debris that

prevents myocardial infarct (MI)-induced arrhythmias (131).

Treatment with a CSF1R inhibitor or the depletion of recruited

CMs increases post-MI ventricular tachycardia, ventricular

fibrillation burden, and myocyte death (131). Nevertheless, as

highly specialized cells in the heart, cardiomyocytes contain

large numbers of mitochondria and eject redundant

mitochondria and other materials in subcellular vesicles to

partly solve the intense energetic demand (132). Taken

together, resident CMs crucially contribute to cardiac

homeostasis maintenance.

However, in cardiac diseases, the TRM niche is occupied by

CCR2+ monocyte-derived macrophages (131). The recruited

CMs may initiate the inflammatory cascade that promotes

tissue injury and suppresses tissue repair. Thus, different CM

subsets serve different roles that require more precise approaches

to understanding their character and functions during pre- and

postnatal developmental stages (131). Regarding spatial

distribution, the intratissue heterogeneity of CMs has not been

clarified (123, 128). The disturbance of CM–cardiomyocyte

communication may involve a series of heart diseases,

including hypertension, ischemia, arrhythmias, and

myocarditis (123). Whether CMs distribute homogeneously

and how macrophage phenotypes change during disease

progression have not been elucidated.
The macrophage‐alveolar
epithelial cell axis regulates
pulmonary functions

The lungs mainly carry out gas exchange in alveoli, which are

rich in connective tissues such as capillaries, elastic fibers, mesh

fibers, and collagen fibers. There are two kinds of epithelial cells

on the alveolar surface: type I alveolar epithelial cells (AE1Cs) and

type II alveolar epithelial cells (AE2Cs) (4). To combat foreign

pathogens, many immune defenders, primarily macrophages, are

located in the lungs (Figure 1) (4, 10–12). Pulmonary

macrophages phagocytize surfactants, inhaled stimuli/invaders,

and apoptotic and fragmented cells to maintain lung homeostasis

(133, 134). Different microenvironments shape resident

macrophages as distinct populations, such as alveolar

macrophages (AMs, CD64+ MerTK+ F4/80+ SiglecFhi/–

CD169+/–) and interstitial macrophages (IMs, LYVE1lo/hi CD64+

MerTK+ F4/80+ SiglecF–) (135). AMs and IMs reside in two

anatomical compartments and perform slightly different functions

(135, 136). IMs are located near many non-hematopoietic cells

(136). In addition, IMs are not as abundant as AMs and have

lower phagocytic potential (137, 138). Thus, IMs act as a second

line of defense against invaders (137, 138).
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AMs are located in the lumen of the alveoli and are

surrounded by AE1Cs, AE2Cs, and stromal cells (135, 136). In

1-week-old mice, alveolar epithelial cell-derived granulocyte-

macrophage colony-stimulating factor (GM-CSF) provides the

instructive cytokine signal for AMs to thrive (139). Mature AMs

adhere tightly to the luminal side of alveolar epithelial cells,

continuously capturing and phagocytosing large amounts of

inhaled pathogens and particles without triggering an influx of

neutrophils and excessive inflammation (140). The

accumulation of surfactants on the alveolar space increases

surface tension and leads to alveolar collapse and respiratory

failure (141, 142). AMs are responsible for avoiding unnecessary

inflammation and capturing and metabolizing surfactants to

maintain the biomechanical homeostasis of the lungs (134, 135,

141). Additionally, AMs contribute to inflammatory-associated

or non-inflammatory responses through the macrophage–

epithelial cell axis to regulate lung homeostasis (133–136). In

rats, AMs transport miR-21-5p to tracheal epithelial cells by

exosomes that can promote the epithelial–mesenchymal

transition (EMT) (143). In mice, cytokines released by

macrophages regulate the transcription factor CEBPB in

pulmonary epithelial cells (144).

