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Potent anti-inflammatory
activity of the lectin-like
domain of TNF in joints
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5Departamento de Bioquı́mica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte,
Brazil, 6Department of Internal Medicine 3, Rheumatology and Immunolgy, Friedrich-Alexander-
University Erlangen-Nürnberg, Erlangen, Germany
In view of the crucial role of tumor necrosis factor (TNF) in joint destruction,

TNF inhibitors, including neutralizing anti-TNF antibodies and soluble TNF

receptor constructs, are commonly used therapeutics for the treatment of

arthropathies like rheumatoid arthritis (RA). However, not all patients achieve

remission; moreover, there is a risk of increased susceptibility to infection with

these agents. Spatially distinct from its receptor binding sites, TNF harbors a

lectin-like domain, which exerts unique functions that can be mimicked by the

17 residue solnatide peptide. This domain binds to specific oligosaccharides

such as N′N′-diacetylchitobiose and directly target the a subunit of the

epithelial sodium channel. Solnatide was shown to have anti-inflammatory

actions in acute lung injury and glomerulonephritis models. In this study, we

evaluated whether the lectin-like domain of TNF canmitigate the development

of immune-mediated arthritis in mice. In an antigen-induced arthritis model,

solnatide reduced cell influx and release of pro-inflammatory mediators into

the joints, associated with reduction in edema and tissue damage, as compared

to controls indicating that TNF has anti-inflammatory effects in an acute model

of joint inflammation via its lectin-like domain.
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Introduction
Tumor necrosis factor (TNF) is a major cytokine, existing as

a transmembrane and soluble ligand, which is involved in

various acute and chronic inflammatory diseases. Robust

evidence has linked overexpression of TNF to arthritis severity

in animal models. TNF inhibitors (TNFi), including neutralizing

monoclonal anti-TNF antibodies and soluble TNF receptor

constructs, have revolutionized the treatment of rheumatoid

arthritis (RA) and spondyloarthritis (SpA) in the clinical

setting. TNF is not only a main mediator of pro-inflammatory

mediator release, cell migration, and pain development, but the

cytokine also activates enzymes that are involved in joint

destruction, by eroding cartilage while inducing inflammatory

bone resorption (1). Paradoxically, TNF was demonstrated to

provide benefit in SpA patients where bone formation rather

than erosion ensues, prompting syndesmophyte formation and

joint fusion secondary to inappropriate bone formation (2).

A f t e r c l e a vag e by ADAM17 [A d i s i n t e g r in and

metalloproteinase 17, a.k.a. TNF-alpha converting enzyme

(TACE)], the transmembrane form of TNF (tmTNF) is

released, generating the soluble TNF (sTNF) ligand. Both TNF

forms can bind to both TNF receptors I (RI, 55 kDa) and II (RII,

75 kDa)—with tmTNF having higher affinity for TNF-RII than

sTNF—thereby leading to cell death or inflammation (3–6). A

marked increase in tmTNF was detected in models of SpA, as

compared to RA, correlating with a decrease in the enzymatic

activity of ADAM17 (7). These findings suggest that the two

TNF forms can induce different activities, despite sharing the

same molecular structure and a comparable avidity for TNF

RI (7).

In sharp contrast to its deleterious role in numerous

pathophysiological phenomena, including the above-described

arthropathies, TNF also represents a major component of the

first- l ine defense against invasion by intracel lular

microorganisms, in addition to its beneficial function in tumor

surveillance (8).

The lectin-like domain of TNF, which recognizes specific

sugar ligands, such as N,N′-diacetylchitobiose (NAc) and

branched trimannoses, is spatially distinct from its receptor

binding sites (9, 10). Mapping of the lectin-like domain of

TNF was achieved by means of studying the lytic effect of

sTNF against bloodstream forms of African trypanosomes

(10–12), resulting in the generation of the TNF-derived

peptide solnatide (a.k.a. TIP peptide, AP301) with sequence

CGQRETPEGAEAKPWYC. Although these protozoan

parasites lack TNF receptors, TNF was able to kill the

parasites via a mechanism involving its lectin-like domain,

which can be specifically blocked by the oligosaccharide NAc

(10). We have also shown that TNF prevents the formation of

Candida albicans biofilms, an effect that could be blocked by

adding a TNF monoclonal antibody but not the soluble TNF
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receptor construct etanercept, the latter of which was shown not

to interfere with the activity of the lectin-like domain (13).

