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based on neutrophil
extracellular trap-related genes
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Jiandong Zhang1,2, Peng Cao1,2, Zejia Sun1,2* and Wei Wang1,2*

1Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,
2Institute of Urology, Capital Medical University, Beijing, China
Background: Ischemia reperfusion injury (IRI) is an inevitable process in renal

transplantation, which is closely related to serious postoperative complications

such as delayed graft function (DGF), acute rejection and graft failure.

Neutrophil extracellular traps (NETs) are extracellular DNA structures

decorated with various protein substances released by neutrophils under

strong signal stimulation. Recently, NETs have been found to play an

important role in the process of IRI. This study aimed to comprehensively

analyze the expression landscape of NET-related genes (NRGs) during IRI,

identify clusters with different degrees of IRI and construct robust DGF and

long-term graft survival predictive strategies.

Methods: The microarray and RNA-seq datasets were obtained from the GEO

database. Differentially expressed NRGs (DE-NRGs) were identified by the

differential expression analysis, and the NMF algorithm was used to conduct

a cluster analysis of IRI samples. Machine learning algorithms were performed

to screen DGF-related hub NRGs, and DGF and long-term graft survival

predictive strategies were constructed based on these hub NRGs. Finally, we

verified the expression of Cxcl1 and its effect on IRI and NETs generation in the

mouse IRI model.

Results: This study revealed two IRI clusters (C1 and C2 clusters) with different

molecular features and clinical characteristics. Cluster C1 was characterized by

active metabolism, mild inflammation and lower incidence of DGF, while

Cluster C2 was inflammation activated subtype with a higher incidence of

DGF. Besides, based on DGF-related hub NRGs, we successfully constructed

robust DGF and long-term graft survival predictive strategies. The mouse renal

IRI model verified that Cxcl1 was significantly upregulated in renal tissues after
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IRI, and using a CXCL8/CXCL1 inhibitor could significantly improve renal

function, alleviate renal tubular necrosis, tissue inflammatory response, and

NET formation.

Conclusion: This study identified two distinct IRI clusters based on DE-NRGs

and constructed robust prediction methods for DGF and graft survival, which

can provide references for early prevention and individualized treatment of

various postoperative complications after renal transplantation.
KEYWORDS

neutrophil extracellular traps, ischemia reperfusion injury, renal transplantation,
delayed graft function, graft failure, acute rejection
Introduction

Renal transplantation is the most beneficial renal

replacement therapy for the treatment of end-stage renal

disease (1–3). However, due to the shortage of renal grafts,

most patients still endure dialysis treatment for many years. This

phenomenon makes it imperative to improve the success rate

and long-term survival of allogeneic renal transplantation.

Ischemia reperfusion injury (IRI) is a non-negligible procedure

in renal transplantation, and it is a major clinical challenge for

clinicians in the perioperative period of renal transplantation (4).

During I/R of the transplanted kidney, innate immune cells are

activated, which secrete multiple inflammatory mediators and

induce oxidative stress, causing sterile inflammation injury to

endothelial cells and renal tubular epithelial cells, ultimately

leading to graft dysfunction (5, 6). Delayed graft function (DGF)

is an IRI-related common early complication, which is related to

higher rejection rate and poorer short- and long-term outcomes

after transplantation (7, 8). Irish et al. (9) proposed a model to

predict DGF by integrating multiple risk factors based on data

from deceased donor renal transplantation. However, the actual

accuracy of this prediction model is not satisfactory, and there is

still a lack of effective DGF prediction tools in clinical practice.

Thus, it is urgent to have a deeper understanding of the

molecular biological changes involved in the process of renal

IRI and to develop a new model to better predict the occurrence

of DGF.

In response to strong signals, neutrophils release

extracellular DNA structures decorated with various protein

substances, called neutrophil extracellular traps (NETs) (10).

Initially, NET formation has been recognized as a unique

mechanism of host defense and pathogen destruction (11,

12). However, with the deepening of research, the role of

NETs in sterile inflammation, especially IRI, has attracted
02
widespread attention in recent years (13). In the kidneys,

NET formation is a major driver of the self-amplifying cycle

of tissue necrosis and inflammation (14). There is a close

relationship between renal IRI and NET formation, which

promote each other to aggravate the renal necroinflammatory

response (15). Besides, the role of NET-related genes (NRGs)

in renal IRI has been reported. Raup-Konsavage et al. (16)

found that neutrophil PAD4 plays a key role in NET

formation during renal IRI. PAD4-deficient mice do not

form NETs during renal I/R, and their renal function is

restored 48 h following renal I/R (16). Purinergic receptor

P2X 1 (P2RX1) was significantly upregulated in kidneys with

IRI. P2RX1 supported the formation of NETs following renal

IRI, and these NETs were essential for the impairment of

mitochondrial dynamics (17). However, a comprehensive and

integrated exploration of genes associated with NETs in renal

IRI is still lacking.