Conversely, pulmonary epithelial cells also influence

macrophages. The epithelium-derived WNT and S100A8/A9

regulate the phenotypes and functions of macrophages (145). In

vitro, AMs lost the expression of genes involved in adhesion

molecules, lipid metabolism, TGFb signaling, and oxygen

response (146). However, when the cultured cells are

transferred back into the lungs, the ex vivo expanded AMs can

reacquire their in vivo expression profile and identity (146).

These findings suggest a potential role for epithelial cells in the

maintenance of the AM phenotype (146).

In the airways of chronic obstructive pulmonary disease

(COPD) patients, the accumulated oxidized lipids in pulmonary

epithelial cells may reduce the phagocytotic ability of AMs (147).

With overloaded phagocytosis, AMs trigger inflammation by

producing chemokines and proinflammatory cytokines that

recruit and activate neutrophils, further contributing to lung

damage and systemic “cytokine storms” (136). Although these

macrophages have been extensively studied, there are still

numerous questions. The mechanisms of the macrophage‐

epithelial cell axis in different diseases and the use of

macrophage transplantation as an immunotherapeutic

approach still require further investigation.

Red pulp macrophages and
fibroblasts orchestrate
splenic homeostasis

As the largest secondary lymphoid organ in the body, the

spleen also functions as a blood reservoir and filter and

participates in immune defense, iron homeostasis, and cell
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reservoirs (for red blood cells, monocytes, plasmablasts,

thrombocytes, and long-lived memory B cells) (11, 13, 148,

149). The splenic resident macrophages contain several subsets,

such as red pulp macrophages (RPMs, VCAM-1hi F4/80+

CD68hi), marginal zone macrophages (MZMs, SIGN-R1+, or

SIGN-R1-), marginal metallophilic macrophages (MMMs,

CD169+ MHC-II+ MOMA-1+), tingible body macrophages

(TBMs, CD68+ MFG-E+ MerTK+ Tim4+ CD36+), and T zone

macrophages (TZMs, MerTK+ CX3CR1+) (11, 149). They reside

in the different locations of the spleen, with distinct

developmental origins, phenotypes, and functions (11,

149) (Table 1).

The crosstalk between RPMs and fibroblasts is shown in

Figure 1. RPMs reside in the splenic cord and are closely

associated with RP fibroblasts (152). PCs are a group of cells

responsible for the primary functions of tissues. The spleen

mainly acts as a blood filter (selectively removing circulating

pathogens, dysfunctional red blood cells, and immune

complexes), blood storage site, and blood volume regulator

(13, 148). Unlike other tissues (those of the CNS, liver, lung,

etc.), the distinction between PCs and supportive cells may still

be unclear in the spleen.

The red pulp is composed of fibroblasts and reticular fibers

that form a complex framework of open blood circulation,

allowing for the selective removal of senescent and

dysfunctional red blood cells (13). Therefore, from blood

storage and blood volume regulation functions, fibroblasts are

similar to PCs, and RPMs act as supportive cells. RPMs can

support the survival, proliferation, and ECM secretion of RP

fibroblasts via trophic factors (13, 148, 149). RPMs

communicate with RP fibroblasts by expressing TGFb and

progranulin, and RP fibroblasts express TGFb-RIII (a

coreceptor for active TGFb) and TNFRSF1A/B for survival

(152, 153). RPMs also regulate the survival and proliferation of

PDGFRa/b+ RP fibroblasts by producing PDGFb (154, 155). In

addition, RPMs can also regulate the reticular structure of RP

through the production of proteases and the modulation of

fibroblastic activity (11). Thus, RPMs are involved in controlling

the quality of blood filtration indirectly.

