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Introduction: Immune checkpoint inhibitors (ICIs) have shown promising

results for the treatment of multiple cancers. ICIs and related therapies may

also be useful for the treatment of thyroid cancer (TC). In TC, Myc binding

protein 2 (MYCBP2) is correlated with inflammatory cell infiltration and cancer

prognosis. However, the relationship between MYCBP2 expression and ICI

efficacy in TC patients is unclear.

Methods:We downloaded data from two TC cohorts, including transcriptomic

data and clinical prognosis data. The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm was used to predict the efficacy of ICIs in TC

patients. MCPcounter, xCell, and quanTIseq were used to calculate immune

cell infiltration scores. Gene set enrichment analysis (GSEA) and single sample

GSEA (ssGSEA) were used to evaluate signaling pathway scores.

Immunohistochemical (IHC) analysis and clinical follow up was used to

identify the MYCBP2 protein expression status in patients and associated with

clinical outcome.

Results: A higher proportion of MYCBP2-high TC patients were predicted ICI

responders than MYCBP2-low patients. MYCBP2-high patients also had

significantly increased infiltration of CD8+ T cells, cytotoxic lymphocytes

(CTLs), B cells, natural killer (NK) cells and dendritic cells (DC)s. Compared

with MYCBP2-low patients, MYCBP2-high patients had higher expression of

genes associated with B cells, CD8+ T cells, macrophages, plasmacytoid

dendritic cells (pDCs), antigen processing and presentation, inflammatory

stimulation, and interferon (IFN) responses. GSEA and ssGSEA also showed

that MYCBP2-high patients had significantly increased activity of inflammatory
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factors and signaling pathways associated with immune responses.In

addiation, Patients in our local cohort with high MYCBP2 expression always

had a better prognosis and greater sensitivity to therapy while compared to

patients with low MYCBP2 expression after six months clinic follow up.

Conclusions: In this study, we found that MYCBP2 may be a predictive

biomarker for ICI efficacy in TC patients. High MYCBP2 expression was

associated with significantly enriched immune cell infiltration. MYCBP2

may also be involved in the regulation of signaling pathways associated

with anti-tumor immune responses or the production of inflammatory

factors.
KEYWORDS

immune checkpoint inhibitors, MYCBP2, myc binding protein 2, prognosis,
thyroid cancer
Introduction

Thyroid cancer (TC) originates from follicular epithelial

cells or parafollicular epithelial cells of the thyroid. It is the

most common malignant tumor in endocrine system and

comprises about 90% of endocrine cancers (1, 2). Although

most TCs are relatively inert and can be effectively treated by

surgery, radiation,131 and thyroid stimulating hormone (TSH)

inhibition therapy, some cases are refractory and eventually lead

to disease progression, recurrence, and even death (3). Although

targeted therapies such as kinase inhibitors can prolong patient

prognosis, the effectiveness of kinase inhibitors is severely

limited due to the rapid development of drug resistance and

the occurrence of adverse reactions (4–8). In recent years, with

increasing use of immune checkpoint inhibitors (ICIs) for anti-

cancer therapy, research on the use of ICIs for TC is also rapidly

advancing, with the hope of improving the prognosis of

TC patients.

Previous research has shown that biomarkers predicting the

efficacy of ICIs can help to screen patients and further improve

prognoses (9, 10). At present, Programmed Cell Death-Ligand 1

(PD-L1) expression and tumor mutation burden (TMB) are the

main markers of ICI effectiveness (9–12). However, these

biomarkers also have some disadvantages: thresholds of TMB

are different across studies, and PD-L1 detection platforms vary

(13–16). Therefore, there is need to identify biomarkers that

more comprehensively predict the efficacy of ICIs, allowing for

the development of tumor precision medicine.