This study was designed to comprehensively analyze the

relationship between NRGs and renal IRI, and to identify renal

transplant recipients with different degrees of IRI based on

NRGs. In addition, we construct a predictive model for DGF

and long-term renal transplant outcomes. We first screened

out the differentially expressed NRGs (DE-NRGs) in IRI

pat ients through GEO database and our previous

summarized NRGs. The NMF clustering method based on

DE-NRGs can divide IRI patients into two clusters with

different molecular and clinical characteristics. Besides, we

identify the hub genes associated with DGF after renal

transplantation by various machine learning methods, and

constructed a robust model for the prediction of DGF and

long-term renal transplant outcomes after transplantation

based on the hub genes. Finally, we also performed

experimental validation in the mouse IRI model. It is worth

noting that this study is designed to stratify patients and
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construct multiple prognostic models based on NRGs

expression profiles in renal IRI for the first time.
Materials and methods

Data collection and processing

The microarray and RNA-seq datasets analyzed in this study

were downloaded from the GEO database. Five datasets were

finally included and Table 1 shows the relevant information of

these datasets. Using matching platform files to obtain gene

symbols of each probe matrix. All microarray datasets were

normalized through the “limma” R package (18), and Log2

transformation was conducted for subsequent analysis. The

NRGs included in this study were collected from previous

studies (Table S1).
Identification of DE-NRGs

The GSE43974 dataset contains 203 renal biopsy samples

after ischemia-reperfusion injury (IRI) and 188 control samples.

Differential expression analysis was performed on the above two

types of samples using the “limma” package to identify

differentially expressed genes (DEGs). Adjusted p-value< 0.05

and |logFC| > 0.5 were set as the threshold. By intersecting DEGs

with NRGs, we finally obtained DE-NRGs between IRI samples

and control samples.
Non-negative matrix factorization
algorithm

As renal transplant recipients who have experienced

di fferent degrees of IRI may have quite di fferent

postoperative graft function and long-term graft survival. To

explore the degrees of IRI among different recipients, we

conducted a cluster analysis of all IRI samples based on the

expression of DE-NRGs using the “NMF” R package to

explore potential molecular subtypes (19). The “ brunet “

criterion was selected and iterated 100 times. The number of

clusters (k) was set from 2 to 10, and the minimum members

of each cluster were set to 2s. The average contour width of the

common membership matrix was determined by the R

package “NMF” . Using the cophenet ic corre lat ion

coefficients (from 0 to 1) to reflect the stability of clusters,

while the residual sum of squares (RSS) was used to reflect the

model’s clustering performance. The optimal k was selected

based on the cophenetic, dispersion and silhouette metrics.

Through the above algorithm and the optimal k, IRI samples

are divided into different molecular clusters.
Frontiers in Immunology 03
Identification of DGF-related hub genes
by machine learning methods

To construct a predictive model for DGF after renal

transplantation, we performed two machine learning methods

to screen DGF-related hub genes. The random forest (RF)

algorithm is a supervised classification method based on an

ensemble of decision trees, which can be implemented by the

“randomForest” R package and ranks features according to the

Gini importance measure (20). The support vector machine

recursive feature elimination (SVM-RFE, based on the “e1070” R

package) algorithm is a recursive feature elimination strategy

that uses the weighted vectors generated from the SVM to

optimize the classification accuracy between different groups

(21). By intersecting the top-ranked genes from the RF algorithm

and genes obtained by the SVM-RFE algorithm, we finally

identified eight DGF-related hub NRGs.
Establishment and validation of the DGF
predictive model

IRI samples in the GSE43974 dataset were randomly divided

into a training set and an internal testing set (1: 1), and then

performed a least absolute shrinkage and selection operator

(LASSO) regression analysis with 10-fold cross-validation on

these DGF-related hub NRGs using the “glmnet” R package to

screen candidate NRGs (22). Linearly combining the regression

coefficient obtained and expression of each candidate NRGs to

calculate the risk score:

Risk score =o
n

i=1
(coef i  � Expi) 

IRI samples were stratified into two groups (the high-risk

and the low-risk group) according to the median risk score. The

accuracy of our model was assessed through the receiver

operating characteristic (ROC) curves and a 10-fold cross-

validation. Besides, an external validation set (GSE37838) was

used to validate the robustness of the predictive model and to

compare the model with several other predictive strategies.
Establishment of a predictive signature
for the long-term survival of
renal allograft

Studies have shown that the DGF after renal transplantation

is significantly related to the occurrence of acute rejection (AR)

and long-term graft failure. Based on the DGF-related hub

NRGs, we sought to establish a predictive signature of long-

term graft failure in the GSE21374 dataset. Renal transplant

recipients were randomly divided into a training set and a
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validation set at a ratio of 1:1. Firstly, using the univariable Cox

regression (HR ≠ 1 and p< 0.05) to screen out prognosis-related

NRGs, and then a LASSO regression algorithm with 10-fold

cross-validation was used to establish the final predictive

signature. Exporting the coefficient value of each gene from

the LASSO regression algorithm, and the risk was calculated

using the expression of each NRG and their corresponding

regression coefficient. Renal transplant recipients were also

divided into the high-risk group and the low-risk group based

on the median risk. Kaplan–Meier (K–M) survival curves were

used to compare the survival of different groups, and the time‐

dependent receiver operating characteristic (ROC) curves were

used to measure the predictive performance of our

signature (23).
Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were

conducted using the “clusterprofiler” R package (24). Gene Set

Enrichment Analysis (GSEA) was used to compare biological

processes that were significantly different between IRI groups.

