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Tumor-associated macrophages (TAMs) play a critical role in supporting tumor

growth and metastasis, taming host immunosurveillance, and augmenting

therapeutic resistance. As the current treatment paradigms for cancers are

generally insufficient to exterminate cancer cells, anti-cancer therapeutic

strategies targeting TAMs have been developed. Since TAMs are highly

heterogeneous and the pro-tumoral functions are mediated by phenotypes

with canonical surface markers, TAM-associated materials exert anti-tumor

functions by either inhibiting polarization to the pro-tumoral phenotype or

decreasing the abundance of TAMs. Furthermore, TAMs in association with the

immunosuppressive tumor microenvironment (TME) and tumor immunity have

been extensively exploited in mounting evidence, and could act as carriers or

accessory cells of anti-tumor biomaterials. Recently, a variety of TAM-based

materials with the capacity to target and eliminate cancer cells have been

increasingly developed for basic research and clinical practice. As various TAM-

based biomaterials, including antibodies, nanoparticles, RNAs, etc., have been

shown to have potential anti-tumor effects reversing the TME, in this review, we

systematically summarize the current studies to fully interpret the specific

properties and various effects of TAM-related biomaterials, highlighting the

potential clinical applications of targeting the crosstalk among TAMs, tumor

cells, and immune cells in anti-cancer therapy.
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Introduction

It has been illustrated that tumor initiation and progression

are not only related to the genomic changes of cancerous cells,

but are also affected by the tumor microenvironment (TME) (1,

2). Tumor associated macrophages (TAMs), as a key regulator in

TMEs, are made up of a mix of tissue resident and exudative

macrophages in varying proportions based on the type, location,

and stage of the tumor (3). Typically, TAMs can be designated as

M1- and M2-polarized macrophages. M1 macrophages produce

pro-inflammatory cytokines, including interleukin‐1b (IL‐1b),
IL‐6, IL‐12, tumor necrosis factor‐a (TNF‐a), and interferon‐g
(IFN‐g), etc., which activate host immune responses against

microbes and viruses, subsequently leading to the suppression

of tumor progression (4). While M2 macrophages secrete anti‐

inflammatory cytokines, including IL‐10, IL‐13, and

transforming growth factor‐b (TGF‐b), exerting the promotion

of cancer occurrence and development (5). However, there are

still some situations where M2 macrophages might be an

inhibitor in tumor progression. For instance, Rakaee et al.

provided evidence showing that high level of CD204+/CD68+

M2 macrophages would be an independent positive prognostic

marker of prolonged survival in lung cancer (6), indicating the

exact function of the TAMs highly depends on cellular

phenotype. To support this notion, in our preliminary study,

we found that oral cancer metastasis in clodronate-treated mice

was not significantly reduced by M1/2 macrophage reduction

(7), suggesting that TAMs with specific surface markers, instead

of the board M1/2 macrophages, exert various cellular functions

in cancers. Although the controversy of TAMs subtypes in

tumor biological behaviors, TAMs are still extensively studied

and regarded as a great potential target. Importantly, various

TAMs-related materials have been created for anti-tumor

therapy not only in the basic research but also in the pre-

clinical settings.

Biological materials based on TAMs have recently been

divided into three main aspects as follows: materials targeting

TAMs directly, and those targeting TAMs indirectly through

cancer cells and through immune cells (8, 9). An increasing

number of studies of biological materials targeting TAMs have

focused on experimental and pre-clinical anti-tumor approaches

with encouraging signs; however, there are still a number of

challenges to overcome before they can be employed in clinical

practice. For instance, materials aiming at TAMs polarization

might be oversimplified and problematic, as TAMs cannot be

readily split into M1/M2 macrophages due to the existence of

more nuanced phenotypes (10, 11). The cellular marker cluster

of differentiation (CD68) has been widely used as a pan-

macrophage marker in most studies; however, it has been

reported that CD68 occasionally expressed in dendric cells,

stromal cells, even cancer cells (12), indicating that any

biological materials targeting CD68+ TAMs might be off-
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target. Furthermore, there are still some obstacles to the

optimization of biocompatibility and efficacy in the application

of nanomaterials targeting TAMs. Thus, to comprehensively

understand the current progress of TAMs based on materials, in

this review, we systematically summarized the design and

application of materials based on TAMs from various routes

and targets, providing new insights for anti-cancer

therapeutic avenues.
Materials targeting tumor-
associated macrophages directly

TAM phenotypic heterogeneity and its
relationship with materials application

TAMs are highly heterogeneous stromal cells, and these

distinct phenotypic characteristics are well established by

techniques including immunohistochemistry, flow cytometry,

single-cell sequencing, etc. Recently, it has been proposed that

tissue macrophages arise from not only blood monocytes, but

also the embryonic precursors deriving from the yolk sac and/or

fetal liver (13, 14). The differentiated cell type’s chromatin

landscape, among other epigenomic traits, represents the

macrophage developmental origins (15), indicating that

epigenetic modification and ontogeny can influence its identity

development and thus dictate phenotypic heterogeneity.

Furthermore, the TME in different cancers could also

significantly alter macrophages phenotypes in distinct

anatomical regions. For instance, TAMs are formed of a

heterogeneous population of macrophages in hepatocellular

carcinoma and breast cancer (16, 17). Interestingly, even in

the same TME, the majority of the TAMs population differs in

phenotype, which is related to the distances between cells, and

systemic toxicity might result if all types of TAMs are targeted.

To support this, using mass cytometry with extensive antibody

panels, Chevrier et al. found that there were 17 unique

macrophage phenotypes in the TME of human renal cell

carcinoma, and even that the same type of macrophage not

only expressed the CD169 (as an anti-tumorigenic marker), but

also co-expressed with pro-tumorigenic markers including

CD163, CD206, etc. (10), suggesting that the application of

targeting materials should focus on, or be aware of, the most

important subsets and paradoxical behaviors to optimize the

therapeutic efficacy. Another potential hypothesis for the

different phenotypic heterogeneity in the same type of tumor

is that the environment caused by distinct sites might modulate

macrophage phenotypes. For instance, in gastric cancer, Huang

et al. provided data showing that CD68+IRF8+ macrophages

dominated in the closest sites to the cancer cells, while the

CD68+CD163+CD206+ macrophages dominated in the furthest

sites (18), demonstrating the macrophages marker expression
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differences in tumor areas. Due to heterogeneity, TAMs release

different mediators: either anti-tumor, including IL-6, IL-1b,
chemokine (C-C motif) ligand 2 (CCL2), and TNF, or pro-

tumor, including IL-10, TGF-b, vascular endothelial growth

factor (VEGF), platelet-derived growth factor (PDGF), CCL17,

CCL22, and CCL24 (19, 20). By using the monoclonal and

specific antibodies for cellular markers, various cytokines and

transcriptional profiles have been utilized for targeting TAMs

(21). In summary, the phenotypic heterogeneity of TAMs

depends on cellular origins, cancer type, and cellular

distribution in the TME, etc., and with the discovery of more

specific markers, we will be able to more accurately identify the

subpopulations and develop the targeting materials for anti-

cancer therapy.
TAM co-culture systems and their
relationship with materials application