Both immune defense and the maintenance of iron

homeostasis are essential functions of the spleen, in which

RPMs play a crucial role (152, 156). RPMs are PCs that

function in blood filtration, whereas fibroblasts act as

supportive cells and are critical regulators of macrophage

homeostasis in RP. WT1+ reticular fibroblasts regulate the

proliferation and location of RPMs through the production of

CSF1 (152). Activation of the transcription factor Spi-C and

heme oxygenase (HO)-1 is required for intracellular heme

breakdown and free iron release from RPMs (156, 157). This

molecular mechanism can neutralize the toxic effects of heme

and metabolize iron (156, 157). Thus, RPMs can degrade the

toxic cargo when senescent red blood cells are captured

(156, 157).
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Additionally, extramedullary hematopoiesis is supported by

RPMs, and their absence impairs the recovery of normal red blood

cell counts (152). Stress erythropoiesis causes the rapid production of

mature erythrocytes. Previous research has indicated that RPMs can

release a critical regulator (called GDF15) to expand the stress

erythropoietic niches (158, 159). RPMs induce RP fibroblast-secreted

BMP4 to maintain a suitable microenvironment and produce GDF15

to promote stress erythropoiesis in the spleen (158, 159).
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However, since the spleen is a vital lymphoid organ for

clearing blood pathogens, researchers mainly focus on the

function of spleen macrophages in removing bacteria and

regulating their interaction with other immune cells as well as

the interaction between macrophages and fibroblasts in the

spleen. The intercommunication between splenic macrophages

and fibroblasts in splenic homeostasis and diseases is

still unclear.
TABLE 1 The classification and function of the PC–TRM crosstalk in tissue homeostasis.

Organ PC TRM Crosstalk signals Function Ref.

CNS Neuron Microglia Purines; chemokines; MMP-3; glutamate; TREM2; IgSF; IL-33–NF-kB; CD36;
Intercellular Ca2+ wave (ICW) communication; TNFa; complement factors;
CX3CL1–CX3CR1; TGFb; CD22; VEGF; fractalkine; IGF1; TLR9

• Synaptic pruning
• Axon fasciculation
• Promote neural precursor

cell proliferation and
survival

• Neurite formation
• Synaptogenesis

(28, 30, 34,
35)

Intestine IEC Intestinal
macrophage

TRPV4; PGE2; HGF; WNT ligands; IL-4; CSF1; VEGF; BMP2 • Gut motility
• Gastrointestinal secretion
• Dead cell clearance
• Epithelial homeostasis

maintenance
• Immune sentinel functions
• Antimicrobial activity

(56, 57, 64,
66)Smooth

muscle cell

Myenteric
neuron

Adipose
tissue

Adipocyte VAM CD206; CD163; TGFb; IL-1b • Regulation of complement
system, blood vessel
morphology, and endocytic
capacities

(11, 73, 75,
78, 91)

LAM TNFa; chemokines; IL-1b; CD36; TREM2 • Dead adipocytes and lipid
clearance

ATM Collagens; ADEs; Shh; IL‐6; PDGFcc • ECM deposition
• Tissue remodeling
• Adipocyte function

modulation

Heart Cardiomyocyte CM MerTK; amphiregulin (AREG) • Clearance of infectious
agents, cellular debris, and
extracellular hazardous
substances

• Maintenance of the cardiac
electrical conduction

(126, 132)

Liver Hepatocytes KCs IL-1b; PPARa; TNFa; NF-kB; IL-6; TREM2; microRNA; mtDNA • Clearance of erythrocytes
and blood pathogens

• Iron metabolism
• Lipid metabolism
• Immunological tolerance

(95, 104,
110, 115,
119, 120,
150)

LCMs • Immune surveillance
• Neutrophil recruitment

Lung Pulmonary
epithelial cells

AMs PPARg; TGFb; GM-CSF; lipid; cholesterol • Surfactant clearance
• Inhaled particles

Phagocytosis
• Mediation of immune

sentinel functions

(134, 142,
143, 145,
151)

IMs CD206, LYVE1, IL-10, MHC-II • Pathogens/infections
Clearance

• Immune sentinel
Mediation
fro
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Conclusions

With the development and escalation of sequencing

techniques, the genetic landscapes of different tissues have been

mapped and are continuously improved through single-cell

transcriptome and spatial metabolomics (2, 99, 160–163).