The activity scores of specific biological pathways in each IRI

sample were assessed by single sample Gene Set Enrichment

Analysis (ssGSEA) using the “GSVA” R package, and the

reference gene sets included in the specific biological pathways

were obtained from the MSiDB database (25). Terms with< 0.05

and FDR (q-value)< 0.25 were statistically significant.
Calculation of immune cell infiltration

Using the ssGSEA to measure the infiltration of 23 types of

immune cells between different IRI groups, and the pod-plot was

used to compare immune cell infiltration. Besides, we also

validated the infiltration of neutrophils by other five

a lgor i thms (TIMER, CIBESORT, CIBESORT-ABS,

QUANRTISEQ, and MCPcounter).
Mice and renal IRI model

Male, 6-8 weeks old C57BL/6 N mice (Weitong Lihua

Experimental Animal Center, Beijing, China) were used in this

study, and all mice were maintained in a specific pathogen-free

environment. All mice were starved for 12 hours before the

operation. The mice were anesthetized with an intraperitoneal

injection of pentobarbital (60 mg/kg), and the core body

temperature was maintained between 34 and 36°C. The right

kidney was removed from the mouse, and the blood flow was

blocked at the left renal pedicle using a noninvasive sterile

vascular clamp for 35 minutes, then the clamp was released
Frontiers in Immunology 04
for renal reperfusion. Muscle and skin were sequentially closed

with 5-0 silk thread as previously reported (26). One milliliter of

normal saline was injected intraperitoneally to prevent

dehydration. Sham-operated mice had the right kidney

removed and the left renal tip exposed without clamping. The

G31P-treated group was administrated intraperitoneally with

G31P at a dose of 0.5 mg/kg once every 2 days before ischemia.

Mice were euthanized 24 hours after renal IRI, and kidney

tissues and serum were collected for subsequent analysis.
Assessment of kidney injury and
renal function

Kidney tissues were soaked in 10% formalin and then

dehydrated and hyalinized using alcohol and xylene,

respectively. Using paraffin to embed the kidney tissues and

then slicing them into thin sections (4mm), then the sections

were fully dewaxed with xylene and hydrated by gradient alcohol

for hematoxylin and eosin (H&E) staining. Separating serum

from whole blood samples and measuring the levels of serum

creatinine and BUN using the creatinine detection kit (Abcam)

and urea detect ion kit (Abcam) according to the

manufacturer’s instructions.
Quantitative real-time PCR

Using TRIzol reagent (#15596026, Thermo Fisher Scientific)

to isolate and extract total RNA, and the reverse transcription

was conducted using a PrimeScript™ RT Reagent Kit

(#RR600A, TaKaRa Bio). Then, according to the TB Green

Premix Ex Taq (TaKaRa Bio, Inc.) protocol, using specific

primers to perform quantitative real-time PCR. GAPDH

wasused as an internal control and the 2-DDCt method was

used to calculate relative mRNA levels. The primers sequences

of the Cxcl1 in this study are as follows: Forward: 5’-

CTGGGATTCACCTCAAGAACATC-3 ’ , Reverse : 5 ’ -

CAGGGTCAAGGCAAGCCTC-3’.
Assessment of tissue inflammation and
detection of serum NETs

Paraffin-embedded kidney tissues were dewaxed in xylene

and then hydrated with graded concentrations of ethanol. Using

3% hydrogen peroxide solution to block endogenous peroxidase

for 10 minutes and using citrate buffer to perform antigen

retrieval. After blocking with 10% goat serum for 30 minutes,

the rabbit polyclonal anti-Neutrophil Elastase (anti-NE)

primary antibody (Abcam, ab68672) diluted at a ratio of

1:100 was used to incubate overnight at 4°C, and then HRP-

conjugated secondary antibody was used to incubate for
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immunohistochemical (IHC) staining. To quantify the

production of NETs, we assessed the expression of dsDNA,

NE and MPO in mouse serum. The levels of dsDNA and NE

were measured by mouse anti-double stranded DNA antibody

(dsDNA) ELISA kits (Wuhan ColorfulGene Biological

Technology Co., LTD, JYM1061Mo) and mouse neutrophil

elastase ELISA kits (Wuhan ColorfulGene Biological

Technology Co., LTD, JYM0280Mo) respectively according to

the manufacturer’s directions. While the serum MPO was

detected by using the MPO assay kit (colorimetric method).
Statistical analysis

The statistical analysis involved in this study was performed

by R software (version 4.2.1). Descriptive statistics were used to

characterize the distributions of continuous variables (mean,

median, quartiles, range, standard error, standard error of mean)

and nominal variables (frequency, percentage). For normal

distribution variables, Student’s t-test was used to compare the

differences between the two groups, while Mann-Whitney U test
Frontiers in Immunology 05
was used for abnormally distributed variables. The Chi-square

test was used to analyze the relationship among IRI groups and

Donor type, DGF, AR. All tests were two-sided and p< 0.05 was

considered statistically significant.
Results

Identification of DE-NRGs and functional
enrichment analysis

Figure 1 shows the flowchart of our study. Differential

expression analysis was performed on the gene expression

profiles of 188 control samples and 203 IRI samples.

According to the conditions described in the “Materials and

Methods” section, a total of 171 DEGs were identified and all of

them were significantly upregulated in the IRI samples

(Figure 2A). By integrating 171 DEGs with the 137 NRGs we

collected, 16 DE-NRGs were finally obtained (Figure 2B, Table

S2). Figure 2C showed the expression landscape of the 16 DE-

NRGs in all control and IRI samples, which can be seen that all
FIGURE 1

Flowchart of this study. NETs, Neutrophil extracellular traps; NRGs, NET-related genes; DGF, delayed graft function; GSVA, gene set variation
analysis; SVM-RFE, support vector machine recursive feature elimination; LASSO, least absolute shrinkage and selection operator; ROC, receiver
operating characteristic; GSEA, gene set enrichment analysis; AR, acute rejection.
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DE-NRGs were significantly upregulated in allograft kidney

tissues after IRI. To further determine the expression of 16

DE-NRGs after IRI, we used two independent renal transplant

cohorts for validation. As shown in Figures 2D, E, these DE-

NRGs were significantly upregulated in allograft kidney tissues

after IRI.

