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Background: Nectins comprise a family of cellular adhesion molecules

involved in Ca2+-independent cellular adhesion. Neither the biological

significance nor clinical potential of Nectin4 for asthma has been investigated.

Objectives: The aims of this study were to elucidate the role of Nectin4 in

airway inflammation and to determine the relationship between Nectin4 and

clinical variables in patients with asthma.

Methods: The relationship between Nectin4 levels in the blood of asthmatic

patients and clinical variables was examined. Dermatophagoides pteronyssinus

1 (Der p1)-exposed normal human bronchial epithelial (NHBE) cells, and

Nectin4-deficient (Nectin4−/−) and wild-type (WT) mice sensitized/

challenged with ovalbumin (OVA), were used to investigate the involvement

of Nectin4 in the pathogenesis of bronchial asthma via the Src/Rac1 pathway.

Results: Plasma Nectin4 levels were significantly higher in asthmatic patients

than controls and correlated with specific IgE D1, D2, lung function. The ROC

curves for Nectin4 levels differed between asthma patients and controls.

Nectin4/Afadin and Src/Rac1 levels were significantly increased in NHBE cells

exposed to Der p1, but decreased in NHBE cells treated with Nectin4 siRNA.

Airway obstruction and inflammation, as well as the levels of Th2 cytokines,

Nectin4, and Src/Rac1, were increased in WT OVA/OVA mice compared with

WT sham mice. Nectin4 knockdown resulted in lower levels of Afadin and Src/

Rac1 in Nectin4−/−OVA/OVA than WT OVA/OVA mice.

Conclusion: These results suggest that Nectin4 is involved in airway

inflammation and may be a therapeutic target in patients with asthma.
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Introduction
The bronchial epithelium maintains lung tissue homeostasis

and protects the lung against pathogens (1, 2). Recent studies

have emphasized the importance of epithelial barrier-derived

cytokines for the activation of Th2 immune responses and

interactions between Th2 effectors and other immune system

components (1–3). Disruption of the regulatory functions of the

airway epithelial barrier triggers allergic airway inflammation

and thus asthma development (3).

Nectins (Nectin-1 to -4) are immunoglobulin superfamily

members containing three Ig-like loops (V and two C2-type

domains) that act as a PDZ‐binding domain (4). Nectins are

ubiquitously expressed and, together with other junctional

proteins, promote intercellular junction formation (5). Nectins

can be found in the adherens junctions (AJs) of polarized

epithelial cells, at neuronal synapses, and at points of contact

between cultured epithelial cells (6). Nectins bind to Afadin

through its cytoplasmic tail and associate with the actin

cytoskeleton. Afadin acts as an adaptor protein by further

binding scaffolding and F-actin-binding proteins, and

contributes to the association of Nectins with several other

cell-cell adhesion and intracellular signaling proteins, such as

those of the PI3k-Akt pathway (7–9), either in collaboration with

or independent from cadherins (10, 11). Nectins are also novel

regulators of cellular activities, including cell polarization,

differentiation, movement, and proliferation, and they also

support cell survival (11). Nectin4 contributes to cell growth,

angiogenesis , and the proliferation of human lung

adenocarcinoma cells through the Rac1-signaling pathway; it

has therefore been linked to a poor prognosis in lung cancer

patients (5, 11, 12). Together with other Nectins and Necls,

Nectin4 plays an important role in both acquired immunity and

angiogenesis, suggesting a much broader range of functions for

this protein (13, 14). In Nectin-deficient transgenic mice,

abnormal formations of ectodermal tissues, including in the

eye, tooth, inner ear, and skin, are observed (15–17).

The role of Nectin4 in asthma is not fully understood. In this

study, we investigated whether the absence of Nectin4

contributes to the pathogenesis of asthma, and the signaling

pathways involved in this process. We also investigated the

relationship between clinical variables and plasma Nectin4

levels in patients with asthma.
Materials and methods

Subjects

All subjects had a clinical diagnosis of asthma according to

Global Initiative for Asthma (GINA) guidelines (18) that was
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supported by one or more of the following criteria: 1) variability

in the maximum diurnal peak expiratory flow of >20% over the

course of 14 days, 2) an increase in FEV1 of >15% after

inhalation of 200-400 mg albuterol, or 3) a 20% reduction in

FEV1 in response to a provocative concentration of inhaled

methacholine (PC20 methacholine) of less than 10 mg/ml. All

subjects underwent standardized assessments that included

complete blood cell and differential counts, IgE measurement,

chest posteroanterior radiography, allergy skin prick tests, and

spirometry. Asthma exacerbation was defined as episodes of

progressive increase in shortness of breath, cough, wheezing, or

chest tightness, or some combination of these symptoms,

accompanied by decreases in expiratory airflow and use of

systemic corticosteroids (tablets, suspension, or injection), or

an increase from a stable maintenance dose, for at least 3 days,

and a hospitalization or emergency department visit because of

asthma, requiring systemic corticosteroids. Normal control

subjects were recruited from spouses of the subjects or

members of the general population who answered negatively

to a screening questionnaire regarding respiratory symptoms

and other allergic diseases, had FEV1 values over 80% predicted,

PC20 methacholine over 10 mg/ml, and normal findings on

chest radiographs. The biospecimens and clinical data were

provided by the biobank of Soonchunhyang University

Bucheon Hospital, a member of the Korea Biobank Network.