Interestingly, the isolated addition of NAc specifically blocked

the TNF effect on Candida biofilm formation, strongly

suggesting that TNF was operating via its lectin-like

domain (14).

More recently, it was demonstrated that solnatide improves

lung function in acutely inflamed lungs in both animal models

of acute respiratory distress syndrome (ARDS) and in ARDS

patients (15–18) upon binding to the a subunit of the epithelial

sodium channel (ENaC), which can be expressed in both

epithelial and endothelial cells (16, 19–22). Solnatide (a.k.a.

TIP peptide, AP301) has also been shown to protect kidneys

and to exert potent anti-inflammatory activity in an

experimental glomerulonephritis model (19). Thus, in

addition to different effects of the cytokine dependent on

whether tmTNF or sTNF is predominant, TNF might have

other activities that are independent of binding to its specific

TNF receptors.

Chondrocytes, osteoblasts, and mesenchymal stem cells have

been shown to express ENaC-a, to which solnatide binds (22–

25). Although the benefit of TNF inhibitors—which block the

binding of TNF ligands to their receptors—in treating

arthropathies is undisputable, not all patients achieve

remission, and there is a risk of increased susceptibility to

infection (26), in view of the important role of TNF receptors

in host immune defense to invading pathogens. Moreover, some

SpA patients hardly display clinically relevant benefit from TNFi

administration (27). Hence, in this study, we investigated

whether TNF-receptor-independent activities of TNF, such as

those mediated by the TNF-derived solnatide peptide, which

mimics the lectin-like domain, are protective in an immune-

mediated arthritis [methylated bovine serum albumin (mBSA)]

mouse model.
Methods

Reagents

All reagents were purchased from Sigma Chem Co., São

Paulo, Brazil, unless stated otherwise. Solnatide was kindly

donated by Apeptico Forschung und Entwicklung, Vienna,

Austria, and was dissolved at the time of use using Roswell

Park Memorial Institute (RPMI) 1640 supplemented with

L-glutamine.
Animals

A total of 42 Balb-C mice of either sex (25–30 g) were

provided by the central animal facilities of our institution.

Animals were housed in cages (six per cage) in temperature-
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controlled rooms with a 12-h light/dark cycle with free access to

water and food. At the start of any experiments, mice were 2.5

months of age. All animal procedures and experimental

protocols were approved by our local ethics committee on

animal experimentation, which follows the recommendations

of the Brazilian Council on Animal Experimentation

(CONCEA) (protocol number 113/07). All efforts were made

to minimize animal suffering and the number of animals used.
mBSA arthritis

Groups of mice received either 500 mg subcutaneous (s.c.)

methylated bovine serum albumin (mBSA) s.c. mixed with

Freund’s complete adjuvant (immunized) or incomplete

Freund’s adjuvant [false-immunized (FI)], followed by a

booster injection 7 days later. Twenty-one days following this

immunization process, mice received intra-articular (i.a.) 90 mg
mBSA. Groups were then sacrificed 7 h (acute phase) or 3 days

(chronic phase) following the i.a. mBSA challenge. All injections

were done under xylazine (10 mg/kg)/ketamine (80 mg/kg)

intra-peritoneal (i.p.) anesthesia, and sacrifice was done under

terminal anesthesia.
Treatments

In order to investigate the effect of blocking the endogenous

lectin-like domain of TNF, groups of mice received 100 mg of NAc
in 10 ml saline i.a. or 10 ml saline, 30 min prior to mBSA i.a. In a

strategy to evaluate a possible preventive local anti-inflammatory

activity of solnatide, groups of naive mice subjected to mBSA

arthritis received 10–20 mg of 10 ml i.a. solnatide solutions. As a
local therapeutic strategy, another group of mice received 10 mg/
10 ml solnatide or 10 ml saline given i.a. 2 days after i.a. challenge

with mBSA followed by sacrifice, under terminal anesthesia, after

24 h. In a last set of experiments, as a systemic therapeutic

strategy, another group of mice subjected to mBSA arthritis

received intravenous (i.v.) solnatide (1–10 mg) immediately prior

to i.a. challenge with mBSA.
Assessment of pain behavior and knee
joint swelling

Nociceptive behavior was assessed using the electronic

pressure meter nociception paw test by an observer blinded to

group allocation (28). Animals were placed in acrylic cages (12 ×

10 × 17 cm high) with a wire grid floor, 15 min before the

beginning of the tests, in a quiet room. Stimulations were

performed only when animals were quiet, without exploratory,

urination, or defecation movements and not resting on their

paws. The electronic pressure meter consists of a hand-held
Frontiers in Immunology 03
force transducer fitted with a polypropylene tip (Electronic von