To gain insight into the potential role of DE-NRGs in IRI, we

performed a functional enrichment analysis on DE-NEGs. GO

analysis showed that DE-NRGs are related to biological

processes such as chemokine-mediated signaling pathway,

myeloid leukocyte migration, cellular response to chemokine,

and neutrophil chemotaxis (Figure 2F). Besides, the KEGG

results showed that TNF signaling pathway, IL-17 signaling

pathway, NF-kappa B signaling pathway, Chemokine signaling
Frontiers in Immunology 06
pathway, and NOD-like receptor signaling pathway were

significantly enriched (Figure 2G).
Stratification of IRI patients based
on DE-NRGs

To identify kidney transplant recipients with different degrees

of IRI, we performed cluster analysis using the NMF algorithm

based on the expression profiles of 16 DE-NRGs in all IRI

samples. Based on the cophenetic, dispersion and silhouette

metrics, k = 2 was ultimately determined as the optimal cluster

number (Figures 3A, B). Therefore, according to the NMF

algorithm, all IRI samples were divided into two clusters,
A B

D

E

F

G

C

FIGURE 2

Identification of DE-NRGs and functional enrichment analysis. (A) Volcano plot of DEGs, and the gene symbols of DE-NRGs were
labeled. (B) Intersection between DEGs and NRGs in renal IRI. (C) Heatmap of the expression of 16 DE-NRGs in control samples and IRI
samples. (D, E) Box and scatter plots showing the expression of 16 upregulated DE-NRGs in GSE90861 and GSE126805. (F) GO
enrichment analysis of DE-NRGs in terms of biological process, cellular component, and molecular function. (G) KEGG pathway analysis
of DE-NRGs. NRGs, NET-related genes; DEGs, differentially expressed genes; DE-NRGs, differentially expressed NRGs; IRI, ischemia
reperfusion injury; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. ***P < 0.001.
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namely the C1 cluster (n = 100) and the C2 cluster (n = 103).

Principal component analysis (PCA) showed that the expressions

of DE-NRGs between the two IRI clusters (C1 vs C2) were

significantly different (Figure 3C). Figure 3D showed the

expression landscape of DE-NRGs and the clinical

characteristics of kidney transplant recipients between the two

IRI clusters. Specifically, except for SGK1, which was upregulated
Frontiers in Immunology 07
in the C1 cluster, the rest of the DE-NRGs were all upregulated in

the C2 cluster (Figure 3E). As for clinical characteristics, the

percentage of DGF in the C2 cluster was higher than that in the C1

cluster (p = 0.045) (Figures 3F, G). Additionally, the donors of the

C2 cluster were more obtained from BD and DCD patients, while

the donors of the C1 cluster were mainly obtained from living

patients (p< 0.001; Figures 3H, I).
A B

D

E

F G IH

C

FIGURE 3

Non-negative matrix factorization (NMF) analysis for the IRI samples. (A) Consensus map of NMF clustering when k = 2. (B) Distribution of cophenetic,
residuals, RSS and silhouette with a rank of 2–10. (C) A PCA plot of the expression profile of DE-NRGs between two clusters. (D): Heatmap showing the
expression landscape of DE-NRGs and the clinical characteristics of the two clusters. (E): Box plot showing the expression of 16 DE-NRGs between the
two clusters. (F, G): Histogram comparing the differences in donor between the two clusters. (H, I) Histogram comparing the differences in the
occurrence of DGF between the two clusters. IRI, ischemia reperfusion injury; RSS, residual sum of squares; PCA, principal component analysis; DE-
NRGs, differentially expressed NET-related genes; DGF, delayed graft function. *P < 0.05, **P < 0.01, ***P < 0.001.
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GSVA enrichment analysis and immune
infiltration analysis of IRI clusters

To elucidate the different biological characteristics between

the two IRI clusters, we performed GSVA enrichment analysis

based on the Hallmarks gene set (h.all.v7.2.symbols.gmt) from

the MSigDB database. The heatmap showed that the KRAS

signaling up, IL6-JAK-STAT3 signaling, interferon a/b
response, inflammatory response, apoptosis and allograft

rejection were significantly activated in the C2 cluster. While

some metabolic-related processes such as fatty acid metabolism,

heme metabolism, bile acid metabolism, protein secretion and

oxidative phosphorylation were activated in the C1

cluster (Figure 4A).