To monitor the biological behavior of TAMs, co-culture

systems, which are necessary in recreating TMEs, could provide a

promising human in vivo-like tissue model, including two-

dimensional (2D) and three‐dimensional (3D) cell cultures

(Figure 1A). In vitro 2D cell cultures, such as Transwell inserts

with Matrigel, have been widely used to explore the polarization

and pertinent signaling pathways of TAMs in vitro (22). However,

limited by physical structure and components, existing 2Dmodels

might remodel cells and their internal cytoskeleton, and affect cell

arrangements onaflat substrate (23),making the explorationof cell

performance and the simulation of natural environments in vivo

difficult. Thus, 3D co-culture systems have arisen to mimic the

situation in vivo, in which the spatial organization of cells is more

reliable for the physiological relevance of experiments. At present,

the types of 3D co-culture models related to TAMs can mainly be

classified into spheroids, scaffold-based models, and microfluidic-

based 3D models (Figure 1A). The 3D multi-cellular spheroid

model, using the ‘hanging drop’ approach, or aggregate cultures

with amatrix construction including heterogeneous populations of

cells could be devised with hypoxia and necrotic patches to imitate

tumor features in vivo (24, 25), leading to better comprehension of

TAM performance as influenced by the reactive oxygen species

(ROS) and hypoxic region in the TME. Regarding scaffold-based

models, a large number of either organic or inorganic matrices and

scaffolds have been employed tomimic the extracellularmatrix due

to good biocompatibility. For instance, Matrigel is composed of a

reconstituted basement membrane extract (BME) secreted by a

mouse sarcoma, and the natural scaffolds consists of purified

proteins such as type I collagen, while artificial scaffolds are made

up of polyethylene glycol (PEG)-based hydrogels and synthetic

alternatives toMatrigel (26). Additionally, microfluidics, with high

spatial controllability, can support short-term culture, and are

usually designed with a different number of chambers and lateral

channels. For example, utilizing the adjacent gel channels in a
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microfluidic device to explore paracrine signals, Huang et al. found

that the macrophages invaded the gels composed of type I collagen

and Matrigel, and transformed into distinct phenotypes when

cultured next to the cancer cells (27). Together, although the 3D

in vitromodelshavebeenwidely employed tomimic in vivo settings

for more closely analyzing the cell-to-cell crosstalk and the

organoid, etc., the inner cells in the sphere models might not be

flourished by angiological system like them in human tumors. In

the spheroids, cells locating in different zones exhibit different

proliferation, and the tumor cells in the core exhibited quiescent

due to the limitedoxygen andnutrientdelivery (28).Unlike this, the

inner cells in human tumors could be flourished by vascular and

lymphatic vessels, even the specific vasculogenic mimicry (VM)

which was defined as a fluid conducting channel embedded in

extracellularmatrix to feed tumor cells (29).Of note, themajority of

macrophages originate frommonocytes in blood and affiliate in the

perivascular lesions; thus, one of the challenges for 3D co-culture

systems for macrophages is to create microcirculation in the 3D

culture models and locate the macrophages beside

extravascular sites.
TAM recruitment and its relationship
with materials application

Monocytes andmonocyte-related myeloid-derived suppressor

cells (M-MDSCs) are the main precursors of TAMs, which are

recruited to the tumor site under the guidance of a variety of

chemical attractants and influence tumorprogression; thus, various

materials targeting TAM recruitment have been created for anti-

cancer therapy (Figure 1B). Since the process is influenced by

chemokines, such as CCL2, colony-stimulating factor 1 (CSF-1),

chemokine (C-X-Cmotif) ligand 12 (CXCL12), etc., and cytokines,

including IL-6, IL-8, IL-34, and members of the VEGF family,

blocking the related signalingpathwayswithnanoparticles (NPs)or

specific antibodies is an effective way to affect TAM recruitment

from both an epigenetic and molecular level. Taking CCL2-CCR2

signaling pathways as an example, Shen et al. found that prepared

siRNA-coated NPs (CNP/siCCR2) effectively inhibited CCR2

expression and blocked the recruitment of monocytes to the

tumor site, leading to reduced tumor metastasis (30). Despite the

encapsulation of direct effectors, lipid NPs could also load mRNA,

which could translate a single-domain antibody (VH) as bispecific

CCL2/CCL5 inhibitors (BisCCL2/5i), reversing the infiltration of

TAMs in theTME (31). In another blocking approach,monoclonal

antibodies (mcAbs) targeting signals inTAMrecruitmenthave also

been developed as anti-tumor therapy by binding to and

neutralizing the surface markers, and then modulating TAM

recruitment with the suppression of adhesion and migration to

the vascular endothelium and chemotaxis, including anti-CSF-1R

mcAbs (32) andneutralizingCD11bmcAbs,which couldalsoact as

adjuvants to radiotherapy (33). Therefore, targeting the specific

signaling pathways of monocytes can effectively inhibit TAM
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recruitment, reduce TAM infiltration in solid tumors, and reshape

the immunosuppressive TME, while the protection of monocytes

that derived tomacrophages innormal tissues isworthnoting in the

process. To support this, Mehta et al. provided data demonstrating

that anti-CSF-1R antibodies influenced monocyte/macrophage

migration in triplenegative breast cancer (34). In summary,

compared with injecting antibodies themselves, mRNA-loaded

NPs, which allow the generation of immunotherapeutic proteins

in the TAM nucleus and cytoplasm, are equipped with a specific

signaling peptide at the N-terminal end of BisCCL2/5i and secrete

to the TME effectively, thus taking effect at lower doses and

reducing possible systemic toxicity. Furthermore, to maximize

the efficacy of agents, which are widely distributed, preferential
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aggregation in myeloid cells around bone marrow and peripheral

blood is the potential area of inquiry taking advantage of the

properties of materials.

TAM polarization and its relationship
with materials application

Characterized by different surface markers, secretions, and

functions, the polarization state of TAMs is not constant as a result

of plasticity, which transforms towards the M1 phenotype for pro-

inflammation and anti-tumor effects, while alternatively to M2

exerting anti-inflammation and pro-tumor functions. At present,

the strategy of targetingTAMpolarization is primarily accomplished
A C

B

FIGURE 1

Culture models in vitro for tumor-associatedmacrophages (TAMs) and targeted approaches for TAM recruitment and polarization. (A) The structure of
main TAM co-culture systems. Compared with two-dimensional (2D) cultures, which traditionally cultivate macrophages and cancer cells on a plane,
3D culture models including spheroids, scaffold-based models, and microfluidic-based models are more accurate in reproducing cell and tissue
physiology. (B) TAMs derive frommonocytes and recruit into tumor sites guided by various chemokines and cytokines. By targeting chemokine (C-C
motif) receptor 2 (CCR2), colony-stimulating factor 1 receptor (CSF-1R), and CD11b/CD18, nanoparticles (NPs), including siRNA-coated NPs (CNP/
siCCR2) and lipid NPs, and antibodies can effectively reduce TAM infiltration and reshape immunosuppressive tumor microenvironments. (C) Since M1
macrophages are typically identified by the secretion of surface markers CD86 and tumor necrosis factor-a (TNF-a), while M2 macrophages are
identified by CD206 and interleukin‐10 (IL‐10), the main mechanism of the various materials that affect the polarization of TAMs is interference with
the expression of the relevant markers. Some natural ingredients, such as ceramide (Cer) and palmitic acid (PA), could act as agonists of toll-like
receptors (TLRs), efficiently modulating the STAT3 signaling pathways and polarizing TAMs to the M1 phenotype. Regarding artificial ingredients,
exosomal miRNA, which affects the diverse signaling pathways for the expression of markers, monoclonal antibodies (mcAbs) against MARCO
receptor, which is expressed by M2 macrophages can repolarize M2 back to TAMs, and NPs, modulate related signaling pathways and reactive oxygen
species (ROS) release, exhibiting with efficacy in cancer therapy. Back arrows: promotion; Red “T” arrows: inhibition.
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by regulating signalswith agonists and inhibitors, etc. (Table 1).With