This study was approved by the Soonchunhyang University

Bucheon Hospital Institutional Review Board (SCHBC 2020-

05-038-003).
Cell culture

Primary normal human bronchial epithelial (NHBE) cells

(CC-2540, Lonza, Walkersville, MD) (3500cells/cm2) were

maintained as previously described (19). Cells were placed in

bronchial epithelial cell growth medium (BEGM, CC-3170,

Lonza) without supplements for 24 h and then stimulated with

10mg/ml Dermatophagoides pteronyssinus 1 (Der p1, Arthropods

of Medical Importance Resource Bank, Institute of Tropical

Medicine, Yonsei University). In separated tests, NHBE were

transfected with small interfering RNA (siRNA) duplexes

designed against Nectin4 or nonspecific siRNA control

(1027418, Qiagen, CA, USA). NHBE cells cultured in 6-well

plates were transfected with 100 nM siRNA or negative control

using Lipofectamine 2000 (11668019, Invitrogen, CA, USA).

After 24hr, cells were treated with 10 mg/ml Der p1 and

harvested for western blotting. Trans-epithelial electrical

resistance (TEER) was measured using an Epithelial Volt/Ohm

Meter (EVOM) (EVOM2, World Precision Instruments, FL).

TEER values are expressed by raw oh m values minus the oh m

value of a blank insert, multiplied by the area of the insert

(1.12 cm2).
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Animals

All experimental animal methods followed a protocol

approved by the Institutional Animal Care and Use

Committee of the Soonchunhyang University Bucheon

Hospital (SCHBC-animal-2020-11). Female 6-week-old BALB/

c mice (n=6-10 mice per group) were sensitized by means of

intraperitoneal injection at days 0 and 14 with 50 mg of grade V

chicken egg OVA (A5503, Sigma-Aldrich, St Louis, Mo) that was

emulsified in 10 mg of hydroxyl aluminum plus 100 mL of

Dulbecco PBS. At days 21 to 23, all mice received intranasal

challenges with 150 mg of grade III OVA (5378, Sigma-Aldrich)

in 50 mL of Dulbecco PBS. Control mice were sensitized and

challenged with saline. Airway hyperresponsiveness (AHR) was

measured, bronchoalveolar lavage fluid (BALF) was collected,

and lung tissue was processed for protein, RNA, and

hematoxylin and eosin (H&E), periodic acid Schiff (PAS),

Masson trichrome stain, and confocal imaging.
CRISPR/Cas9 for Nectin4 gene knockout

We purchased SpCas9 protein and sgRNAs to generate Nectin4

knockout mice from Macrogen, Inc. (Seoul, Korea). To knock out

the Nectin4 gene (NC_000067.6), we designed six sgRNAs (1

(intron1-2-gR1), AGTGCA AGAGTAGCCCCAGA; 2 (intron1-

2-gR2), AGGGGGACAGTCAGAACCAATGG; 3 (intron1-2-

gR3), GCAAAGGCGGCCGGAACTTCTGG; 4 (intron7-8-gR1),

GTGCTAAGGTTGGGTGCATGGGG; 5 (intron7-8-gR2),

AGGTTGGGTGCATGGGGTCGGGG; 6 (intron7-8-gR3),

TCGGGGGGACATGGGCACACAGG) and its 5′ upstream

sequences of the Nectin4 gene and validated them using the

T7E1 in vitro cleavage reaction of template DNAs, which were

amplified by PCR (F1:5′-TGTCCTTGGTTTCCTGGTTC-3′ and
R1: 5′-GGTTCACATGAAGCCCGTAT-3′, F2: 5′-GCATCACC
TACCATGCACAC-3 ′ and R2: 5 ′-AGTGCAAGAGT

AGCCCCAGA-3′). Briefly, the amplified template DNA was

incubated for 90 min at 37°C with Cas9 protein (20 nM) and

sgRNA (40 nM) in 1× NEB 3 buffer. Reactions were stopped with

6× stop solution containing 30% glycerol, 1.2% SDS, and 100 mM

EDTA. Cleavage activity was confirmed by electrophoresis of the

reaction mixture.
Generation of Nectin4 gene
knockout mice

Nectin4 knockout mice were generated by Macrogen, Inc.,

and were interbred and maintained in a pathogen-free condition

at Macrogen, Inc. (Seoul, Korea). All manipulations were

conducted with the Institutional Animal Care and Use

Committee approval . Briefly, pregnant mare serum
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gonadotropin (PMSG) and human chorionic gonadotropin

(hCG) were injected into C57BL/6N female mice. After 48 h,

these female mice were mated with C57BL/6N stud male mice.