The result of immune infiltration analysis showed that a

variety of immune-related cells including B cells, CD8+ T cells,
Frontiers in Immunology 08
CD4+ T cells, NK cells, dendritic cells, macrophages and

neutrophils had higher abundance in the C2 cluster compared

with that in the C1 cluster (Figure 4B). Furthermore, through

five other algorithms, we further confirmed that the abundance

of neutrophils in the C2 cluster was significantly higher

(Figure 4C). Suggesting that the inflammatory and immune

responses in the C2 cluster were more severe, the production

of NETs in these renal grafts may be more, and the postoperative

graft function and long-term graft survival may be worse.
Construction and validation of DGF
predictive model

Delayed graft function (DGF) is the earliest and most

important complication of IRI, developing an effective
A

B

C

FIGURE 4

GSVA enrichment analysis and immune infiltration analysis of IRI clusters. (A): The heatmap showing the different hallmarks between the two
clusters. (B) Pod-plot showing the infiltration of 23 types of immune cells between the two clusters. (C) Comparison of the infiltration of
neutrophils between clusters using other five algorithms. GSVA, gene set variation analysis. *P < 0.05, **P < 0.01, ***P < 0.001; ns, no
significance.
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prediction strategy for DGF is a research hotspot in the field of

renal transplantation. Since DE-NRGs are differentially

expressed in renal tissues with different degrees of IRI and

renal grafts classified by 16 DE-NRGs have large differences in

the incidence of DGF, we attempted to construct a robust

predictive model for DGF based on DE-NRGs. DGF-related

feature NRGs were identified through the RF algorithm, and 16

DE-NRGs were ranked according to the Gini importance

measure (Figures 5A, B). The SVM-RFE algorithm was also

used to screen DGF-related feature NRGs, and the number of

NRGs was determined according to the smallest error (highest

accuracy) (Figures 5C, D). By intersecting the top 10 NRGs

identified by the RF algorithm and the 9 NRGs screened by the

SVM-RFE algorithm, we finally obtained 8 DGF-related hub

NRGs (Figure 5E; Table S3).

We randomly divided the 203 IRI samples into a training set

and an internal testing set in a 1:1 ratio. Then, the candidate

NRGs (NFKBIA, NFIL3, SGK1 and CXCL8) were selected for

constructing the DGF predictive model by LASSO regression

with their regression coefficients as -2.598, -1.706, -0.548 and

2.622, respectively (Figures 5F–H). The risk score was calculated

for each IRI sample and all samples were divided into high-risk

and low-risk groups according to the median risk score. The

ROC curve was used to assess the accuracy of the predictive

model, and the results showed that the area under the curve

(AUC) for the training set, the internal testing set, and the whole

set was 0.854, 0.792, and 0.812, respectively (Figures 5I–K). To

further validate the universality and robustness of our predictive

model, we performed a 10-fold cross-validation of the model in

the whole set (Table S4). The result showed that the average

sensitivity is 0.83, the average specificity is 0.67 and the average

AUC is 0.75. Besides, an external test set (GSE37838) was also

used to further validate tour model, and the AUC of this set was

0.744 (Figure 5L). It was worth noting that in the GSE3783

dataset, the prognostic performance of our models was better

than other traditional DGF predictive methods (Kdri model,

Schol score and Irish score) (Figure 5L). Overall, our DGF

predictive model based on the expression of 4 NRGs was

satisfactory. The Sankey diagram intuitively showed the

relationships among the type of donors, the occurrence of

DGF, the IRI cluster and the risk of IRI samples (Figure 5M).
Function enrichment analysis and
immune infiltration analysis based on
DGF predictive model

To explore the underlying biological mechanisms that lead

to differences between high- and low-risk groups, we performed

GSEA enrichment analysis based on the KEGG gene set

(c2.cp.v7.2.symbols.gmt) in the MSigDB database. The results

showed that the chemokine signaling pathway, cytokine-

cytokine receptor interaction, leukocyte transendothelial
Frontiers in Immunology 09
migration and allograft rejection were significantly enriched in

the high-risk group (Figures 6A–D). SsGSEA analysis showed

that the abundances of B cells, CD8+ T cells, CD4+ T cells, NK

cells, dendritic cells, macrophages and neutrophils in the high

risk group were higher than that in the low risk group

(Figure 6E). Furthermore, through five other algorithms, we

further confirmed that the abundance of neutrophils was

significantly higher in the high-risk group (Figures 6F–J).

Figure 6K showed the correlation between 23 immune-related

cells, the correlation between 16 DE-NRGs and the relationships

between immune-related cells, DE-NRGs and IRI subgroups

classified by two strategies.
Construction and validation of a long-
term graft survival predictive signature

In the GSVA analysis and the GSEA analysis (Figure 4A;

6D), we found that the allograft rejection was significantly

enriched in both the C2 cluster and the high-risk group. Since

the occurrence of DGF after transplantation is closely related to

allograft rejection and long-term graft failure, in order to

effectively predict the long-term graft survival and the

possibility of AR, we aimed to construct a signature for

predicting long-term graft survival based on the DGF-related

hub NRGs.

In the GSE21374 dataset, we randomly divided kidney

transplant recipients into a training set and a testing set (1:1).

In the training set, a univariable Cox regression analysis was

performed on the eight DGF-related hub NRGs and four

prognostic NRGs (CXCL8, CXCL2, NFKBIA, and CEBPB)

were identified (Figure 7A). Then LASSO regression analysis

was used to sub-selected NRGs for signature construction, and

the risk of each recipient was calculated as follows: Risk = 0.74 *

Exp(CXCL8) + 0.81 * Exp(CXCL2) (Figures 7B–D). Figure 7E

showed the expressions of CXCL8 and CXCL2 in the high-risk

group were significantly higher, and the recipients with higher

risk were more likely to undergo graft failure. K-M curves

indicated that high-risk recipients had worse long-term graft

survival than low-risk recipients regardless of the cohort

(Figures 7F–H). The time-dependent ROC curves showed that

in the training set, the AUC of the signature at 1 year and 2 years

were 0.823 and 0.803, respectively. In the testing set, the AUC at

1 year and 2 years were 0.767 and 0.720, respectively. While in

the whole set, the AUC at 1 year and 2 years were 0.795 and

0.758, respectively (Figures 7I–K). The above results all showed

that our 2-NRG predictive signature can accurately predict the

long-term outcome of grafts.