Frey aesthesiometer, Insight Equipamentos Cientıfícos Ltda.,

Brasil). The polypropylene tip was applied perpendicularly to

one of the five distal footpads of the right hind paw. The

intensity of the stimulus was automatically recorded when the

paw was withdrawn. The test was repeated three times, until less

than 1 g difference between measurements was obtained. Results

were expressed as the mean value of three withdrawal threshold

measurements (g). The diameter of the joints was measured with

a caliper (mm), with the whole knee joint swelling determined as

the increase in joint diameter. Results were expressed as the D
(mean variation of three measurements for each joint) relative

to baseline.
Assessment of cell influx and
inflammatory mediators in joint exudates

Animals were sacrificed under anesthesia, and the synovial

cavity of the knee joints was washed with 0.05 ml saline

containing 10 mmol/L EDTA. Joint washes were collected by

aspiration, and total cell counts were performed using a

Neubauer chamber. Differential cell counts were performed

using the panoptic Instant Prov™ staining kit (New

ProvBrasil™). After centrifuging (500 g/10 min), the

supernatants were stored at −80°C until used for measuring

the concentrations of interleukin (IL)-1b, IL-6, CCL-2, and
CXCL1 using commercially available kits (R & D Systems, São

Paulo, Brazil).
Histopathology

Knee joint tissues were excised for the histological study. After

fixation in 10% v/v formaldehyde solution and decalcification (5%

v/v formic acid in 10% v/v formaldehyde solution), the whole

joint, comprising the distal femoral and proximal tibial

extremities, was processed for paraffin-embedding and staining

with hematoxylin-eosin (HE) and safranin-O. Analysis was

expressed as one resul t /sample . Semi-quant i tat ive

histopathological evaluations were performed by an

independent observer (VCCG) blinded to group allocation

considering synovial proliferation and cell infiltration and

glycosaminglycan content (safranin staining intensity), ranging

from 0 to 3 (0, absent; 1, mild; 2, moderate; 3, severe). Results were

expressed as the median value for each group of four animals.
Statistical analysis

Results were presented as means ± SD for pain behavior and

cell counts in joint washings or medians for histology of

measurements made on at least three animals in each group.
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Differences between means and medians were compared using

Student’s “t” or Mann–Whitney tests, respectively; p < 0.05 was

considered as significant.
Results

Effect of the lectin-like domain inhibitor
N,N′-diacetylchitobiose in immune-
mediated arthritis

Figure 1 shows that injection of NAc, which binds to the

lectin-like domain of TNF (9, 10) into the joints of mice
Frontiers in Immunology 04
subjected to mBSA arthritis, caused a trend to increased cell

counts—albeit not statistically significant—measured after 7 h in

jo in t exuda t e s , w i th a predominance (>85%) o f

polymorphonuclear cells (Figures 1A–D). This strategy aimed

to determine the effect of specifically blocking the lectin-like

domain of TNF released following development of mBSA

arthritis. The injection of NAc was also associated with an

increase in the levels of pro-inflammatory cytokines and

chemokines assayed, although only the increase in IL-1 and

CXCL1 reached statistical significance, as compared to levels in

animals subjected to mBSA arthritis that received saline

(Figures 1E–G). Joint hyper-nociception was not altered in

mice subjected to mBSA arthritis that received NAc (Figure 1I).
B C

D E F

G H I

A

FIGURE 1

Mice subjected to mBSA arthritis received i.art. N-N′-diacethylchitobiose (NAc; 100 µg/10 µl) or saline (−) 30 min prior to challenge with mBSA.
Cell counts and cytokine and chemokine levels were assayed in joint washes collected after 7 h; FI stands for control, false-immunized animals;
*p<0.05 compared to FI;!p<0.05 compared to mBSA, using Student’s “t” test (n≥3 animals/group). (A–D) Total and differential cell counts; (E–G)
interleukin (IL-1), IL-6, CXCL-1, and CCL-2 levels; (I) hypernociception measured using von Frey’s test.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1049368
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pinto et al. 10.3389/fimmu.2022.1049368
Effect of a prophylactic intra-articular
administration of solnatide in immune-
mediated arthritis

Administration of solnatide (10 or 20µg) into the joints of

naive mice promoted a mild, acute cell influx, with

predominance (>85%) of polymorphonuclear cells, which was

similar to that observed in FI animals (Figures 2A–D). Similarly,

cytokine and chemokine levels in joint exudates of naive mice

that received solnatide did not significantly differ from those

observed in FI animals, used as controls (Figures 2E–H). By

contrast, the treatment of mice subjected to mBSA arthritis with

solnatide significantly reduced cell counts in joint exudates,

measured at 7 h after intra-articular challenge (Figures 1A–D).