Next day, virginal plug-checked female mice were sacrificed and

fertilized embryos were harvested. The mixture of sgRNA and

SpCas9 protein was microinjected into one-cell embryos, and

microinjected embryos were incubated at 37°C for 1–2 h. Then,

14 to 16 injected one-cell-stage embryos were transplanted into

oviducts of pseudopregnant recipient mice (ICR). After F0 mice

were born, genotyping was done by direct PCR and sequencing

methods using tail-cut samples (Forward primer, 5′-
TGTCCTTGGTTTCCTGGTTC-3′; and Reverse primer, 5′-
AGTGCAAGAGTAGCCCCAGA-3′). Among of the founders

with altered sequences, we selected F0 mice with deletion of

exon2&7 sequences of Nectin4.
Genotyping

Genomic DNA was isolated from the lung tissues of each

mouse using a QIAamp DNAmini Kit (51304, Qiagen, MD, USA).

Genotyping was done by PCR amplification using the following

primers: Forward primer, 5′- TGTCCTTGGTTTCCTGGTTC-3′;
and Reverse primer, 5′- AGTGCAAGAGTAGCCCCAGA-3′. The
PCR products were visualized by agarose gel electrophoresis; a 6203

bp fragment was amplified in the wild-type mice, and a 443 bp

fragment in Nectin4-null mice.
ELISA

Protein levels of Nectin4 (MBS167116, Mybiosource, CA,

USA) in human plasma and IL-4 (M4000B, R&D System, MN,

USA), IL-5 (M5000, R&D System), TNF-a (MTA00B, R&D

System), IFN-g (MIF00, R&D System) in mouse BALF and lung

proteins were measured by ELISA. A low detection limits were

set at 6.56pg/ml for Nectin4, respectively on the basis of the

manufacturer’s recommendation.
Histological analysis

All stains were performed in accordance with the

manufacturer’s protocol. The degree of inflammatory cell

infiltration in the airway stained with H&E was scored in a

double-blind manner by 2 independent observers. The

peribronchiolar/perivascular inflammation scores for each

view-field were determined as follows: 0, normal; 1, few cells;

2, a ring of inflammatory cells 1 cell layer deep; 3, a ring of

inflammatory cells 2–4 cells deep; 4, a ring of inflammatory cells

of >4 cells deep. The PAS-positive goblet cells were counted

manually, normalized against the length of the bronchial
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epithelial perimeter on the basal side, and expressed as the

number of PAS-positive cells per millimeter of basement

membrane. To evaluate collagen deposition of lungs, the area

stained with Masson’s trichrome in each section was semi-

quantitatively calculated using the ImageJ program (National

Institutes of Health, Bethesda, MD).
Western blot

Protein extracts of mouse lung tissue were collected as

previously described (19). Protein was separated by SDS-

PAGE and transferred to polyvinylidene fluoride (PVDF)

membranes. The membranes were blocked for 5% bovine

serum albumin (BSA) in 0.1% Tween 20 in Tris-buffered

saline (TBS) (21°C, 2h) and incubated with anti- Nectin4,

Afadin, p-Src, Src, Rac1-GTP, Rac1 (4°C, overnight) followed

by horseradish peroxidase (HRP)-conjugated secondary

antibodies. Detection was performed using WEST-ZOL plus

Western Blot Detection System (16024, iNtRon, SungNam,

Korea). The relative abundance of protein was determined by

quantitative densitometry data were normalized to actin, beta

(A2228, Sigma-Aldrich, MA, United States).
Immunohistochemistry

Mouse lung sections were de-paraffinized and rehydrated in

an ethanol series. The sections were treated with 1.4% H2O2 in

methanol for 30 min to inhibit endogenous peroxidase, and then

treated for non-specific binding with 1.5% horse serum and

incubated with the anti- Nectin4, Afadin, p-Src, Src, Rac1-GTP,

Rac1. The next day, sections were incubated with avidin and

biotinylated horseradish peroxidase macromolecular complex

(PK-4001, Vector Laboratories, Burlingame, CA). Color reaction

was developed by staining with liquid DAB+ substrate kit (C09-

100, Golden Bridge International Inc., Mukilteo, WA). After

immunohistochemical staining the slides were counterstaining

the slide with Gill’s hematoxylin for 1 min. Images were analyzed

with the ImageJ program (National Institutes of Health,

Bethesda, MD).
Immunofluorescence imaging

Staining was performed on mouse lung sections. Samples

were blocked for non-specific binding with 1.5% horse serum

and incubation overnight at 4°C with Nectin4 and Rac1-GTP

followed by Donkey polyclonal anti-Rabbit IgG H&L (Alexa

Fluor 488) (ab150073, Abcam, Cambridge, MA) and Donkey

Anti-Mouse IgG H&L (PE) (ab7003, Abcam, Cambridge, MA).
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Nuclei were counterstained with 4’,6-diamidino-2-phenylindole