Myc binding protein 2 (MYCBP2) is a E3 ubiquitin ligase

(17). Previous studies have shown that MYCBP is associated

with the occurrence and prognosis of lung cancer, gastric

cancer, breast cancer, and glioma (18–20). Pierre et al. found
02
that MYCBP2 expression was associated with an M2-like

macrophage phenotype in a mouse model (21). Schaid et al.

found that MYCBP2 expression was associated with an

elevated risk of invasive prostate cancer (22). However, the

relationship between MYCBP2 expression and ICI efficacy in

TC remains unclear.

In the present study, we downloaded data on a TC cohort

from the Gene Expression Omnibus (GEO) database and a

thyroid carcinoma (THCA) cohort from the Cancer Genome

Atlas (TCGA) database. We used the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm to predict the

therapeutic effect of ICIs in TC patients. Next, we evaluated

the relationship between MYCBP2 expression and ICI efficacy in

TC patients and explored its potential molecular mechanism.
Methods

THCA cohort and ICIs datasets

We downloaded a THCA cohort (GSE138042-THCA) with

transcriptomic data from the GEO database (https://www.ncbi.

nlm.nih.gov/geo/) (23). We also downloaded another THCA

cohort (TCGA-THCA) with gene expression profile data from

TCGA database (https://portal.gdc.cancer.gov/) (24). Because

the public databases did not publish data on the efficacy of

ICIs by THCA, we used the TIDE algorithm (http://tide.dfci.

harvard.edu) (25). The transcriptomic data from GSE138042-

THCA and TCGA-THCA were used to predict the response of

each patient to ICIs, and each patient was categorized as a

responder or non-responder. We also downloaded data from an

ICI-treated melanoma cohort (26) and an ICI-treated urothelial
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cancer (UC) (27) cohort, including transcriptomic data and

prognostic data from the cbioportal webtools (https://www.

cbioportal.org/) (28). Also, we downloaded two datasets

related to the mice model treated with the ICIs [GSE146027

(29) and GSE151829 (30)]. We downloaded the expression data

and survival data of different cancer types [GSE26304 (31),

GSE1456 (32), GSE5327 (33), GSE30929 (34), GSE26939 (35),

GSE30219 (36), GSE41271 (37), GSE30219 (36), GSE37745 (38),

GSE50081 (39), GSE62452 (40), and GSE16560 (41)] to further

validate the relationship between the expression of MYCBP2 and

the survival time.
Analysis of tumor immune
microenvironment

We downloaded the gene set of immune checkpoint (IC)

related molecules and immune related molecules from CAMOIP

(http://camoip.net/) (42). We used three immune cell evaluation

algorithms (1.MCPcounter, 2.xCell, and 3.quanTIseq) to

calculate the immune cell infiltration score of each THCA

patient from the expression data (43–45).
Pathway enrichment analysis

We used gene set enrichment analysis (GSEA) to analyze the

transcriptomic data of THCA patients and obtained pathway

enrichment scores and P values of pathways from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) (https://www.

kegg.jp/), Reactome (https://reactome.org/), Gene Ontology-

Biological Process (GO-BP), Gene Ontology- Cellular

Component (GO-CC), and Gene Ontology- Molecular

Function (GO-MF) databases (46). We also applied the single

sample GSEA (ssGSEA) algorithm to analyze the transcriptomic

data of each THCA patient and then obtained the enrichment

scores of each patient in the Molecular Signatures Database

(MsigDB) database (http://www.gsea-msigdb.org/gsea/

downloads.jsp) (47).
Immunohistochemical analysis and
clinical follow up

To identify the MYCBP2 protein expression status in patients

and associated with clinical outcome. We collect tissues samples

from thyroid cancer patients,who accepted surgery operation in

Breast Center of The Second Affiliated Hospital of Guilin Medical

University, to conduct immunohistochemical analysis and follow

up six months to evaluate the prognosis difference between high

and low expression groups. Thirty-six tissues from twelve patients,

each patient has three tissues obtained from different surgery

sections, and these tissues were washed with Phosphate-Buffered
Frontiers in Immunology 03
Saline (PBS) and then incubated with 3% H2O2 for 10 minutes.