Information on PC‐NPC interactions is constantly being mined

(99, 150, 151, 160–167). Research on the communication between

them has found that the PC‐TRM crosstalk is instrumental in

maintaining overall tissue homeostasis through cell membrane

receptors, inflammatory or anti-inflammatory cytokines,

metabolites, and extracellular vesicles (Table 1). Meizlish and

colleagues put forward the following definition of tissue

homeostasis: a collection of circuits regulating specific variables

within the tissue microenvironment (166). The values of regulated

variables are monitored by a controller (166). TRMs are

homeostatic controllers that can monitor fluctuating

environmental signals directly or indirectly and react in certain

ways, such as pathogen clearance, apoptotic cell phagocytosis,

ECM modification, and cytokine secretion (1, 166).

The functional demand can be deemed the deviation of a

homeostatic variable, and signals are the proxies of homeostatic

variations that report on practical demands (1). From this, we

posit that PCs sense and reshape the functional demand during

environmental fluctuations. While TRMs act as environmental

“sensors” and “gatekeepers,” they have strong plasticity and

motility for phenotype reshaping to respond to the variational

signals of the environment and PCs. Macrophages can express

certain substances through negative feedback signals and

responsive PCs to bring the off-balance value back to its

equilibrium point. For instance, neurons perform impulse

conduction continuously and discharge “excess ATP” (40).

However, the surrounding microglia sense the “excess ATP”

and generate negative feedback signals to prevent neuronal

overactivation (40). Furthermore, CMs sense and ingest

cardiomyocyte-derived vesicles to avoid the accumulation of

harmful extracellular substances (132). In the lung, the capture

and metabolism of surfactants via AMs are critical for

maintaining lung biomechanics (141, 142). In turn, pulmonary

epithelial cells regulate macrophage phenotypes and functions

through the WNT/b-catenin pathway and epithelial-derived

S100A8/A9 (145). Splenic RP fibroblasts regulate the

proliferation and location of RPMs through CSF1 to maintain

iron homeostasis in the spleen, whereas RPMs can support the

survival and proliferation of fibroblasts and regulate the

functions of RP fibroblasts (152, 156–159).

The role of TRMs cannot be unilaterally defined as “good” or

“bad” but depends on the signals from the microenvironment

and peripheral cells. In KCs, FFA-induced NLRP3 inflammatory

body activation promotes the production of proinflammatory

IL-1b (119, 120). In contrast, KCs induced by IL-4/IL-13

produce M2-type exosomes and regulate insulin resistance of
Frontiers in Immunology 10
HCs through the miR-690–Nadk axis (106). Additionally, KC-

derived TNFa has been confirmed as one of the inducers of HC

steatosis (117). However, a recent study showed that KCs can

regulate ketone generation in HCs during fasting and maintain

hepatic and systemic metabolism (104). Similarly, the effect of

macrophages on adipocyte metabolism is not one-fold. M2-like

macrophages affect adipogenesis, and the heat production of

adipocytes helps regulate energy storage in WAT to respond to

energy needs (71, 80). Under pathological conditions,

adipocytokines stimulate M1 macrophages, which aggravate

insulin resistance, obesity-induced inflammation, and

metabolic disorders (89). Among these, the adjustment

mechanism of the threshold points of the transformation from

“favorable” to “unfavorable” is still a “mystery.” Therefore,

further investigations are necessary to clarify the “mutual

benefit” or “mutual restraint” relationship between PCs

and TRMs.

In recent years, bioinformatics techniques combined with

transcriptome, proteomics, and spatial data have been widely

used to predict intercellular communications and map cell space

(2, 99, 160–163). Thus, we can obtain evidence for the

heterogeneity of PCs and TRMs in various tissues and the

differences in cell‐cell communication in different regions.

Additionally, we should further understand the transformation

or regulation mechanisms involved in communication under

physiological and pathological conditions. With the gradual

deepening of our understanding of “zonation,” it is worth

exploring what regulatory mechanisms may exist for cell

interactions between different anatomical regions in tissue in

the future.
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