The Sankey diagram intuitively showed the relationship

among the occurrence of AR, long-term graft failure and the

risk of recipients (Figure 7L). Correlation analysis implied that

high-risk recipients were more likely to develop AR, and

recipients who experienced AR may have a higher risk
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FIGURE 5

Establishment and validation of the DGF predictive model. (A) Random forest tree. The abscissa represents trees and the ordinate represents the
error rate. Red represents the DGF samples, green represents the non-DGF samples, and black represents the overall samples. The dotted line
represents the tree holding the minimum error rate. (B): Gini importance measure. The horizontal axis represents mean decrease Gini, and the
vertical axis represents characteristic NRGs. (C, D) Feature NRGs were selected with the SVM-RFE algorithm at the optimal point. (E): Intersecting
the top 10 NRGs identified by the RF and the 9 NRGs screened by the SVM-RFE. (F, G): The 4 candidate NRGs obtained by LASSO regression with
10-fold cross-validation. (H): LASSO coefficients profiles of candidate NRGs in the model. (I–L): Evaluating the performance of the model in the
training set, internal testing set, whole set and external validation set using ROC curves. (M): Sankey diagram showing the relationships among the
type of donors, the occurrence of DGF, the IRI cluster and the risk of IRI samples. DGF, delayed graft function; NRGs, NET-related genes; SVM-RFE,
support vector machine recursive feature elimination; RF, random forest; LASSO, least absolute shrinkage and selection operator; ROC, receiver
operating characteristic; IRI, ischemia reperfusion injury.
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FIGURE 6

Function enrichment analysis and immune infiltration analysis based on the DGF predictive model. (A–D): GSEA showing the different pathways
between the two IRI groups. (E): Pod-plot showing the infiltration of 23 types of immune cells between the two groups. (F–J): Comparison of
the infiltration of neutrophils between groups using other five algorithms. (K): the correlation between 23 immune-related cells, the correlation
between 16 DE-NRGs and the relationships between immune-related cells, DE-NRGs and IRI subgroups classified by two strategies. DGF,
delayed graft function; GSEA, gene set enrichment analysis; IRI, ischemia reperfusion injury; DE-NRGs, differentially expressed NET-related
genes. *P < 0.05, **P < 0.01, ***P < 0.001; ns, no significance.
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(Figures 7M–O). Early screening of such recipients and timely

adjustment of their immunosuppressive therapy may effectively

improve the survival of kidney grafts.
Validate the expression of CXCL8 in IRI
and its effect on NETs production

Since CXCL8 was included in both predictive models, we

selected it for further experimental validation. Human CXCL8,
Frontiers in Immunology 12
formerly known as IL-8, is a member of the chemokine

superfamily and is closely associated with inflammatory

diseases. Its homolog in mice is Cxcl1. G31P is a CXCL8

mutant prepared by SNP mutation, which has a high affinity

for binding to CXCR1/CXCR2 but has no biological activity, so

it is usually used as an antagonist of CXCL8. We first conducted

the mouse IRI model (ischemia for 35 minutes followed by

reperfusion for 24 hours), and Figure 8A showed the complete

surgical process of renal ischemia-reperfusion in mice.

Compared with the sham group, the HE staining of the renal
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FIGURE 7

Construction of a predictive signature for the long-term survival. (A): Forrest plot of univariable Cox regression analysis. (B, C): The 2 candidate
NRGs obtained by LASSO regression with 10-fold cross-validation. (D): LASSO coefficients profiles of candidate NRGs in the signature. (E): Risk
map of the two risk groups. (F–H): K-M survival analysis of the model in the training set, the testing set and the whole set. (I–K): Time-
dependent ROC analysis in the training set, the testing set and the whole set. (L): Sankey diagram showing the relationship among the
occurrence of AR, long-term graft failure and the risk of recipients. (M, N): Histogram comparing the differences in the occurrence of AR
between the two groups. (O): Comparison of the risk score between AR and non-AR recipients. NRGs, NET-related genes; LASSO, least
absolute shrinkage and selection operator; K-M, Kaplan–Meier; ROC, receiver operating characteristic; AR, acute rejection.
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FIGURE 8

Experimental verification processes. (A): The surgical process of renal ischemia-reperfusion in mouse. (B): H&E staining of the renal tissues from
Sham mice, IRI mice and IRI+ G31P mice. (C, D): Serum creatinine and BUN were measured in the Sham group, the IRI group and the IRI+G31P
group. (E): mRNA expression of Cxcl1 in kidney tissue of the control group and the IRI group. (F): Immunohistochemistry staining of NE in Sham
mice, IRI mice and IRI+ G31P mice. (G–I): NET-related markers (dsDNA, MPO, NE) in the serum of the Sham group, the IRI group and the IRI
+G31P group. H&E, hematoxylin and eosin; IRI, ischemia reperfusion injury; NE, neutrophil elastase; MPO, myeloperoxidase. **P < 0.01, ***P <
0.001.
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tissues of the IRI group showed obvious tubular cell death and

effacement of brush border, while pretreatment with G31P could

significantly alleviate the IRI (Figure 8B). Besides, the IRI group

had significantly increased serum creatinine and BUN at 24 h

after reperfusion compared with the sham group, and

pretreatment with G31P improved renal function (Figures 8C,

D). After IRI, the mRNA expression of Cxcl1 was validated in

mice renal tissues by qRT-PCR, and the results showed that the

expression of Cxcl1 after IRI was significantly upregulated

compared with the control (p< 0.001; Figure 8E). The

exploration of neutrophils and NETs showed that the

infiltration of neutrophils in mice renal tissues increased

significantly after IRI, and pretreatment with G31P could

alleviate the infiltration of neutrophils (Figure 8F). Besides,

NET-related markers (dsDNA, MPO, NE) in the serum of the

IRI group were also significantly higher than those in the sham

group, while pretreatment with G31P can decrease the

production and release of these markers (Figures 8G–I).