regard to agent type, biological materials are mainly composed of

natural and artificial ingredients, including RNA, antibodies, NPs,

etc. (Figure 1C). For instance, lipids in natural ceramide (Cer) and

palmitic acid (PA) could bind to TLR (toll-like receptor) and cause

M2 phenotype repolarization, subsequently inhibiting human colon

cancer invasion (39). Since these natural lipids are non-toxic, highly

concentrated in vivo, and easily isolated from plasma membrane,

powerful properties might be further explored in blocking TAM

polarization for anti-cancer therapy. Artificial materials such as

exosomal miRNAs, which could influence the production of target

mRNAs by binding to their 3′untranslated regions (3′UTRs), utilize
transcription factors including PPARs, STAT3/6, etc., and induce

TAM repolarization at the transcriptional level. For instance, Ying

et al. showed that exosomal miR-222-3p promotedM2macrophage

polarization by the SOCS3/STAT3 pathway in ovarian cancer (50).

Furthermore, mcAbs based on blocking TAM polarization could

interact with related receptors, directly affecting tumor progression.

For example, MARCO expressed by M2 macrophages and the

injection of its specific antibody (ED31) decreased tumor growth

and metastasis in vivo by polarizing TAMs to the M1 subtype (51).

Importantly, organic NPs, RP6530 (C23H18FN5O2), a novel PI3Kd/g
inhibitor with nanomolar inhibitory potency, suppressed tumor

growth by downregulating the limiting glycolytic enzyme PKM2

and repolarizing M2 (44), indicating that kinases in signaling

pathways related to macrophage phenotypic polarization can also
Frontiers in Immunology 05
be targeted. Different from influencing TAMs themselves, inorganic

NPs, such as ferumoxytol and calcium carbonate NPs, can mediate

the repolarization of TAMs by regulating the ROS and acidity of the

TME. For instance, Zanganeh et al. found that, with the increase in

M1, ferumoxytol significantly inhibited the growth of subcutaneous

adenocarcinoma in mice (52). Notably, due to the limitations of

inorganic materials’ own properties on the human body in that iron

over-exposure might increase the incidence of cancer by increasing

oxidative stress andDNAdamage, the application needs to pay strict

attention to the dosage and timing. On the whole, therapeutic

strategies targeting TAM polarization processes mainly include the

modulation of gene expression, surface receptors, and the TME,

among which organic NPs targeting enzymes or signaling pathways

might be more effective without reliance on FcR-like antibodies.

Materials based on tumor-
associated macrophages for
targeting cancer cells

The application of TAM-related
antibodies for targeting cancer cells

Therapeutic antibodies can stimulate immune-mediated

tumor cell death by engaging innate immune cell lineages or

activating complement cascades once they have been bound to
TABLE 1 Application of targeting materials for TAM polarization in cancers.

Tumor Impact on targets Agent Carries Applications Effects Ref.

BC STAT3 and NF‐kB inhibitor HA‐coated PeiPLGA‐MTX NPs In vivo Repolarize M2 (35)

BC, MEL TLR4 agonist Paclitaxel N/A In vivo and vitro Guide TAMs to M1 (36)

BCL, CC TLR9 agonist IMO-2125 N/A In vivo Increase M1 (37)

CC CSF-1R inhibitor and CD40 agonist N/A N/A In vivo and vitro Repolarize M2 (38)

CC IL-10/STAT3/NF-kB signal inhibitor Cer; PA N/A In vitro Block M2 polarization (39)

CC PI3K inhibitor LY294002 N/A In vitro Modulate M2 polarization (40)

GBM, MEL,
OC

IRF5/IKKb antagonist IVT-mRNA NPs In vivo Repolarize M2 (41)

HCC HGF and MIF inhibitor miR-144/miR-451a N/A In vitro Increase M1 (42)

HCC RelB/p52 antagonist Baicalin N/A In vivo and vitro Induce TAMs to M1 (43)

HL PI3Kd/g inhibitor RP6530 N/A In vivo and vitro Switching M1-like
reprogramming

(44)

HNSCC TLR7 agonist 1V270 N/A In vivo Increase ratio of M1/M2 (45)

MEL CSF-1R inhibitor Anti-CSF-1R siRNA
(siCD115)32

M2NPs In vivo Modulate M2 polarization (46)

PC Boost IL-12, TLR agonist ZA N/A In vitro Polarize to M1 TAMs (47)

PDAC HLA-DR, CD40, CCR7 agonist; CD163, CD206
inhibitor

Gemcitabine N/A In clinic trial Modulate M1 polarization (48)

SAR TLR4 agonist Cationic polymers N/A In vivo and vitro Reverse TAMs polarization (49)
frontiersi
BC, breast cancer; BCL, B-cell lymphoma; CA, corosolic acid; Cer, ceramide; CC, colon cancer; CSF-1R, colony-stimulating factor 1 receptor; GBM, glioblastoma; HA, hyaluronic acid;
HCC, hepatocellular carcinoma; HDAC, histone deacetylase; HGF, hepatocyte growth factor; HL, Hodgkin lymphoma; HNSCC, head and neck squamous cell carcinoma; IKKb, a kinase
that phosphorylates and activates IRF5; IRF5, Interferon Regulatory Factor 5; IVT, In vitro-transcribed; LCL, long-circulating liposomes; M2NPs, M2-like TAM dual-targeting
nanoparticles; MEL, melanoma; MIF, migration inhibitory factor; miRNA, microRNA; N/A, not available; NPs, nanoparticles; NSCLC, non-small-cell lung cancer; OC, ovarian cancer;
OSCC, oral squamous cell carcinoma; PA, palmitic acid; PC, prostate cancer; PDAC, pancreatic ductal adenocarcinoma; PeiPLGA‐MTX, polyethyleneimine poly(lactic‐co‐glycolic acid)
carrying methotrexate; SAR, sarcoma; siRNA, small interfering RNA; TAMs, tumor-associated macrophages; TLR, toll-like receptor; ZA, zoledronic acid.
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cell surface antigens. As immune effectors, macrophages can not

only express antibody fragment crystallizable receptors (FcR),

but also crosstalk with tumor cells through the efficiency of

various antibodies as they could directly execute antibody-

dependent cell-mediated cytotoxicity (ADCC) and antibody-

dependent cellular phagocytosis (ADCP), as well as

complement-dependent cytotoxicity (CDC). TAMs in the

TME are crucial to increase the effectiveness of antibody-
Frontiers in Immunology 06
mediated cancer immunotherapy, and the functions of TAMs

have been proven to contribute to mcAbs’ effectiveness in vitro,

in vivo, and in clinical trials (Table 2). According to the

structural and functional differences, antibodies can be divided

into IgA, IgD, IgE, IgG, and IgM, among which IgG is the most

commonly used mcAb, exerting therapeutic actions by attracting

cells with FcgR family members, including FcgR I, FcgR II, and

FcgR III, or blocking the molecular signal (73). The interaction
TABLE 2 Antibodies based on TAMs in anti-cancer therapies.