Samples were incubated with antibody against MYCBP2 (1 mg/

mL diluted 1:200, 27951, Proteintech, CA) at room temperature

for two hours. After incubation with polymer enhancer for 20

minutes, the tissue was incubated with polymer enhancer and

enzyme-labeled rabbit polymers. Slides were washed with PBS and

fresh diaminobenzidine and counterstained with hematoxylin;

antigen retrieval was performed using 0.1% HCl, and slides

were then dehydrated with ethanol, cleaned with xylene, and

fixed with neutral balata. The images were observed and

photographed using a fluorescence microscope and visualized

under a light microscope at 100× magnification by a blinded

observer. Light to dark brown staining indicated a positive result

from low to high. The stained areas were analyzed using Image J.

Patients who donated samples for IHC also accepted clinical

follow up to evaluate the association between MYCBP2

expression and patient outcomes following surgery. All patient

and tissue studies were approved by the Ethics Committee of

Breast Center of The Second Affiliated Hospital of Guilin

Medical University.
Statistical analysis

The Mann-Whitney U test was used to compare differences

between the MYCBP2-high and MYCBP2-low groups in

continuous variables. Fisher’s exact test was used to compare

differences between the two groups in categorical variables.

Kaplan-Meier curves were used to visualize differences in

overall survival (OS) time between the two groups, and a log

rank test was used to calculate the difference in OS time. We

used the ggplot2 R package to generate boxplots. Visualization

and data analysis for the present study were conducted in

Rstudio software (Version 4.1.2). P values were bilateral and P

values < 0. 05 were considered statistically significant.
Results

Relationship between MYCBP2
expression and ICI efficacy in THCA

In the present study, we explored the relationship between

MYCBP2 expression and ICI efficacy in THCA patients and

analyzed potential molecular mechanisms for this relationship

(Figure 1A). In the GSE138042-THCA cohort, MYCBP2-high

patients receiving ICIs had a higher proportion of predicted

responders than MYCBP2-low patients receiving ICIs (evaluated

by the TIDE algorithm) (Figure 1B, P < 0. 05). MYCBP2-high

patients in TCGA-THCA cohort also had a higher predicted

response rate to ICIs (Figure 1C, P < 0. 05). Next, we used the

ICI-treated melanoma and urothelial cohorts to further verify the

relationship between MYCBP2 expression and prognosis in ICI-
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https://www.cbioportal.org/
https://www.cbioportal.org/
http://camoip.net/
https://www.kegg.jp/
https://www.kegg.jp/
https://reactome.org/
http://www.gsea-msigdb.org/gsea/downloads.jsp
http://www.gsea-msigdb.org/gsea/downloads.jsp
https://doi.org/10.3389/fimmu.2022.1048503
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1048503
treated patients (Figures 1D, E). Figure 1D shows that MYCBP2-

high melanoma patients had significantly longer OS time than

MYCBP2-low patients (log rank P = 0. 019, HR = 0. 3). Figure 1E

shows that MYCBP2-high urothelial cancer patients had a

significantly longer OS time than MYCBP2-low patients (log

rank P = 0. 041; HR = 0. 59, 95% CI: 0. 35-1). In the mice
Frontiers in Immunology 04
model, we found that the expression of Mycbp2 was significantly

increased in the ICIs-responders compared with ICIs-non-

responders (Supplementary Figures 1A, B). Also, in the multiple

cancer types, we found that MYCBP2-high patients had

significantly prolonged survival time compared with MYCBP2-

low patients (Supplementary Table 1, Supplementary Figure 2).
B C

D E

A

FIGURE 1

The association between the MYCBP2 expression and ICI efficacy. (A) The overall design of the study. The differences in predicted ICI efficacy
between the MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (B) and TCGA-THCA (C) cohorts. KM curve showing the
differences in the prognoses of ICI-treated patients between the MYCBP2-High and MYCBP2-Low groups in the melanoma (D) and urothelial
cancer (E) cohorts. (*: P < 0.05).
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Relationship between MYCBP2
expression, IC-related molecules, and
immune related genes

