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Identification and experimental
validation of a tumor-infiltrating
lymphocytes–related long
noncoding RNA signature for
prognosis of clear cell renal
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Clear cell renal cell carcinoma (ccRCC) is a common aggressive malignant

tumor of the urinary system. Given the heterogeneity of the tumor

microenvironment, immunotherapy may not fully exert its role in the

treatment of advanced patients. Long noncoding RNA (lncRNA) has been

reported to be critically associated with the differentiation and maturation of

tumor-infiltrating lymphocytes (TILs), which work against tumor cells. In this

study, we identified 10 TIL-related lncRNAs (AL590094.1, LINC02027,

LINC00460, AC147651.1, AC026401.3, LINC00944, LINC01615, AP000439.2,

AL162586.1, and AC084876.1) by Pearson correlation, univariate Cox

regression, Lasso regression, and multivariate Cox regression based on The

Cancer Genome Atlas (TCGA) database. A risk score model was established

based on these lncRNAs. Next, a nomogram was constructed to predict the

overall survival. By employing differentially expressed genes (DEGs) between

groups with high and low risk scores, gene ontology (GO) enrichment analysis

was performed to identify the major biological processes (BP) related to

immune DEGs. We analyzed the mutation data of the groups and

demonstrated that SETD2 and BAP1 had the highest mutation frequency in

the high-risk group. The “CIBERSORT” R package was used to detect the

abundance of TILs in the groups. The expression of lymphocyte markers was

compared. We also determined the expression of two lncRNAs (AC084876.1

and AC026401.3) and their relationship with lymphocyte markers in the kidney
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tissue of ccRCC patients and showed that there was a positive correlation

between AC084876.1 and FoxP3. Proliferation, migration, and invasion of

AC084876.1-downregulated ccRCC cell lines were inhibited, and the

expression of PD-L1 and TGF-b secretion decreased. To our knowledge, this

is the first bioinformatics study to establish a prognostic model for ccRCC using

TIL-related lncRNAs. These lncRNAs were associated with T-cell activities and

may serve as biomarkers of disease prognosis.
KEYWORDS

tumor-infiltrating lymphocytes, long noncoding RNA, bioinformatics, clear cell renal
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Introduction

Renal cell carcinoma (RCC) is a common malignant tumor

of the urinary system. Globally, 431,288 new cases (accounting

for 2.2% of all cancer cases) and 179,368 new deaths (accounting

for 1.8% of all cancer deaths) occurred in 2020, second only to

prostate cancer and bladder cancer (1). In 2021, the number of

new cases of kidney cancer in the United States was 76,080,

ranking sixth in the male cancer incidence rate and ninth in

the female cancer incidence rate (2). RCC has several subtypes,

and about 70% of individuals receive a diagnosis of clear cell

RCC (ccRCC). Although ccRCC is a disease that can be

detected early and successfully treated by surgery, up to one-

third of cases relapse or develop metastasis (3). ccRCC is

not sensitive to radiotherapy and chemotherapy. The

application of immunotherapy for different targets brings hope

to these patients (4, 5); however, the effective response rate

of the treatment is limited. Therefore, it is necessary to find

new effective immunotherapeutic targets to improve

patients’ prognoses.

Immune cells in the tumor microenvironment play an

important role in regulating tumor progression and serve as

attractive therapeutic targets (6). Moreover, ccRCC is prone to

immune infiltration, and the characteristics of the tumor

microenvironment strongly affect the response to

immunotherapy (7). A successful antitumor immune response

requires the activation and synergy of multiple tumor-

infiltrating lymphocytes, including T cells, B cells, natural

killer cells (NK cells), and their subtypes. These cells play a

positive and negative regulatory role in the process of antitumor

immunity and kill tumor cells (8). Available studies have

constructed signatures related to immune infiltration based on

different biological characteristics in ccRCC. Moreover, specific

lymphocyte related signatures such as CD8+ T cells (9),

CD39+CD8+ T cells (10), and TNFRSF9+CD8+ T cells (11)

have been identified in ccRCC. However, previous studies did

not focus on the impact of tumor-infiltrating lymphocyte profile
02
on the prognosis of patients with ccRCC, so they could not

accurately demonstrate the potential role of immune cells in the

treatment of ccRCC.