(DAPI) (Ab104139, Abcam, Cambridge, MA). Sections were

observed using confocal laser scanning microscopy (LSM 510

META) and images were generated using the Zeiss LSM image

browser (Carl Zeiss Microsystems, Thornwood, NY).

Quantification of the immunofluorescent staining was

performed with the ImageJ software (NIH, Bethesda, MD).

Nectin4 and Rac1-GTP immunostained structures were

detected by thresholding technique after subtraction of

background. The area of immunostaining for Nectin4 and

Rac1-GTP in corresponding nucleus was related to the area of

interest (at least 6 sections) and expressed as the mean of relative

area (%) ± SD.
Statistical analysis

Data were presented as means ± standard error of the mean

(SEM) or median (range) using SPSS version 22 (SPSS, Chicago,

IL). Comparisons of nonparametric variables and parametric

variables were performed using Kruskal-Wallis tests and

ANOVA respectively, and then post hoc analyses using Dunn-

tests or turkey-HSD test were performed. Correlations between

outcome measures were evaluated by calculating Pearson or

Spearman correlation coefficients analysis. A Values of P<0.05

were deemed to indicate statistical significance.
Results

Increased Nectin4 plasma levels in
asthma patients

Sixty-two patients with asthma (duration: 0.21 ± 0.74 or

1.62 ± 3.28 years) and 60 controls were recruited (Table 1). The

initial FEV1% pred., FVC% pred., FEV1/FVC%, and

methacholine PC20 values were significantly lower, and the

total IgE and blood eosinophil levels were significantly higher

in the asthma patients than in the controls. There was no

significant difference in the body mass indices between the

two groups.

Plasma Nectin4 levels were significantly higher in the latter

(68.11 ± 46.38 pg/ml vs. 105.16 ± 40.75 pg/ml or 132.79 ± 45.87

pg/ml p<0.001, Figure 1A). During exacerbation, Nectin4 levels

tended to be higher in patients with than without

steroid medication.

The Nectin4 ROC curves for asthma patients and controls are

shown in Figure 1B (AUC=0.716, p<0.001). A Nectin4 cutoff of

72.54 pg/mL distinguished between asthma patients and controls

with 70.25% accuracy, 82.4% sensitivity, and 58.1% specificity
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(Figure 1B). Additionally, the plasma Nectin4 level correlated with

specific IgE to Dermatophagoides pteronyssinus (D1) and

Dermatophagoides farinae (D2) (Figure 2A), and with FVC%

pred. (r = -0.229, p=0.015), FEV1% pred. (r = -0.220, p = 0.020),

FEV1/FVC% (r = -0.211, p = 0.026), and PC20 (r =- 0.230,

p = 0.022) (Figure 2B).
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Der p1 alters Nectin4/Afadin and Src/
Rac1 pathways in NHBE cells

The mechanism by which Der p1 alters Nectin4 was

investigated by exposing NHBE cells to the allergen, and then

measuring Nectin4/Afadin and Src/Rac1 protein levels
BA

FIGURE 1

Specimens were obtained from control subjects (n = 60), subjects with non-steroid-treated asthma (n = 51), and subjects with steroid-treated
asthma (n = 11) (A) Plasma Nectin4 levels in control subjects and asthma patients. *p<0.05, control vs. asthma patients. (B) Receiver operating
characteristic (ROC) curves of the plasma Nectin4 levels. Nectin4 protein concentrations in asthma patients and controls (Area under the curve
(AUC) =0.760, 95% CI 0.673-0.847, p<0.001). The diagonal line represents a hypothetical curve corresponding to a test affording no
discriminatory power.
TABLE 1 Clinical characteristics in control subjects and patients with asthma.