Additionally, levels of pro-inflammatory cytokines and

chemokines were also significantly reduced in mice subjected

to mBSA arthritis that were treated with solnatide

(Figures 2E–H).
Effect of a systemic administration of
solnatide in immune-mediated arthritis

Similar to what was seen with the local prophylactic

strategy mentioned above, systemic (i.v.) administration of

AP301 led to a significant decrease in joint edema and of the

acute cell influx into joint exudates, with a decrease in

polymorphonuclear cell, lymphocyte, and mononuclear cell

counts (Figures 3A–E).
Effect of a therapeutic intra-articular
administration of solnatide in immune-
mediated arthritis

In order to evaluate the therapeutic potential of the lectin-

like domain of TNF, a group of mice subjected to mBSA arthritis

received solnatide (10 or 20 µg i.a.) 2 days after intra-articular

challenge with mBSA. These mice were sacrificed after 24 h, and

the joints were excised for histopathological examination.

Results in Figure 4A show a significant reduction in

histological scores, followed by representative illustrations of

histological sections. Arrows show that staining with safranin O,

indicative of glycosaminoglycan content in the cartilage, is

reduced in mice subjected to mBSA arthritis treated with

saline (Figure 4C), as compared to the joint of a naive animal

(Figure 4B). Figure 4D illustrates a partial restoration of staining

of the glycosaminoglycans of the joint cartilage in a sample from

the group that received solnatide, which means reduced cartilage

damage. An extensive cell infiltration and synovial proliferation

can also be seen in the sample from animals subjected to mBSA

arthritis treated with saline (Figure 4C), which is significantly
Frontiers in Immunology 05
reduced in the samples from mice treated with solnatide

(Figure 4D and Table 1).
Discussion

The development of a synthetic peptide, solnatide (a.k.a. TIP

peptide, AP301), which encompasses the amino acid sequence of

the lectin-like domain of TNF, is a valuable tool to dissect TNF

receptor-dependent from TNF receptor-independent effects.

Similar to what happens in the above-described arthropathies,

activation of TNF RI has been shown to be crucial to TNF effects

in immune glomerulonephritis (29), where it mediates the

recruitment of monocytes and activation of mesangial and

endothelial cells and podocytes, at least partially via the p38

MAP kinase pathway (19, 30–32). Administration of solnatide

(i.p.) significantly reduced inflammation in an experimental

glomerulonephritis model, induced by nephrotoxic serum, as it

was associated with the reduction in the release of IL-1b and IL-6
and of the chemokines macrophage chemotactic protein (MCP)-

1 and keratinocyte-derived chemokine (KC) (19). Similarly, a

previous study showed that intratracheal administration of

solnatide to rats subjected to acute hypobaric hypoxia followed

by exercise reduced pulmonary edema, decreasing alveolar

hemorrhage and lung damage. This protective effect was

associated with the decreased release of IL-1, IL-6, TNF, and

IL-8 into the bronchoalveolar lavage fluid (33).

Our present data for the first time demonstrate that solnatide

significantly reduces inflammatory cell infiltration and joint

damage in an immune-mediated (mBSA) experimental

arthritis model in mice. The effect of solnatide was observed

using both prophylactic and therapeutic strategies and following

loca l ( intra-ar t icu lar) and systemic ( intravenous)

administration. In keeping with data from other studies,

solnatide actions were also associated with a reduction in pro-

inflammatory cytokine (IL-1b and IL-6) and chemokine (CCL2

and CXCL-1) levels in joint exudates.