In TCGA-THCA cohort, MYCBP2-high patients had

significantly higher expression of IC-related molecules, such as

LAG3, IDO1, CTLA4, TIGIT, PD-1 and PDCD1LG2, than

MYCBP2-low patients (Figure 2A, P < 0. 05). In the

GSE138042-THCA cohort, the heatmap also revealed

differences between MYCBP2-high and MYCBP2-low patients

in the expression of genes associated with antigen presentation,

B cells, CD8+ T cells, macrophages, pDCs, inflammatory
Frontiers in Immunology 05
stimulation, and IFN responses (Figure 2B). In the TCGA-

THCA cohort, these genes were expressed at significantly

higher levels in MYCBP2-high patients than in MYCBP2-low

patients (Supplementary Figure 3).
Relationship between MYCBP2
expression and immune cell infiltration

We used the MCPcounter algorithm to evaluate immune

cell infiltration in the TIME of THCA patients (Figures 3A, B).

In both the GSE138042-THCA (Figure 3A) and TCGA-THCA
B

A

FIGURE 2

The association between the MYCBP2 expression and immune-related gene expression. (A) Differences in the expression of immune checkpoint
molecules between MYCBP2-High and MYCBP2-Low patients in the GSE138042-TC cohort. (B) Heatmap depicting differences the expression
of immune-related genes (antigen presentation, B cells, CD8+ T cells, macrophages, NK cells, pDCs, stimulation, and IFN responses) between
MYCBP2-High and MYCBP2-Low patients in the GSE138042-TC cohort. (*: P < 0.05; ***: P < 0.001; ****: P < 0.0001).
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(Figure 3B) cohorts, MYCBP2-high patients had significantly

higher infiltration of CD8+ T cells, cytotoxic lymphocytes

(CTLs), B cells, and NK cells than MYCBP2-low patients.

The quanTIseq algorithm was also used to verify immune

cell infiltration fractions (Figures 3C, D). Using the

quanTIseq algorithm, we found that MYCBP2-high patients

had significantly enriched B cells, NK cells, and DCs

(Figure 3C: GSE138042-THCA; Figure 3D: TCGA-THCA, all

P < 0.05). We also used the xCell algorithm to evaluate the

proportions of tumor infiltrating immune cells (Figures 3E, F).

Compared with MYCBP2-low patients, MYCBP2-high

patients had significantly increased B cells, memory CD4+ T

cells, CD8+ T cells, central memory CD8 + T cells (TCMs), and

class-switched memory B-cells (Figure 3E: GSE138042-THCA;

Figure 3F: TCGA-THCA).
Relationship between MYCBP2
expression and immune
signaling pathways

We found that MYCBP2-high patients had higher

activation of immune signaling pathways than MYCBP2-low

patients (Figure 4A: GSE138042-THCA; Figure 4B: TCGA-

THCA, ES > 0, P < 0. 05), including pathways regulating cell

surface receptor signaling and phagocytosis, Fc receptor

signaling, signal transduction, chemokine production,

molecular mediators of immune responses, interleukin-12 (IL-

12) production, MHC protein complex binding, interleukin-15

(IL-15) signaling, and interleukin-2 (IL-2) family signaling.

Signaling pathways related to immune responses and immune

cell activation were also significantly upregulated in MYCBP2-

high patients, including B cell activation, lymphocyte mediated

immunity, leukocyte migration, B cell proliferation, and NK cell

mediated cytotoxicity (Figure 4C: GSE138042-THCA;