Control subjects Asthma Patients

Steroid-N Steroid-Y

subjects (N) 60 51 11

Sex (M/F) 19 / 41 18 / 33 3 / 8

Age (range) 51 (41-77) 46 (30-72) 37 (32-83)

Asthma period, year - 0.21 ± 0.74 1.62 ± 3.28#

Smoke (NS/ES/SM) 56 / 1 / 3 43 / 2 / 6 7 / 0 / 4

Lung function

FEV1, %pred. 92.40 ± 20.43 79.89 ± 12.15 71.91 ± 19.95*

FVC, %pred. 84.30 ± 15.07 77.73 ± 17.23* 72.18 ± 15.73*

FEV1/FVC, % 84.71 ± 5.04 76.62 ± 8.97* 75.54 ± 11.08*

BMI 24.50 ± 3.56 24.45 ± 3.06 24.45 ± 3.06

PC20, mg/ml – 7.45 ± 8.40* 11.41 ± 10.48*

Total _IgE, IU/mL 91.83 ± 314.19 191.20 ± 344.73* 129.26 ± 254.07

Skin_test_positive, % 7 (11.6%) 19 (37.3%) 2 (18.2%)

Blood_WBC, uL 6583.82 ± 2299.1 7021.33 ± 2260.04 8143.00± 2970.20

Blood Eosinophil, % 2.69 ± 2.67 5.05 ± 5.49* 4.45 ± 3.54
Data expressed as mean ± SD or median (range); SM; smoker, ES; ex-smoker, NS; non-smoker, FEV1; forced expiratory volume in one second. FVC; forced vital capacity. PC20; the
concentration of methacholine required to decrease the FEV1 by 20%, BMI; body mass index. Steroid N; steroid no treatment, Steroid Y: steroid treatment for exacerbation. *p< 0.05
compared with control subjects. # p<0.05 compared with Steriod-N asthma.
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(Figure 3). Both were increased in NHBE cells within 4-, 8-, and

24-h exposure to Der p1 (p < 0.05, Figures 3A, B).
Nectin4 knockdown alters Afadin and
Src/Rac1 pathway expression in Der p1-
treated NHBE cells

The cellular suppression of Nectin4 associated with siRNA

transfection reduced Afadin, p-Src, and Rac1-GTP, but not Src or

Rac1, expression (Figures 4A, B). Changes in the levels of Nectin4/

Afadin and Src/Rac1 pathway proteins in NHBE cells treated with

both Der p1 and siRNA were also observed. The effects of Nectin4
Frontiers in Immunology 06
on the AJ permeability of NHBE cells were examined in a Transwell

assay, which revealed a decrease in TEER in NHBE cells at 4, 8, and

24 h afterDer p1 exposure, and an increase 8 and 24 h after Nectin4

siRNA treatment (Figure 4C).
Nectin4 contributes to the development
of OVA-induced asthma

To determine whether Nectin4 deletion affects features of

OVA-induced asthma, Nectin4−/− mice and wild-type (WT)

control littermates were sensitized on days 0 and 14 with

OVA, and then challenged on days 21 to 23 with OVA or
BA

FIGURE 3

Time courses of Dermatophagoides pteronyssinus 1 (Der p1) allergen-induced Nectin4/Afadin and Src/Rac1 pathway expression. (A) Nectin4/
Afadin and Src/Rac1 pathway expression on western blots. (B) Densitometry of the bands obtained on three western blots. The values were
normalized to those of b-actin and are expressed as the mean ± SEM. The results are representative of at least 3 independent experiments.
*p<0.05 compared to the control.
B

A

FIGURE 2

Relationship between plasma Nectin4 and clinical variables in asthma patients. (A) Specific IgE D1 or specific IgE D2 level for control subjects,
steroid not treated group, and steroid treatment group for exacerbation. *p<0.05, control vs. asthma patients. (B) Correlation of plasma Nectin4
and clinical variables including FVC% predicted, FEV1% predicted, FEV1/FVC%, and PC20. * p<0.05, Spearman’s rank test.
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saline (Figure 5A). As expected from previous work using the

OVA-induced asthma model, AHR expression in response to

increasing doses of methacholine increased in WT OVA/OVA

mice compared to WT sham mice (Figure 5B). Nectin4−/− mice

sensitized and challenged with OVA (Nectin4−/− OVA/OVA)

had a lower AHR than their WT counterparts when treated with

higher doses of methacholine (Figure 5B). The numbers of total

cells, macrophages, eosinophils, neutrophils, and lymphocytes in

BAL fluid were higher in WT OVA/OVA than WT mice (WT

sham) (Figure 5C), and much lower in Nectin4−/− OVA/OVA

than WT OVA/OVA mice (Figure 5C). Type 2 cytokine

expression (IL-4 and IL-13) in BAL fluid was higher in WT

OVA/OVA mice than in WT sham mice (Figure 5D). In BAL

fluid of Nectin4−/− OVA/OVA mice, and the amounts of IL-4,

IL-13 and Transwell Th1 and Th2 cytokines were significantly

lower than in WT OVA/OVA mice (Figures 5D, E). Histologic

analysis showed that WT OVA/OVA mice had mucosal gland

hyperplasia and numerous inflammatory cell and collagen

infiltrates in peribronchial areas (Figure 5F). The lung

inflammation score, which measures goblet cells and collagen-

positive areas, was 40% lower in Nectin4−/− OVA/OVA mice

than WT OVA/OVA mice (Figures 5G–I).
Nectin4 controls Afadin expression and
activation of the Src/Rac1 pathway in
OVA-induced asthma