Tumor Agents Antibody Target Macrophages Effects of
TAMs

Application Ref.

B-CLL Rituximab (Mabthera) Human IgG1
mcAbs

CD20 hMDMs (M1/2-like) ADCP In vitro (53)

BC Trastuzumab Humanized IgG2
mcAbs

HER2 Mice BMDM,
hMDMs

ADCP In vivo (54)

BC, BL, CRC, RC KWAR23 Human IgG bsAbs SIRPa/
CD47

Human macrophages ADCP In vitro and
vivo

(55)

BC, CRC, epidermoid
carcinoma

Clone 528 HAMAs EGFR THP-1 monocytes ADCP In vitro and
vivo

(56)

BC, NSCLC YW327.6S2 Human IgG mcAbs Axl Macrophages in mice Reduce
inflammatory
cytokines

In vivo (57)

CRC 1H9 Humanized IgG1
mcAbs

SIRPa hMDMs ADCP In vitro and
vivo

(58)

CRC; HCC; MEL RMP1-14 Human anti-
murine ADC

PD-1 Macrophages in mice Deplete TAMs In vivo (59)

CRPC Carlumab (CNTO 888) Human IgG1k
mcAbs

CCL2 Human macrophages Block TAMs
differentiation

In clinical trial (60)

Dt-GCT Emactuzumab
(RG7155)

Humanized IgG1
mcAbs

CSF1R hMDMs (M1/2-like) and human
macrophages

Deplete TAMs In clinical trial (61)

HL SGN-30 Chimeric IgG1
mcAbs

CD30 hMDMs ADCP In vitro and
vivo

(62)

HL, MM, NHL, RC Clone 1F6 Human IgG1
mcAbs

CD70 hMDMs ADCP, CDC and
ADCC

In vitro and
vivo

(63)

MM Daratumumab Human IgG1
mcAbs

CD38 hMDMs ADCP In vitro and
vivo

(64)

MM Elotuzumab Humanized IgG1
mcAbs

SLAMF7 Macrophages in mice ADCP In vitro and
vivo

(65)

MM J6M0-mcMMAF
(GSK2857916)

Humanized ADC BCMA hMDMs ADCP and ADCC In vitro and
vivo

(66)

MM XmAb5592 Humanized IgG1k
mcAbs

HM1.24 hMDMs ADCP In vitro and
vivo

(67)

NHL Hu5F9-G4 Humanized, IgG4
mcAbs

CD47 Human macrophages ADCP In clinical trial (68)

PDA CP-870,893 Human IgG2
mcAbs

CD40 Human macrophages Enhance TAA
presentation

In clinical trial (69)

Solid tumors AMG 820 Human mcAbs CSF1R Human macrophages Deplete TAMs In clinical trial (70)

Solid tumors Amivantamab Human IgG1
bsAbs

EGFR/
cMet

Macrophages in mice ADCP In vitro and
vivo

(71)

Solid tumors Carlumab Human IgG1k
mcAbs

CCL2 Human macrophages Deplete TAMs In clinical trial (72)
frontiersi
ADC, antibody-drug conjugate; ADCC, antibody-dependent cell-mediated cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; B-CLL, B-chronic lymphocytic leukemia; BC,
breast cancer; BCMA, B-cell maturation antigen; BL, Burkitt lymphoma; BMDM, bone marrow-derived macrophage; bsAbs, bispecific antibodies; CCL2, C-C chemokine ligand 2; CDC,
complement-dependent cytotoxicity; CRC, colorectal cancer; CRPC, castration-resistant prostate cancer; Dt-GCT, diffuse-type giant cell tumor; HAMAs, human anti-murine antibodies;
HCC, hepatocellular carcinoma; HL, Hodgkin lymphoma; hMDMs, human monocyte-derived macrophages; mcAb, monoclonal antibody; MEL, melanoma; MM, multiple myeloma; N/A,
not available; NHL, non-Hodgkin lymphoma; NSCLC, non-small-cell lung cancer; PDA, pancreatic ductal adenocarcinoma; RC, renal carcinoma; TAA, tumor-associated antigen; TAMs,
tumor-associated macrophages.
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between FcgR on macrophages and immune complexes leads to

enhanced phagocytosis and the release of superoxide, TNF,

tissue plasminogen activator, prostaglandins, and leukotrienes

(74), which further modulates tumor development. To fully

engage TAMs, improvements in binding efficacy with

antibodies could be carried out by changing Fc fragments with

genetic modification by splicing with overlap extension (75),

and protein modification by modulating Fc regions to

be fucosylation-free (76). Except for genetic and protein

engineering, remodeled antibodies are applied in anti-cancer

therapy, including antibody fragments, bispecific antibodies

(bsAbs), and antibody-drug conjugates (ADCs) (Figure 2A).

The molecular weight of the Fab fragment obtained by

restriction endonuclease digestion is equivalent to 1/3 of the

intact antibody. The molecular weight of the single-chain

variable fragment (scFv) or single domain antibody (VH, VL

nanobody) prepared by genetic engineering is even smaller,

composed of approximately 120 amino acids and equivalent to

1/6 or 1/12 of the intact antibody, respectively, thus improving

its penetration of solid tumors (77). For instance, chimeric

antigen receptor (CAR) macrophage therapy could target

cancer cells based on CD3z, which is homologous to the

FcϵRI-g, a canonical signaling molecule for ADCP, and

repolarize M2 macrophages, therefore promoting antigen-
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specific phagocytosis and tumor clearance in vitro (78).

Notably, while designing, appropriate miniaturization should

be carried out according to its pharmacokinetic characteristics,

to avoid weakening the affinity between antibody and target

antigens, and reducing the clinical effects owing to the decrease

in half-life.

BsAbs are roughly classified into fragment-based bsAbs,

composed of two scFvs, and Fc-based bsAbs, with Fc domains

linked to Fab or scFv, which could target tumor antigens and

conjunct with macrophages or other types of antigenic epitopes

at the same time, enhancing binding efficacy and anti-tumor

specificity. For instance, Chen et al. provided data

demonstrating that bsAbs targeted FcgR and stimulated

innate and adaptive responses in the TME, leading to the

polarization and phagocytosis of TAMs (79). In addition,

compared with Fc-based bsAbs, the former has a lower

molecular weight, indicating better penetration in solid

tumors and faster clearance. Moreover, catumaxomab, a

trifunctional antibody (trAb), can bind three different cell

types: tumor cells, T-cells, and accessory cells (80),

broadening our horizons in the design of antibodies.