Overall, consistent with the results of bioinformatic analyses,

we found that CXCL8/CXCL1 was significantly upregulated in

renal tissues after IRI, and inhibiting the expression and function

of CXCL8/CXCL1 can reduce the production of NETs and the

severity of IRI.
Discussion

IRI and allograft rejection are two major factors affecting

graft survival after renal transplantation. Among them, IRI

occurring during renal transplantation causes acute kidney

injury and DGF, and may eventually lead to graft loss and

transplant failure (4). Therefore, alleviating IRI in renal

transplantation help to reduce the incidence of DGF and

improve the long-term graft survival. NETs are thought to

be web-like structures composed of DNA and granule proteins

that are released after cell death (11). NETs are induced during

renal I/R, and NET formation aggravates renal injury, which

further induces more NET formation. This induces a pro-

inflammatory positive feedback loop, which in turn

exacerbates renal IRI (14, 15). Currently, there are few

studies about NRGs and IRI, and the available studies

mainly focused on the relationship between a single NRG

and renal IRI. Therefore, this study aimed to comprehensively

analyze the relationship between NRGs and renal IRI and its

effects on the transplanted kidney (DGF, acute rejection, graft

survival). We identified DE-NRGs during renal IRI and

clustered renal IRI patients based on the expression profiles

of DE-NRGs to identify subclasses with different molecular

and clinical characteristics. In addition, we identified the hub

genes related to DGF and constructed a predictive model for

DGF and long-term outcome of renal transplantation. Finally,

we performed validation in the mouse IRI model and found
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that Cxcl1 (mouse homolog of human CXCL8) (27) was

significantly upregulated after IRI. The use of CXCL8/

CXCL1 inhibitor significantly reduced NET formation and

attenuated renal IRI.

In 2004, neutrophils were first reported to kill pathogens

through the formation of NETs (11). Since then, a large

number of studies have focused on NETs. In addition to

capturing and killing microorganisms causing infectious

diseases, NETs are also involved in the occurrence and

development of non-infectious diseases, including cancer

(28), autoimmune diseases (29, 30), thrombosis (31), and

sterile inflammatory tissue injury (32). Among them, renal

IRI is a typical type of sterile inflammatory injury in which

NETs play an important role (33, 34). Studies have shown that

inhibition of NET formation or promotion of NET

degradation by PAD4 inhibitor or DNase I can improve

renal IRI (16, 35). In this study, we obtained 16 DE-NRGs

by integrating 171 DEGs before and after IRI and 137 NRGs,

all of which were upregulated in renal tissues after IRI. The

results of functional enrichment analysis showed that they

were significantly enriched in TNF signaling pathway, IL-17

signaling pathway and NOD-like receptor signaling pathway.

Studies have shown that neutrophils from patients with

ulcerative colitis can produce NETs upon stimulation with

TNF-a, and reduced NET formation and their related proteins

can be observed in patients successfully treated with anti-

TNF-a therapy (36). In addition, IL-17A aggravates liver

injury after I/R by inducing neutrophil infiltration and NET

formation (37). NLRP3 inflammasome is also involved in the

formation of NETs, which is dependent on PAD4 (32).

Inhibition of NLRP3 inflammasome signaling significantly

attenuates NET formation in the non-infected state (32).

Subsequently, based on the expression profiles of the 16 DE-

NRGs in IRI tissues, we divided IRI patients into C1 and C2

groups through NMF clustering analysis. Except for SGK1, the

remaining 15 DE-NRGs were significantly upregulated in the

C2 group of IRI samples. It was shown that NETs can induce

dendritic cells (DCs) activation and promote Th1 polarization

in patients with type 1 diabetes (38). In addition, NETs

promote macrophage inflammation in diabetic mice (39).

This is consistent with our finding of a higher infiltrating

abundance of various immune cel ls such as DCs,

macrophages, neutrophils and Th1 in the C2 group of IRI

samples. All of these results suggest a higher immune

inflammatory response and NET formation in the C2 group

of IRI samples and that the prognosis in C2 group patients

may be worse.