Total Nectin4/Afadin and Src/Rac1 pathway protein levels

in the lung were higher in WT OVA/OVA than WT sham mice

(Figures 6A, B). Immunohistochemical staining revealed

increased Nectin4/Afadin and Src/Rac1 protein levels in the

mononuclear inflammatory cells and epithelial cells of WT

OVA/OVA mice (Figures 6C, D). However, both the

expression of Nectin4/Afadin and the levels of the activated

form of Src/Rac1 (p-Src/Rac1-GTP) were decreased in

Nectin4-/- OVA/OVA mice. No significant differences in Src
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and Rac1 expression were detected betweenWT OVA/OVA and

Nectin4-/- OVA/OVA mice (Figure 6).
Nectin4 interacts with Rac1-GTP in OVA-
induced asthma

To confirm that the activated form of Rac1, Rac1-GTP, was

responsible for the airway inflammation seen in Nectin4–/–

mice, double-staining immunofluorescence of Nectin4 and

Rac1-GTP was performed in lung tissue from mice with OVA-

induced asthma. The results showed a lower level of Rac1-GTP

expression in Nectin4–/– OVA/OVA than WT OVA/OVA

mice (Figure 7).
Discussion

In this study, we explored the role of Nectin4 and its

participation in Src/Rac1 signaling in asthma. Nectin4 was

shown to be highly expressed in the lung tissue of asthmatic

mice, with increased levels also measured in the blood of patients

with asthma. These results suggested that Nectin4 is a biomarker

of asthma. The pulmonary airway epithelium is a critical

external interface but it is often exposed to harmful aerosols

and pathogens (20). The proximal bronchial epithelium

comprises columnar ciliated cells and mucus-secreting goblet

cells supported by basal cells. Together, they form a selective

permeability barrier to control fluid loss, the entry of pathogens,

and inappropriate immune reactions in the subepithelial lung

mucosa (20).

The Nectin family comprises five transmembrane

glycoproteins (PVR/CD155, Nectin-1/CD111, Nectin-2/

CD112, Nectin-3, and Nectin4), all members of the

immunoglobulin superfamily. Nectin proteins are both

homophilic and heterophilic cell adhesion molecules (21, 22).

Soluble Nectin4 was detected both in the supernatant of breast
B CA

FIGURE 4

The knockdown of Nectin4 alters the expression of Afadin and the Src/Rac1 pathway. (A) Nectin4 knockdown alters the expression of Afadin
and the Src/Rac1 pathway in NHBE cells treated with Der p1. (B) The values were normalized to those of b-actin and are expressed as the
means ± SDs. (C) Time-dependent increases in TEER in NHBE cells treated with Der p1 and decreases in NHBE cells treated with Der p1 and
Nectin4 siRNA. The results are representative of at least 3 independent experiments. *p<0.05 compared to the control.
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FIGURE 5

Absence of Nectin4 prevents development of OVA-induced asthma. (A) Scheme representing the acute ovalbumin-dependent asthma model of
WT and Nectin4-/- mice. (B) Airway hyperresponsiveness in response to methacholine (Mch) (n = 6-10 mice per group). (C) Inflammatory cells in
BAL fluid. (D, E) Levels of IL-4, TNF-a, and IFN-g in BAL fluids and Lung proteins (n = 6-10 mice per group). (F) Representative images of H&E,
PAS, Masson’s trichrome-stained, paraffin-embedded lung sections of asthmatic mice (scale bar = 50 mm). (G-I). Bar graphs summarize means ±
SEMs of histological scoring of inflammation grading based on H&E staining, the number of goblet cells based on PAS staining and of fibrosis
based on trichrome staining. * p<0.05 vs. WT sham. #p<0.05 vs. WT OVA/OVA.
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tumor cell lines and in 51% of the sera of patients with metastatic

breast carcinoma (14). Among the mechanisms accounting for

Nectin4 release in cell supernatants are cell degradation,

proteolytic processes, and alternative splicing (14). In our

study, plasma Nectin4 levels were higher in asthmatic patients

than in control subjects. The relationship of Nectin4 levels to

lung function and airway responsiveness suggested the secretion

of a circulating form of Nectin4 in patients with asthma, and

thus its utility both as a blood marker for the diagnosis of asthma

and monitoring of disease progression. A previous study showed
Frontiers in Immunology 09
that the overexpression of Nectin4 alters the epithelial

architecture of NHBE cells, leukocyte transmigration, and

diapedesis (14). These findings, and those of the present study,

suggest that soluble Nectin4 is involved in the inflammatory

process of asthma.