Although this method offers great potentials, the affinity and

stability of bsAbs are influenced by the properties of additional

linkers, which need to be taken into consideration.
FIGURE 2

Materials based on tumor-associated macrophages (TAMs) for targeting cancer cells. (A) Illustration of restructured antibody targeting TAMs and
cancer cells. The method mainly consists of three parts: antibody fragments, bispecific antibodies, and antibody-drug conjugates.
(B) Macrophages, exosomes, and cell membranes act as nanoparticle carriers to target tumors and induce phagocytosis. (C) Materials used for
TAM-based imaging, composed of gadolinium (Gd) with extracellular vesicles (Gd-HEVs), iron oxide nanoparticles (NPs), and perfluorocarbon
compounds (PFCs) for magnetic resonance imaging (MRI), folate-conjugated fluorescein isothiocyanate (folate-FITC) and nicotinamide adenine
dinucleotide (NADH) for fluorescence imaging, and 89Zr-high-density lipoprotein (HDL) for positron emission tomography (PET).
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Acting as another class of highly promising antibody-based

therapeutics, ADCs are composed of an antibody targeting

cancer cell-specific antigens, a cytotoxic drug, and a chemical

linker that connects the drug and the antibody. Cancer targets

for approved ADCs vary, such as CD33 for acute myeloid

leukemia (81), and HER2 for lung adenocarcinoma (82).

When mentioned drugs, pyrrolobenzodiazepine (PBD) dimers,

a type of anti-tumor/antibiotic natural chemical generated by

actinomycetes, are the most potent class of cytotoxic drugs,

followed by maytansinoids, auristatins, and calicheamicin, all of

which have similar activity (83). Specifically, in order to improve

macrophage phagocytosis, materials conjugated to the linkers

could also be replaced by immunostimulatory drugs, including

TLR agonists, scavenger receptor ligands, proinflammatory

cytokines, chemokines, etc. For instance, Dela Cruz et al.

showed that, compared with the unmodified antibody, an anti-

HER2 antibody fused with granulocyte-macrophage colony-

stimulating factor (GM-CSF), a cytokine associated with an

increased expression of major histocompatibility complex class

II (MHC-II) on monocytes, was more stable in the blood and

more effective in activating TAMs, leading to an enhanced anti-

tumor response (84). Of note, before the internalization of

ADCs, extracellular enzymes released by surrounding cancer

cells and TAMs could cleave diffusible drugs, resulting in

surrounding ‘bystander’ cell death. Thus, antibody specificity,

payload drug cytotoxicity, linker stability, and cleavage should

be fully considered when designing ADCs.
The application of nanoparticles
based on TAM carriers for
targeting cancer cells

NPs with a small size and diverse surface characteristics are

proper materials for penetrating poorly vascularized and fibrotic

tumors. At present, NPs targeting cancer cells, in mainstream

design, are based on enhanced permeation and retention (EPR),

due to the leaky vasculature and poor drainage of solid tumors.

Recent research has revealed that most NPs enter the tumor site

through endothelial cells actively instead of inter-endothelial

gaps passively (85). Thus, taking advantage of preferential

aggregation within macrophages after systemic delivery and

the strong infiltration potential of myeloid cells, the loading of

NPs into monocytes/macrophages in the blood circulation

system can be employed to facilitate drug release in the

tumor’s bulk. Furthermore, TAMs can cross the blood-brain

barrier (BBB) and infiltrate further to the hypoxic TME, driven

by oxygen gradients and signal pathways without reliance on the

EPR effect (86). Studies on NPs drug delivery systems use a

variety of materials, including biological carriers, viral particles,

carbon nanotubes, albumin NPs, etc. (Table 3), among which

liposomes, polymeric NPs, and iron oxide NPs are the most

commonly used. Moreover, as a component of Live Cell-
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mediated Drug Delivery Systems (LCDDS), M1 macrophages,

which can target tumors and promote inflammation in the TME,

act as drug carriers with either the complete or chosen essential

components, including exosomes and external cellular

membranes (105) (Figure 2B).

Anti-cancer drugs engulfed in macrophages-loaded NPs can

reduce toxicity and increase the loading ratio. Notably, the

phagosomes of macrophages might cause degradation of the

drugs and affect the functions of TAMs, thus there are

accumulating studies aimed at addressing and solving these

defects. For instance, in a mouse model of pulmonary

metastases, Kim et al. developed the lipid–NPs conjugates and

incubated them into the macrophage membrane to encourage

the hydrophobic compound to conjugate with TAMs effectively

and stably for anti-tumor therapy (106). Recently, genetic

engineering, surface modification, and cellular backpacks have

been able to modulate the function of macrophages, enhancing

the infiltration of solid tumors. For example, as CRISPR-Cas9

gene-editing technology could influence the expression of

surface markers, macrophages showed a four-fold increase in

the elimination of cancer cells with arginine NPs (107). Through

cell surface modification, hybridizing macrophages with NPs

that provide numerous new sites for anti-cancer drug loading

could decrease the toxic effect on macrophage carriers (108).

Furthermore, polymer patches, as phagocytosis-resistant

backpacks, conjugated to the surface of macrophages and

crossed the BBB without changing the TAMs functions,

including targeting and phagocytosis ability, and the properties

of the loaded particles (109). In summary, these data suggest that

modulating the contact area and enhancing bonding strength

could further ensure stability when penetrating the solid tumor.

With a diameter of 40-160 nm and a specific content of

RNA, proteins, and other compounds, macrophage-derived

exosomes are derived from the invagination of the cellular

membrane and processed into mature multivesicular bodies

(MVBs) in the cytoplasm (110, 111). Exosomes, especially M1

macrophage-derived exosomes (M1-exos), inherit similar

surface membrane properties from macrophages and can be

employed to deliver various anti-tumor components via

crosstalk between TAMs and cancer cells. For instance,

Harney et al. found that in nude mice with triple negative

breast cancer (TNBC) cells, M1-exos loaded with paclitaxel

(PTX) or doxorubicin (DOX) could target cancer cells and

enhance the anti-tumor effects (112). Since exosomes are a

highly heterogeneous population of membrane vesicles and no

specific biomarkers have yet been confirmed, the isolation and

purification of M1-exos are challenging, and can be resolved by

developing exosome-mimetic vesicles or proper genetic

engineering. It is worth noting that THP-1-derived exosomes

are sensitive to extracellular stimulation, including

lipopolysaccharide (LPS) (113) and IL-4 (114), by modulating

inherent exosomal contents, and have a relatively fixed size,

which could influence the stability and selection of loading NPs.
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Unlike exosomes, membrane-coated NPs without other

contents are flexible in size and are unacted upon by the

surrounding status, leading to an effective and stable

therapeutic effect with a sufficient drug-loading capacity and

nanosize. Purified macrophage membranes, obtained from

disrupted cells by centrifugation, can coat NPs by a direct

extrusion method, and have favorable biocompatibility and

tumor-homing ability in systemic circulation. For instance,

Cao et al. showed that using macrophage membranes to coat

liposomes loaded with cytotoxic anti-cancer drugs could
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increase the cellular uptake of NPs and effectively inhibit lung

metastasis, owing to the interaction between integrins on

membranes and VCAM-1 on cancer cells, as well as CCR2

and CCL2 (115). However, since membrane vesicles without an

intact signaling axis need to be engulfed by cancer cells for drug

delivery, the membrane at this time inhibits NP release when

accumulating in the TME. To support this, Zhang et al. found

that modulating NP properties for effective membrane escape

was necessary with pH-sensitive polymer, taking advantage of

the pH difference between the TME and vesicles to influence the
TABLE 3 Nanoparticles engulfed by TAMs for anti-cancer therapy.