Figure 4D: TCGA-THCA, ES > 0, P < 0. 05). The results of

ssGSEA showed that MYCBP2-high patients had higher

immune response pathway scores than MYCBP2-low patients,

including pathways for MHC class I protein complex binding,

DC cytokine production, MHC class IB receptor activity, IL-12

production, lymphocyte mediated immunity, NK cell mediated

cytotoxicity, T cell mediated immunity, interleukin-18 (IL-18)

production, NK cell mediated immunity, NK cell activation, DC

antigen processing and presentation, and IL-15 signaling

(Figure 4E: GSE138042-THCA; Figure 4F: TCGA-THCA, P <

0. 05). On the contrary, lipid metabolism related pathways

(such as short chain fatty acid metabolism, fatty acid beta

oxidation using acyl COA oxidase, and positive regulation of

vascular permeability) were significantly downregulated in

MYCBP2-high patients compared to MYCBP2-low patients

(Figure 4E: GSE138042-THCA; Figure 4F: TCGA-THCA, P <

0. 05).
Frontiers in Immunology 06
Validation of the local cohort based on
MYCBP2 status

IHC revealed MYCBP2 expression levels in TC tissues.

Patients in our local cohort with high MYCBP2 expression

always had a better prognosis and greater sensitivity to therapy

compared to patients with low MYCBP2 expression after six

months clinic follow up (Figure 5).
Discussion

Compared to conventional chemotherapy, ICIs has higher

safety and fewer adverse reactions, making it a useful treatment

regimen for various advanced cancers (48). ICIs is now a

potential treatment for patients with advanced and refractory

TC (49–51). In this study, we found that higher MYCBP2

expression was associated with better outcomes in TC patients

receiving ICIs. Immune cell infiltration analysis showed that

higher MYCBP2 expression was associated with significantly

enriched inflammatory immune cell infiltration and higher

expression of inflammatory molecules. Pathway enrichment

analysis showed that MYCBP2 may be involved in anti-tumor

immune responses. Therefore, MYCBP2 may be a novel

biomarker for ICI efficacy in TC patients.

The significantly enriched inflammatory immune cell

infiltration in MYCBP2-high patients is a potential molecular

mechanism for the greater efficacy of ICIs in these patients.

Bastman et al. found that some TC patients with greater

programmed death 1 [PD-1(+)] CD4+ T cell and PD-1(+)

CD8+ T cell infiltration could benefit from anti-PD-1/PD-L1

treatment (52). CD8 + T cells can kill target cells in an antigen-

specific manner, and improve the disease-free survival (DFS)

rate of patients (53). NK cells also play a key role in anti-tumor

immune monitoring. NK cells can not only kill tumor or infected

cells directly, but they can also indirectly enhance antibody and

T-cell-mediated anti-tumor immune responses (54). NK cells

also release lysosomes containing perforin and granzyme to kill

target cells (55). Many studies have also shown that DCs are a

key regulatory factor for the efficacy of ICIs and other tumor

immunotherapies (56). Accordingly, researchers are now

attempting to engineer DCs to activate and drive T cells into

the TIME, particularly for tumors with weak immunogenicity

(non-inflammatory of “cold” tumors), to improve the efficacy of

ICIs (51, 57). In our study, we found that MYCBP2-high patients

had significantly increased CD8+ T cells, B cells, NK cells, and

DCs in the TIME compared to MYCBP2-low patients.

The high expression of inflammatory molecules and

activation of immune response pathways in MYCBP2-high

patients is another potential molecular mechanism for the

greater ICI efficacy in MYCBP2-high patients. IL-15 can

maintain NK cell populations and tumor killing ability in the
frontiersin.org
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B

C D

E F

A

FIGURE 3

The association between the MYCBP2 expression and immune cell infiltration. Differences in tumor infiltrating immune cells estimated by
MCPcounter, between the MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (A) and TCGA-THCA (B) cohorts. Differences in
tumor infiltrating immune cells estimated by quanTIseq, between the MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (C)
and TCGA-THCA (D) cohorts. Differences in tumor infiltrating immune cells estimated by xCell, between the MYCBP2-High and MYCBP2-Low
TC patients in the GSE138042-TC (E) and TCGA-THCA (F) cohorts. (ns: not significant; *: P < 0.05; **: P < 0.01; ***: P < 0.001; ****: P < 0.0001).
Frontiers in Immunology frontiersin.org07
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TIME (58). Recently, a clinical trial showed that IL-15 can

increase CD8+ T cell and NK cell numbers up to 5.8 and 38

times that of the control group, respectively, and 17 of the 27

patients treated with IL-15 showed no tumor progression (59).