As a candidate host exit receptor, Nectin4 (poliovirus-

receptor-like-4) interacts with high affinity with viral

attachment proteins through its membrane-distal domain (23).

Nectin4 sustains measles virus entry and the non-cytopathic

lateral spread of the virus in well-differentiated primary human
B

C

D

A

FIGURE 6

Absence of Nectin4 controls the expression of Afadin and the Src/Rac1 pathway. (A) Expression of the Nectin4/Afadin and the Src/Rac1 pathway in
ovalbumin-induced asthma model of WT and Nectin4-/- mice. (B) Densitometry of the bands obtained on three different individuals western blots. The
values were normalized to those of b-actin and are expressed as the mean ± SEMs (n = 6-10 mice/group). (C) The lung tissues of OVA-sensitized/
challenged mice were analyzed for Nectin4/Afadin and Src/Rac1 pathway expression by immunohistochemical staining (scale bar = 50 mm). (D)
Quantification of percentage of Nectin4/Afadin and Src/Rac1 pathway protein-positive areas. All quantitative analyses were performed using ImageJ
software. The results are representative of at least 3 independent experiments. * p<0.05 vs. WT sham. #p<0.05 vs. WT OVA/OVA.
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airway epithelial sheets infected basolaterally (23). The

downregulation of Nectin4 in infected epithelial cells,

including those of the macaque trachea, has been reported

(23). In our study, Nectin4 protein expression was increased in

the blood of asthma patients, and in the lung tissue in a mouse

model of asthma. The increased levels of Nectin4 in NHBE cells

treated with Der p1 may allow Nectin4 to enter the airways or

penetrate their epithelial barriers. Nectins initiate cell–cell

adhesion by their trans-interactions and, via Afadin, an actin

filament-binding protein that connects Nectins to the

cytoskeleton (24), to recruit other proteins to establish

adherens and then tight junctions (25). The four terminal

amino acids of Nectin4 bind Afadin, which tethers Nectin4 to

F-actin (26, 27). In accordance with previous studies (24–27), in

this study Nectin4/Afadin was expressed in the inflamed airway

tissue in a mouse model of asthma. This finding suggests that the

cytoskeletal connection of Nectin4 and Afadin facilitates allergen

entry and thus contributes to airway inflammation.

The Rho family GTPase Rac1 is a key regulator of many

cellular functions, such as cytoskeletal reorganization and cell

growth (28–30). It has also been implicated in antibacterial host

defenses, including leukocyte chemotaxis (29), pathogen

phagocytosis (31, 32), ROS production (33), and the regulation

of TLRs and NOD2 (34–37). The cadherin complex, including

b-catenin, Rho, and Rac, regulate the assembly and disassembly

of cell junctions (38, 39). In our study, Src and Rac1 protein

expression were increased in the lung tissue of a mouse model of

asthma, and in NHBE cells treated with Der p1, indicating that

Src/Rac1 signaling is involved in Nectin4 expression. In the

allergen sensitization mice model, and in NHBE cells treated

with Der p1, the allergen activated Rac1 (Rac1-GTP), leading to
Frontiers in Immunology 10
an increase in Nectin4 expression, airway inflammation, and

AHR. Whether the Rac1-dependent regulation of cell barriers

plays an important role in airway inflammation and thus in

asthma remains to be elucidated in further studies examining the

links between the two proteins. In NHBE cells exposed to Der p1

both Nectin4 and Afadin expression were induced via the

activation of Src/Rac1 signaling pathways. A similar

mechanism can be proposed in human airway epithelial cells.

This hypothesis is supported by the observed reductions in

Afadin stimulation and the Src/Rac1 cascade pathway

following Der p1 exposure in cells pretreated with a Nectin4

small interfering RNA (siRNA).

Previous studies reported that the knockdown of Nectin4

alters cell proliferation, expression of cell-survival-related

molecules, and regulation of angiogenesis (40, 41). Nectin4

knockdown also decreased Akt and Src phosphorylation and

suppressed angiosarcoma in an in vivo xenograft model (41, 42).

Little is known about how Nectin4 regulates target protein levels

and apoptosis, especially in asthma. Our study examined the

involvement of Nectin4 in asthma by assessing airway

responsiveness and inflammation in Nectin4−/− mice.

Decreases in airway responsiveness and inflammation as well

as in type 1 and 2 cytokines, such as IL-4, IL-13, TNF-a, and
IFN-g, were determined in the BAL fluid of Nectin4−/− mice.

Using mouse lung samples, we showed that, compared to wild

type asthmatic mice, the knockdown of Nectin4 alters the

expression of both Afadin and the activated form of Src and

Rac1. This result indicated the involvement of Nectin4 in

asthma, by regulating Src and Rac1.