Type Tumor Diameter
(nm)

Cargo Active target Effects Animal model Application Ref.

Acetylated CMC PCA 120 Docetaxel N/A Deplete macrophages Female C57BL/6 mice In vivo (87)

Albumin NPs with
dual ligands

Glioma ~135 DSF/Cu, Rego SPARC,
mannose
receptors

Inhibit cancer proliferation
and repolarize M2

Male Balb/c, C57BL/6,
Sprague Dawley mice

In vivo and
vitro

(88)

AuNRs BC ~6 HS-PEG N/A Tumor imaging and
treatment

Female Balb/C mice In vivo and
vitro

(89)

Calcium
carbonates NPs

MEL ~100 Anti-CD47 Ab CD47 Activate M1 Female C57BL/6 mice In vivo and
vitro

(90)

CNP BC 120.9 ± 12.2–
128.3 ± 18.1

siCCR2 CCR2 Decrease TAMs’ abundance Female Balb/C mice In vivo and
vitro

(30)

Copper NPs PDAC 4.9 ± 0.3 Gemcitabine CCL2/CCR2 Inhibit TAMs recruitment Female C57BL/6 mice In vivo and
vitro

(91)

CPMV MEL 30 Photosensitizer N/A Target TAMs and cancer
cells

N/A In vitro (92)

Exo-Ab BC 100 Ab of CD47
and SIRPa

CD47, SIRPa Repolarize M2 Balb/C mice In vivo and
vitro

(93)

HDL-based NPs BC 10.9 ± 2.8 89Zr-label CSF-1R Imaging of TAM Female MMTV PyMT
mice

In vivo (94)

Hollow MnO2 NPs LC 3.4 3PO and LOX Glycolysis Decrease M2 B16F10-tumor-bearing
mice

In vivo and
vitro

(95)

Iron oxide NPs BC, LC N/A N/A N/A Enhance cancer
immunotherapy

Female FVB/N mice In vivo and
vitro

(52)

Liposomes MEL 116 ± 3.7 –

118 ± 2.6
PD-L1 Ab,
PTX/aGC

PD-1/PD-L1 Enhance anti-tumor effects Female C57BL/6 mice In vivo (96)

Liposomes Multiple
cancer

75-100 Alendronate,
doxorubicin

N/A Modulate TAMs
polarization

Female Balb/C, Sabra mice In vivo and
vitro

(97)

MpSi particles BC, LC 20- 50 Nab-PTX N/A Inhibit tumor growth Female Balb/C, C57BL/6
mice

In vivo and
vitro

(98)

Nab PDAC N/A PTX TLR4 Increase M1 Female C57BL/6 mice In vivo and
vitro

(99)

NK-NPs BC 85 ± 1.2 TCPP N/A Induce TAMs to M1 Female BALB/c mice In vivo and
vitro

(100)

PAMAM
dendrimers

Glioma ~4 Fluorescent dye N/A Penetrate BBB and tumor
ECM

Female Fischer 344 rats In vivo (101)

RBC BC N/A Zoledronate N/A Deplete macrophages Female Balb/C mice In vivo (102)

Sensitive cluster
NPs

BC, CC,
MEL

10- 90 Platinum
BLZ-945

CSF-1R Deplete TAMs BALB/c mice In vivo and
vitro

(103)

SWNT Glioma N/A CpG TLR9/NF-kB Inhibit metastasis N/A In vivo and
vitro

(104)
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water influx, expansion, and eruption of membrane

coating (116).
Materials based on TAMs for
tumor imaging

At present, TAM-based imaging has been performed in

magnetic resonance imaging (MRI), fluorescent imaging, and

positron emission tomography (PET) for research investigation

in cancers (Figure 2C). Since the high-pressure properties of

hypoxia TME restrict the effective aggregation and tissue

penetration of materials targeting cancer cells directly (117),

TAMs, which have high phagocytic ability and a wide

distribution in tumor sites, can guarantee the relevant

ingredients enrichment. In this case, by observing the

difference in the number and phenotype of TAMs, TAM-

based imaging can not only be useful for tumor diagnosis and

prognosis, but also for addressing the edge of tumors for surgery.

For instance, macrophage-specific radiotracers or probes can be

designed as antibodies with TAM-specific biomarkers, folate

(M1) and mannose receptor (M2), coupled to signal probes of

magnetic resonance agents and radionuclides, or TAM-related

NPs with signal-giving moieties (118), suggesting that using

TAM-based materials to transmit signal compositions of

imaging is a promising strategy.

MRI contrast agents (Cas), including gadolinium (Gd), iron

oxide NPs, and fluorine 19 (19F), are critical in obtaining

accurate contrast-enhanced anatomical images. Due to the

rapid elimination of Gd through renal metabolism, Rayamajhi

et al. found that macrophages could act as Gd carriers with cell-

derived hybrid extracellular vesicles (Gd-HEVs) to prolong the

retention time (119). As Gd exerts nephrogenic systemic fibrosis

(NSF) toxicity, interestingly, intravenously injected iron oxide

NPs are preferentially phagocyted by macrophages to decrease

toxicity. For instance, ferumoxytol, a type of iron oxide NPs for

macrophages, caused tumor enhancement on postcontrast scans

by MRI image due to the existence of CD68 and CD163 TAMs

(120). However, since iron oxide NPs can also be phagocyted by

neutrophils and other phagocytic cells, the accuracy and

specificity of these imaging techniques need to be improved.

Notably, 19F, as perfluorocarbon compounds (PFCs), can be

delivered intravenously in the same way as iron oxide NPs, and

can image macrophages better due to its low background. To

support this notion, Khurana et al. showed a strong association

between the quantity of 19F atoms and the number of

macrophages after PFC injection (121), and 19F accuracy is

more reliable than ferumoxytol (122).

Fluorescence imaging can be used for cancer imaging by

detecting TAMs. Using knock-in mice whose macrophages were

marked with fluorescent dextran, various populations of myeloid-

derived cells showed different biological behaviors and were
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distributed in different parts of the tumor (123), indicating that

monitoring macrophages using fluorescence imaging is feasible.

On account of the unique overexpression of folate receptor (FR)-

b+ in TAMs, folate-conjugated fluorescein isothiocyanate (folate-

FITC) could be utilized for the precise optical detection of tumors

by targeting M1 macrophages (124). More experiments are

needed for conventional exogenous fluorophores before clinical

applications. In addition, endogenous fluorescence metabolites,

including nicotinamide adenine dinucleotide (NADH) and flavin

adenine dinucleotide (FAD), involved in glycolysis and cellular

respiration are sources of autofluorescence signals and can also be

used to quantify TAMs. For instance, Szulczewski et al. discovered

that macrophages accounted for almost 75% of the cells with

elevated FAD inside a mammary cancer mouse model (125). In

summary, since fluorescence imaging reports changes in TME

longitudinally over time and reflects the immediate and divergent

therapy effects, the half-time of materials influenced by the renal

route of excretion should be fully considered.