The mechanism of action of solnatide involves binding

specifically to the C-terminal domain of the a-subunit of the
epithelial sodium channel (ENaC) (15, 21, 22). ENaC expression

has been demonstrated in a range of epithelial and endothelial

cells (15, 16). In joints, ENaC is expressed in chondrocytes and

osteoblasts (24, 25). Our observation that solnatide was effective

not only when injected locally but also following a systemic

prophylactic administration led us to speculate that it operates

via resident cells inside the joint. In addition to a rich blood

supply, with fenestrated capillaries, the synovial tissue harbors

type I, fibroblast-like, and type II, macrophage-like synoviocytes

(34). Although chondrocytes and osteoblasts were shown to

express ENaC receptors, it is likely that endothelial cells and type

II synoviocytes, which were also shown to express ENaC (19,

25), are the primary targets of this peptide following intra-

articular injection rather than infiltrating cells, which gain access
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B

C D

E F

A

G H

FIGURE 2

Mice subjected to mBSA arthritis received. i.art. solnatide (AP 301) or saline (−) 30 min prior to challenge with mBSA. Cell counts and cytokine
and chemokine levels were assayed in joint washes collected after 7 h. FI stands for control, false-immunized animals; *p<0.05 compared to FI;!
p<0.05 compared to mBSA, using Student’s “t” test (n≥3 animals/group). (A–D) Total and differential cell counts; (E–H) interleukin (IL-1), IL-6,
CXCL-1, and CCL-2 levels.
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to the joint approximately 4 h following joint challenge.

Additionally, it has been shown that infiltrating leukocytes do not

express ENaC (35, 36). Coupling of solnatide to ENaC channels in

endothelial cells could reduce inflammation, thereby reducing local
Frontiers in Immunology 07
edema, as observed in our study. In accordance with our

observations in other models of inflammation (19), it is likely

that binding of solnatide to ENaC expressed in type II

(macrophage-like) synoviocytes would downregulate the release
B

C D

E

A

FIGURE 3

Mice subjected to mBSA arthritis received i.v. solnatide (AP 301) or saline (−) just prior to challenge with mBSA. Joint volume and cell counts
were assessed with calipers or in joint washes, respectively. FI stands for control, false-immunized animals; *p<0.05 compared to FI;!p<0.05
compared to mBSA, using Student’s “t” test (n≥3 animals/group). (A–D) Total and differential cell counts; (E) D paw volume relative to baseline.
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of pro-inflammatory chemokines and cytokines, thereby reducing

cell recruitment and the subsequent release of additional

inflammatory mediators. As a result, administration of solnatide

would lead to an earlier resolution of inflammation and joint

destruction in our immune-mediated arthritis model, as

indicated by our present data. A previous study showing that

solnatide activates ENaC in mice lacking both TNF receptors

(37) and the recent demonstration that depletion of the a subunit

of the ENaC blunted the protective effect of solnatide in a TNF-

induced inflammation in glomerular endothelial cells (19) led us to

propose that there is a high likelihood that solnatide exerts its anti-

inflammatory effects in mBSA arthritis via a mechanism

independent of the classical TNF receptors but dependent upon
Frontiers in Immunology 08
the interaction between the lectin-like domain of the cytokine

mimicked by solnatide and ENaC. This is substantiated by our

observation that treatment with NAc, an oligosaccharide blocking

the lectin-like activity of TNF, aggravates pathology.

In summary, these data show that solnatide, a synthetic

peptide mimicking the lectin-binding domain of TNF, reduces

inflammation in an immune-mediated arthritis model. The anti-

inflammatory activity of solnatide is associated with the

reduction in joint damage. Since local therapeutic applications

of solnatide have already been carried out in humans and have

shown to dampen lung inflammation, there is a strong rationale

to use solnatide as local treatment in inflammatory arthritis to

achieve resolution of arthritis.
FIGURE 4

Mice subjected to mBSA arthritis received i.art. solnatide (AP 301) or saline (−) 2 days after challenge with mBSA being sacrificed after 24 h; (A)
score (medians) of HE-stained whole joints compared using Mann–Whitney. Representative illustrations of synovium and cartilage (arrows)
stained with safranin O and synovial cell influx (solid arrows); (B) naive joint; (C) mBSA (−); (D) mBSA treated with AP301; original 200×.
TABLE 1 Histopathological analysis of the effect of solnatide in mBSA arthritis.

Cell influx Synovial proliferation Cartilage damage Total Score

Naive 0 (0 -0) 0 (0-1) 0 (0-0) 0 (0-0)

NT 2.5 (2-3) 1 (1-2) 2 (2-3) 2.5 (2-3)

Solnatide 1 (1-2) 1 (0-1) 1 (1-2) 2.5 (1-2)

P value* 0.0086 0.0256 0.0208 0.0383
f

Mice subjected to mBSA arthritis received i.art. solnatide or saline (NT) 2 days after challenge with mBSA being sacrificed after 24h; a) Score (medians) of HE and Safranin-O stained whole
joints compared using Mann-Whitney; n=6 animals/group; NT, non-treated; p value comparing NT vs Solnatide.
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