In conclusion, our study demonstrated the potential role of

Nectin4 in asthma. The detection of a circulating form of
BA

FIGURE 7

Double-staining immunofluorescence of Nectin4 (Green) and Rac1-GTP (Red) in ovalbumin-induced asthma model of WT and Nectin4-/- mice
lung. (A) Representative immunofluorescence images of Nectin4 and Rac1-GTP in lung of the mice (scale bar = 100 mm). (B) Quantitation of the
fluorescence intensity of Nectin4 and Rac1-GTP. * p<0.05 vs. WT sham. #p<0.05 vs. WT OVA/OVA.
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Nectin4 in the blood of patients with asthma suggests the

involvement of Nectin4 in the initiation of airway

inflammation via a mechanism that includes the Src/Rac1

cascade pathway. Nectin4 may therefore be a biomarker and

potential therapeutic target in asthma.
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22. Lopez M, Eberlé F, Mattei MG, Gabert J, Birg F, Bardin F, et al.
Complementary DNA characterization and chromosomal localization of a
human gene related to the poliovirus receptor-encoding gene. Gene (1995)
155:261–5. doi: 10.1016/0378-1119(94)00842-g

23. Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VH, et al.
Adherens junction protein Nectin4 is the epithelial receptor for measles virus.
Nature (2011) 480:530–3. doi: 10.1038/nature10639

24. Miyoshi J, Takai Y. Nectin and nectin-like molecules: biology and
pathology. Am J Nephrol (2007) 27:590–604. doi: 10.1159/000108103

25. Takai Y, Nakanishi H. Nectin and afadin: novel organizers of intercellular
junctions. J Cell Sci (2003) 116:17–27. doi: 10.1242/jcs.00167

26. Reymond N, Fabre S, Lecocq E, Adelaïde J, Dubreuil P, Lopez M. Nectin4/
PRR4, a new afadin-associated member of the nectin family that trans-interacts
with nectin1/PRR1 through V domain interaction. J Biol Chem (2001) 276:43205–
15. doi: 10.1074/jbc.M103810200

27. Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like
molecules: roles in cell adhesion, migration, and polarization. Cancer Sci (2003)
94:655–67. doi: 10.1111/j.1349-7006.2003.tb01499.x

28. Hall A. Rho GTPases and the actin cytoskeleton. Science (1998) 279:509–14.
doi: 10.1126/science.279.5350.509

29. Van Aelst L, D'Souza-Schorey C. Rho GTPases and signaling networks.
Genes Dev (1997) 11:2295–322. doi: 10.1101/gad.11.18.2295
Frontiers in Immunology 12
30. Wennerberg K, Der CJ. Rho-family GTPases: it's not only rac and rho (and I
like it). J Cell Sci (2004) 117:1301–12. doi: 10.1242/jcs.01118

31. Lee DJ, Cox D, Li J, Greenberg S. Rac1 and Cdc42 are required for
phagocytosis, but not NF-kappaB-dependent gene expression, in macrophages
challenged with pseudomonas aeruginosa. J Biol Chem (2000) 275:141–6.
doi: 10.1074/jbc.275.1.141

32. Wong KW, Mohammadi S, Isberg RR. Disruption of RhoGDI and RhoA
regulation by a Rac1 specificity switch mutant. J Biol Chem (2006) 281:40379–88.
doi: 10.1074/jbc.M605387200

33. Bedard K, Krause KH. The NOX family of ROS-generating NADPH
oxidases: physiology and pathophysiology. Physiol Rev (2007) 87:245–313.
doi: 10.1152/physrev.00044.2005

34. Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, et al. Toll-like
receptor 2-mediated NF-kappa b activation requires a Rac1-dependent pathway.
Nat Immunol (2000) 1:533–40. doi: 10.1038/82797

35. Eitel J, Krüll M, Hocke AC, N'Guessan PD, Zahlten J, Schmeck B, et al. Beta-
PIX and Rac1 GTPase mediate trafficking and negative regulation of NOD2. J
Immunol (2008) 181:2664–71. doi: 10.4049/jimmunol.181.4.2664

36. Legrand-Poels S, Kustermans G, Bex F, Kremmer E, Kufer TA, Piette J.
Modulation of Nod2-dependent NF-kappaB signaling by the actin cytoskeleton. J
Cell Sci (2007) 120:1299–310. doi: 10.1242/jcs.03424

37. Schmeck B, Huber S, Moog K, Zahlten J, Hocke AC, Opitz B, et al.
Pneumococci induced TLR- and Rac1-dependent NF-kappa b-recruitment to the
IL-8 promoter in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol (2006)
290:L730–7. doi: 10.1152/ajplung.00271.2005

38. Piedra J, Miravet S, Castaño J, Pálmer HG, Heisterkamp N, Garcıá de
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