Although PET can monitor a high enrichment of nanotracers

non-invasively, limited data have supported that TAM-relatedNPs

are good choices for cancer PET imaging. Different PET tracers

might be valuable for monitoring TAM immunology by

appropriately integrating with NPs. For instance, Pérez-Medina

et al. performed an analysis of 89Zr-PL-high-density lipoprotein

(HDL) and 89Zr-AI-HDL, which can be contained by TAMs and

act as delivery cargo, to assess the burden of TAMs in vivo using

PET imaging (126).However,HDL also targets other immune cells

(127), indicating that the accuracy of TAM-related NPs in PET

imaging needs to be further explored. Taken together, the evidence

suggests thatTAM-based tracers inMRI,fluorescence imaging, and

PET highlight potential avenues for cancer diagnosis and therapy.

Despite focusing on TAMs themselves, designing materials to

detect TAM-derived secretions might be a potential orientation

of imaging. In an alternative approach, combining MRI with

fluorescence imaging or PET for particular macrophage

polarizations might increase the precision ofMRI based on TAMs.
Materials based on tumor-
associated macrophages for
targeting immune cells

Except for cancer cells and TAMs, the TME is composed of

fibroblasts, endothelial cells, various types of immune cells, etc.

In addition, adaptive immune cells (T cells and B cells) and

innate immune cells, including macrophages, neutrophils,

dendritic cells (DC), and natural killer (NK) cells, also

influence the occurrence and development of tumors.

Participating in innate and adaptive immunity, macrophages,

as mediators, play an important role in regulating the immune

response to tumors (Figure 3).
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CD8+ T cells and their application in
TAM-related materials

The crosstalk between CD8+ T cells and macrophages

undoubtedly exacerbates the immunological escape of cancer

cells and has a negative effect on cancer immunotherapy. CD8+ T

cells differentiate into cytotoxic T lymphocytes (CTLs) and CTLs

exert anti-tumor functions in three ways: physical contact with

cancer cells via intracellular signal activation, the release of

cytokines, and exocytosis of granules containing perforin and

granzyme (128). By stimulation of TNF‐a and IFN‐g secreted
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fromM1macrophages, CD8+ T cells transformed into a cytotoxic

phenotype with upregulated PD-1 expression (129). In contrast,

influenced by IL-10 and TGF‐b secreted by M2 macrophages,

CD8+ T cells were kept away from cancer cells and their immune

activity was attenuated, resulting in the immunological escape of

cancer cells (130). Thus, TAM-related materials including

microparticles (MPs), NPs, and RNAs could be equipped with

the ability to impact the infiltration of CD8+ T cells to affect anti-

tumor immunity (Figure 3A). Mannose-modified macrophage-

derived MPs equipped with metformin (Met@Man-MPs) can

polarize TAMs to M1 phenotype and remodel the TME by
FIGURE 3

The interaction and materials based on tumor-associated macrophages (TAMs) to target immune cells. (A) CD8+ T cells induce tumor cell
apoptosis mainly through the release of cytokines and the exocytosis of granules containing perforin and granzyme. Hydrogel, a type of
nanoparticle (NP), loaded with antigens can activate CD8+ T cells indirectly with the help of macrophages expressing toll-like receptors (TLRs).
In addition, lipid NPs loaded with siRNA could specifically block the M2-marker expression of TAMs and lead to decreased expression of PD-1.
(B) TAMs expressing major histocompatibility complex class II (MHC-II) present tumor antigens and activate CD4+ T cells with T cell receptor
(TCR). There are two ways to fully boost CD4+ T cells, one of which is modulating MHC-II expression by epigenetic silencing with chromatin
modifiers, including S. crispus leaves (F3), that can inhibit CIITA transcription; the other is enhancing antigens presentation and MHC-II pathway
by iron oxide NPs. (C) Regulatory B (Breg) cells secrete interleukin‐10 (IL‐10) and transforming growth factor‐b (TGF‐b), decreasing pro-
inflammatory cytokine secretion of TAMs, which modulate the biological behavior of tumors. Since CD169+ macrophages capture antigens and
present to B cell receptor (BCR) on B cells, liposomal NPs with glycan ligands were preferentially phagocytized to modulate B cells indirectly.
Anti-CD40 antibodies acted on CD40-CD40L pathways with a greater upregulation of anti-tumor activity. (D) TAMs transfer antigens to
dendritic cells (DCs) by CD169 for immunotherapy. Since TLRs exist on both DCs and TAMs, TLR agonists could enhance antigens presentation
of DCs and pro-inflammation cytokines’ secretion of TAMs, leading to the immunostimulatory tumor microenvironment (TME). Via the increase
of cytokines, such as IL-15, anti-MARCO antibodies activate natural killer (NK) cells. Back arrows: promotion; Red “T” arrows: inhibition.
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recruiting CTLs through the degradation of collagen fiber (131).

While MPs with a particle size of 100-1000 nm limited tissue

biodistribution, it is suggested that developingMPswithanarrower

size or nanosizewould be ideal for the delivery of drugs. To support

this, Muraoka et al. found that NPs could activate CD8+ T cells

indirectly through the TLRs expressed by macrophages (132). In

another study, conjugated with recombinant ovalbumin (OVA),

gold NPs with a diameter of 10-22 nm, which were engulfed by

macrophages, exhibited greater anti-tumor efficacywith the further

infiltration of CD8+ T cells (133), indicating that the immune

response of NPs would also be mediated by particle size.

Additionally, TAMs targeting NPs with RNAs would decrease T

cells apoptosis and enhance CTL activation by either influencing

the IL-6 and IL-10 secretion of TAMs (134) or modulating the

amount of diverse TAM phenotypes causing CTL infiltration (46).

Notably, challenges still exist regardingNPswithRNAs for delivery

blockade in terms of digestion by various enzymes, unreachability

to target cells, and endocytosis before proper degradation. To sum

up, since CD8+ T cells exert tumor elimination by a relatively direct

method, TAM-related materials as drug adjuvants or carriers for

the further infiltrationofCD8+Tcellshave great potential to ensure

essential contact with cancer cells.
CD4+ T cells and their application in
TAM-related materials