Several other studies have attempted to activate NK cells for

immunotherapy using cytokines. For example, IL-21 has been

shown to improve the exhaustion status of the NK cells (60), and
Frontiers in Immunology 08
the combination of IL-12, IL-15, and IL-18 can increase memory

NK cells and stimulate IFN-g secretion (61, 62). In our study, we

found that MYCBP2-high patients had significantly upregulated

IL-12 production, IL-15 signaling, IL-2 family signaling, and IL-

18 signaling compared to MYCBP2-low patients.

The pattern of fatty acid metabolism in TME is also crucial

in the immunomodulatory function of tumor tissues and
B

C D

E

F

A

FIGURE 4

The association between the MYCBP2 and immune-related signaling pathways. Differences in inflammatory molecule related signaling pathways
between MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (A) and TCGA-THCA (B) cohorts. Differences in immune response
related signaling pathways between the MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (C) and TCGA-THCA (D) cohorts.
Barplot showing the differences in ssGSEA scores between the MYCBP2-High and MYCBP2-Low TC patients in the GSE138042-TC (E) and
TCGA-THCA (F) cohorts.
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immunotherapy tolerance. It has been shown that the

expression of genes for fatty acid oxidation is upregulated in

Treg and that the level of fatty acid oxidation is increased, thus

promoting Treg production (63). The rate of de novo synthesis

of the fatty acid in tumor cells is usually increased, thus shifting

energy production to anabolic pathways for the production of

plasma membrane phospholipids and signaling molecules (64).

Lipid accumulation in tumor-infiltrating myeloid cells has

been shown to predispose these immune cells to an

immunosuppressive and anti-inflammatory phenotype

through metabolic reprogramming (65, 66). In our study, we

found that lipid metabolism related pathways (such as short

chain fatty acid metabolism, fatty acid beta oxidation using acyl

COA oxidase, and positive regulation of vascular permeability)

were significantly downregulated in MYCBP2-high patients

compared to MYCBP2-low patients.
Frontiers in Immunology 09
Some limitations are not ignored in our study, first,

clinical long-time follow-up was not conducted, and in

the future, a more clinical trial should be considered to

demonstrate this gene’s clinical value, and in addition, Due to

experimental constraints, organoid-related experiments have

not been considered, which is a regret, and we hope we will

complete this procedure in future cooperation with another

excellent laboratory.
Conclusions

In summary, we found that MYCBP2-high TC patients

had better responses to ICIs than MYCBP2-low patients, with

a higher proportion of predicted ICI responders in the

MYCBP2-high group. Higher MYCBP2 expression was
FIGURE 5

IHC analysis of MYCBP2 expression and clinical follow up of TC patients based on their MYCBP2 expression status.Here, we show four
representive IHC results of patients and corresponding ultrasound follow-up image.
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associated with significantly enriched inflammatory

immune cell infiltration and higher immune response

pathway activity.
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The Kaplan-Meier curves depicting differences in the prognoses of cancer

patients between the MYCBP2-High and MYCBP2-Low groups
(GSE26304, GSE1456, GSE5327, GSE30929, GSE26939, GSE30219,

GSE41271, GSE30219, GSE37745, GSE50081, GSE62452, and GSE16560).

SUPPLEMENTARY FIGURE 3

Heatmap depicting differences in the expression of immune-related
genes (antigen presentation, B cells, CD8+ T cells, macrophages, NK

cells, pDCs, stimulation, and IFN responses) between MYCBP2-High and
MYCBP2-Low patients in TCGA-THCA.
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The Kaplan-Meier result of the relationship between the expression of

MYCBP2 and survival times of the different cancer patients (GSE26304,
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