DGF is a common early complication related to IRI during

renal transplantation, which severely affects the short- and long-

term survival of the transplanted kidneys (7). We found

significant differences in the incidence of postoperative DGF

among IRI subgroups clustered according to DE-NRGs. In order
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to identify patients at high risk of DGF for early intervention, we

attempted to construct a DE-NRGs-based model to predict the

occurrence of DGF. By integrating machine learning method, we

obtained 8 hub genes (hub-NRGs) related to DGF, namely

DNAJB1, SGK1, CXCL8, CXCL2, NFKBIA, CEBPB, NFIL3,

and IL6. Available studies have shown that these genes are

closely linked to NETs. Among them, cigarette smoke can

alter neutrophil chemotaxis, NET formation and the

expression of inflammatory-related gene DNAJB1 (40). In

atherosclerotic cardiovascular diseases, increased intracellular

Cl- concentration in neutrophils promotes NET formation via

Cl–sensitive SGK1 signaling (41). In addition, NFIL3 can

aggravate the inflammatory response in gout by stimulating

neutrophil autophagy and the formation of NETs through

REDD1/mTOR (42). Silencing of NFIL3 reduces inflammatory

injury in mice with acute gouty arthritis through inhibiting

neutrophil autophagy and the formation of NETs (42). Studies

have reported that low concentrations of NETs induce

proliferation of human keratinocytes through activation of

NF-kB signaling (43). Neutrophils stimulated by monosodium

urate delay the activation of transcription factors NF-kB and C/

EBP and promote NET formation (44). Furthermore, NETs

stimulate airway epithelial cells to express CXCL1, CXCL2 and

CXCL8 through the TLR4/NF-kB pathway, thereby recruiting

neutrophils to sites of inflammation (45). Yang et al. (46)

demonstrated that decreased levels of miR-4512 in monocytes

and macrophages from systemic lupus erythematosus patients

promoted innate immune activation and neutrophil NET

formation by targeting TLR4 and CXCL2. Park et al. (47)

found that myeloid cells from severe patients with COVID-19

showed higher CXCL8 expression, which promoted neutrophil

recruitment and recruited neutrophils highly expressed genes

related to NETs. In addition, the presence of NETs in human

solid tumors was found to be a considerable degree of individual

variation, and circulating NETs show a positive correlated with

IL-8 (48). IL-6 trans-signaling was strongly associated with NET

formation induced by Haemophilus influenzae in chronic

obstructive pulmonary disease (COPD) patients (49).

Furthermore, there was a significant positive correlation

between soluble IL-6 receptor and NET markers in

bronchoalveolar lavage fluid from COPD patients (49). By

performing LASSO regression on the DGF hub genes, we

finally constructed a DGF prediction model based on 4-NRG

(NFKBIA, NFIL3, SGK1 and CXCL8). The two groups of

patients (high and low risk groups) stratified by this model

differed significantly in the occurrence of postoperative DGF, the

activity of inflammation-related signaling pathways, and the

abundance of immune cell infiltration. Notably, our 4-NRG

model showed better predictive power compared to other

existing DGF prediction tools, including Kdri, Schold score

and Irish score.
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The results of functional enrichment analysis showed that

allograft rejection pathway was significantly enriched in both the

C2 and high-risk groups of patients. The occurrence of DGF

after transplantation is closely related to the occurrence of

allograft rejection and long-term graft failure. In order to

effectively predict the survival of long-term graft and the

possibility of allograft rejection, we also constructed a 2-NRG

(CXCL8 and CXCL2) prognostic model for long-term transplant

kidney outcome based on DGF hub genes. CXCL2 and CXCL8

included in this model are a class of chemokines that cause

neutrophil recruitment (50). In malignant pleural effusions,

methotrexate-packaging tumor cell-derived microparticles

induces the recruitment of neutrophils to the pleural cavity via

CXCL1 and CXCL2 released from macrophages, followed by

recruited neutrophils are activated and release reactive oxygen

species and NETs to kill tumor cells (51). CXCL8 can trigger

neutrophils to produce NETs (11), and NETs can also activate

IL-8 expression in human bronchial epithelial cells (52). In

severe COVID-19 patients, systemic and neutrophil autocrine

CXCL8 positive feedback loops initiate neutrophil activation,

degranulation and NET formation, which exacerbate

neutrophil-driven immunopathology (53). Our results also

showed that high-risk recipients are more likely to develop

allograft rejection after renal transplantation. As for the two

NRGs included in our signature, CXCL8 is crucial negative

determinant for islet survival after transplantation (54). Studies

have confirmed the significant upregulation of CXCL8 in

chronic antibody-mediated rejection after renal transplantation

(55). In addition, in a mouse model of liver transplant rejection,

CXCL2 is significantly elevated in serum, which is the gene most

closely related to the functions of neutrophils (56).

To further confirm the reliability of the model, we performed

experimental validation of CXCL8, a gene included in both

models, to explore its role in renal IRI and NETs through

constructing mouse IRI model. The result of qRT-PCR showed

that Cxcl1 was significantly overexpressed in mouse kidney

tissues after IRI. Pretreatment of G31P, an antagonist of

CXCL8 (57), significantly alleviated renal IRI. In addition,

G31P could also reduce the necrosis of renal tubular epithelial

cells, inflammatory response and NET formation.

However, this research still has some limitations. First, more

datasets are needed to further validate the stability of the

prediction model, and in the future, with the further

improvement of information on renal transplant patients, we

may construct a more accurate nomogram for prognosis

prediction by integrating our models with other information

(such as clinical parameters). Second, with the in-depth study of

NETs, the construction of NET-related gene sets needs to be

further improved. Finally, clinical samples can be applied to

validate the expression of NRGs in renal IRI. It is necessary to

further explore the cellular and molecular mechanisms of NRGs
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in regulating NET formation. An in-depth understanding of the

molecular mechanisms of NET formation could help us inhibit

NETs via targeted drugs, and then attenuate renal IRI. Thus,

such research could pave the way for new diagnostic and

therapeutic strategies for managing renal IRI.
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