CD4+T cells differentiate into various subtypes toparticipate in

immunity, amongwhich T-helper 1 (Th1) andTh2 account for the

majority. Considered as the most essential helper cell type for

cancer immunity,Th1cells eliminatecancercells indirectlywith the

help of MHC-II positive macrophages (135), and Th2 cells exert

anti-tumor functions by inducing inflammation in TME with the

participation of M2macrophages (136). Given that TAMs in TME

act as APCs expressing MHC-II to present tumor antigens, TAM-

related materials are promising in activating CD4+ T cells

(Figure 3B). For instance, Rong et al. developed iron-chelated

melanin-like NPs (Fe@PDA-PEG) to promote TAM polarization

and the recruitment of Th cells by high efficacy in capture, phago-

endocytosis, processing, and the presentation of tumor-associated

antigens (TAAs), subsequently leading to suppressed tumor

progression (137). As MHC-II expression can be influenced by

its transactivator (CIITA) (138), it indicates thatmaterials targeting

CIITA transcriptional activity is potential by affecting promoter

selection,mRNAstability, and post-translationalmodification. For

example, Yankuzo et al. discovered abioactivator ofS. crispus leaves

(F3) by facilitating IFN-g production in the tumor site, which could

induce CD4+ T cell infiltration and increase CIITA and MHC-II

expression of cancer cells with the attenuation of CD68+ TAMs

(139). Notably, without the interaction between CD4+ T cells and

TAMs, IFN-g itself could not modulate TAMs for tumor

elimination (140), indicating that anti-tumor materials based on

cytokines should fully consider the crosstalk among immune cells
Frontiers in Immunology 12
and can be integrated with specific agents to mimic the essential

signaling pathways. In summary, the evidence suggests that TAM-

related materials could be conducted by epigenetic modulations

targeting MHC-II and accessory genes to guarantee antigen

presentation to CD4+ T cells efficiently and to increase the

abundance of CD4+ T cells for sufficient interaction

with macrophages.
B cells and their application in TAM-
related materials

Tumor-infiltrating B lymphocytes (TIBs) with a strong

capacity for immune responses are crucial in the TME for

activating T cell responses and causing cancer cell death, while

regulatory B (Breg) cells decrease the pro-inflammatory cytokine

secretion of macrophages and promote tumor progression (141)

(Figure 3C). In inflammatory tumor tissue, CD169+ macrophages,

which capture intact antigens and preserve on their surface for a

long time, cross-present TAAs to TIBs, and in turn, B cells secrete

neurotransmitter GABA (g-aminobutyric acid), which could

increase the ratio of anti-inflammatory macrophages (142). For

the sake of convenience in further exploring the interactions

between TAMs and B cells, peritoneal cavity (PerC) cell culture

serves as an ideal in vitro system, as it concludes most B cell

subtypes (143). At present, materials that modulate B cells mainly

act on either macrophage, which could affect TIB indirectly or the

signaling pathways between them (Figure 3C). For instance, Chen

et al. showed that newly designed liposomal NPs with glycan

ligands, which were affiliative to CD169, could effectively deliver

antigens to CD169+ macrophages (144), modulating B cell

biological behavior indirectly. While it is remarkable that using

glycan is lacking in specificity, developing ligands targeting an

exclusive receptor might enhance anti-tumor therapy. Regarding

signaling pathways, in preclinical studies, anti-CD40 IgG1 mcAbs

exerted strong anti-tumor activity with a greater upregulation of

activation markers on B cells by modulating CD40-CD40L

interaction between macrophages and B cells, leading to higher

efficacy of antigen presentation and immune response (145).

Similarly, Bruhns et al. found that IgG1 was more appropriate

for immunostimulatory activities compared with the other IgG

antibodies (146). Further, since FcgRIIB is the only FcgR on B cells,

upregulation of FcgRIIB might improve the efficacy of the specific

mcAbs. Thus, materials aiming at gene modification have potential

by influencing receptor expression or lipid rafts incorporation for

the essential distribution of FcgRIIB.
DCs and NK cells and their application in
TAM-related materials

DCs exert anti-tumor effects via TAA uptake, processing, and

presentation, which display an extensive dysfunctional status
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under the influence of TAMs secreting immunosuppressive factors

(147). To solve the numerical and functional DC deficiencies,

TAM-related materials, which can promote DC activation and

reverse the immunosuppressive TME, are potential treatment

modalities (Figure 3D). For instance, TLR agonists could act as

therapeutic materials, since TLR can not only stimulate DC

maturation, antigen presentation, and cytotoxicity towards tumor

cells (148), but also activate M1 macrophages to secrete pro-

inflammation cytokines and create a potent immunostimulatory

microenvironment (149). To date, three TLR agonists have been

developed for tumor therapy in a clinical setting: imiquimod as a

TLR7 agonist for the treatment of superficial basal cell carcinoma,

Bacillus Calmette-Guérin (BCG) as a TLR2, TLR3 and TLR9

agonist for non-invasive transitional cell carcinoma of bladder

therapy, and monophosphoryl lipid A (MPLA) as a TLR4 agonist

for the human papillomavirus (HPV) vaccine to prevent cervical

cancer (150). Of note, since DCs would rather phagocytize particles

with a diameter of 20–200 nm (151), the drug size should be taken

into consideration for the design of materials. Additionally, NK

cells exhibiting a quick response to infections and malignancies are

crucial in innate immunity, and can be activated by M1

macrophages secreting IL-12, and suppressed by M2 subsets

secreting TGF-b (152). Similar to DCs, TAM-based materials act

on NK cells by modulating related cytokines to mediate

immunosuppression in the TME. For instance, Eisinger et al.

found that performing an anti-MARCO antibody on TAMs

could activate NK cells to inhibit tumor growth by modulating

the IL-15 secretion of macrophages, a cytokine known to support

NK cell proliferation, infiltration, and cytotoxic capacity (153). In

addition, as macrophage subtypes have their own distinct effects on

NK cells, materials targeting TAM polarization could indirectly

modulate the biological behaviors of NK cells and cytokines in the

TME (154). Together, compared with the materials acting on DCs

and NK cells directly which might induce possible excessive

immune activation because of targeting DCs and NK cells

without specificity of distribution (155), and lead to off-target

and normal tissue injury (156), TAM-related biomaterials would

reverse the immunosuppressive TME and restore normal

immunity to exert more effective anti-tumor functions.
Conclusions

In this review, we conclude the specific properties and various

effects of TAM-based materials from bench to clinic. Targeting

diverse crosstalk among TAMs, cancer cells, and immune cells, a

variety of biomaterials with TAMs as accessory cells or carriers

could modulate TAMs biological behaviors, exert tumor

elimination and imaging, and engage adaptive and innate

immunity for anti-tumor therapy. However, there are some

limitations of these materials that need to be overcome.

Firstly, highly heterogeneous macrophages exhibit various

immune responses to TAM-related materials of deficient
Frontiers in Immunology 13
specificity, which can easily lead to off-target and unstable

anti-tumor effects. Hence, it is necessary to further investigate

TAMs subtypes differentiation, design specific targeting

molecules and develop more efficient tumor diagnostic and

therapeutic modalities.

Secondly, since most research on biomaterials effects is

conducted in vivo, data from mouse models require expanded

studies to verify accuracy and biocompatibility for clinical

application. It would be feasible to define a ‘TAM atlas’ of

human solid tumors and compare it with mice data using

emerging technologies, including tissue mass spectrometry,

single-cell RNA sequencing (scRNA-Seq), and multiplex

immunofluorescence, to predict immunotherapy treatment

prognosis (157).

Thirdly, therapeutic strategies targeting macrophages might

have potential adverse reactions. For instance, CSF-1R inhibitors

can reduce the number of TAMs in vivo, but unexpectedly

recruit a large number of immunosuppressive granulocytes

(158). Furthermore, depletion of CD169+ macrophages can

inhibit tumor growth and increase the infiltration of CD8+ T

cells in the TME, unfortunately doing harm to bone homeostasis

and bone marrow erythropoiesis (159). Thus, TAM-targeted

therapy needs to further explore adverse reactions and the

mechanisms of the drugs, possibly combining with other

agents to reduce systemic toxicity.
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