Long noncoding RNAs (lncRNA) have a length of over 200

nucleotides and are dynamically expressed in the immune

system and regulate the differentiation and function of

immune cells (12). Previous studies have shown that lncRNAs

are dysregulated in cancer and that they have important effects

on tumor proliferation, angiogenesis, apoptosis, and metastasis

by regulating the formation of the tumor immune

microenvironment (13). For instance, lncRNA LIMIT has been

identified to be associated with tumor-infiltrating T cells.

Silencing LIMIT could impair antitumor immunity and blunt

immunotherapy efficacy (14). Breast cancer–derived exosomal

lncRNA SNHG16/miR-16-5p/SMAD5-regulatory axis can

induce CD73 expression in gdT cells, thereby enhancing the

immunosuppressive function (15). LINC00301 is highly

expressed in non-small cell lung cancer and functions to

increase regulatory T cells while decreasing the CD8+ T cell

population (16). A clinical trial suggested that lncRNA was

associated with immunotherapeutic overall survival benefits

superior tumor alteration burden, programmed cell death

ligand 1 (PD-L1) expression, and cytotoxic T-lymphocyte

(CTL) infiltration (17). Based on the above findings,

lncRNAs are considered a potential target for immunotherapy

and have attracted extensive attention in the field of cancer

treatment research.

With the maturation in the application of high-throughput

sequencing technology, it has become possible to explore the

expression levels of lncRNAs in ccRCC and their relationship

with tumor- infi l t ra t ing lymphocytes ; addi t ional ly ,

bioinformatics analysis can be applied to further explore the

relevant mechanisms. In this study, we identified a signature

consisting of 10 TIL-related lncRNAs to predict the prognosis of

patients with ccRCC and explored the potential mechanism.

Human renal tissues were used to detect the expression levels of

related lncRNAs and immune markers. Finally, the biological
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1046790
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2022.1046790
functional effect of AC084876.1 on the ccRCC cell line was

examined by in vitro experiments.
Materials and methods

Ethical statement

This study was approved by the Ethics Committee of

Guangzhou First People’s Hospital, School of Medicine, South

China University of Technology. Informed consent forms were

signed by all patients. In accordance with the ethical and legal

standards, seven pairs of matched frozen samples of ccRCC and

benign renal tissue adjacent to cancer from ccRCC patients were

handled and made anonymous.
Cell lines

A human ccRCC cell line 786-O was obtained from ATCC

(American Type Culture Collection, Manassas, Virginia, USA).

The cells were cultured at 37°C in a 5% CO2 incubator with

RPMI-1640 (MA0215, Meilunbio, Dalian, China) medium

containing 10% fetal bovine serum, streptomycin, and penicillin.
Data and tissue processing

The RNA-sequencing data and corresponding clinical

information of patients with ccRCC were downloaded from

the Cancer Genome At las (TCGA-KIRC, ht tps : / /

cancergenome.nih.gov/) database. A total of 507 patients with

follow-up information were identified and used for further

analysis. The total RNA expression data were standardized

through log2 transformation.

Seven pairs of the matched frozen samples of ccRCC and

benign renal tissue adjacent to cancer used in this study were all

from the Guangzhou First People’s Hospital. The included

patients did not receive chemotherapy or radiotherapy before

surgery. Each case was diagnosed and graded by two pathologists

separately and re-examined by hematoxylin-eosin staining.
Construction of a prognostic TIL-related
lncRNAs signature in ccRCC

The correlation between lncRNAs and TIL-related genes

(18) was calculated using the Pearson correlation analysis. The

correlation coefficient |R| > 0.3 and P< 0.001 were the criteria for

TIL-related lncRNAs. Univariate Cox regression was applied to

assess the prognostic value of TIL-related lncRNAs. TIL-related

lncRNAs with P< 0.001 in univariate analysis were incorporated

into least absolute shrinkage and selection operator (Lasso)
Frontiers in Immunology 03
regression. Then, TIL-related lncRNAs identified by Lasso

were included in a multivariate Cox model to establish a risk

score. Finally, we identified 10 TIL-lncRNAs associated with the

prognostic risk to construct a prognostic risk score. The risk

score of KIRC patients was calculated as follows: Risk score =

on
i=1bi � (expression   of   lncRNAi). Patients in the cohort were

divided into high- and low-risk groups according to the median

risk score.
Validation of the TIL-related lncrnas
signature in ccRCC

Based on the TCGA-KIRC cohort, the expression of TIL-

related lncRNAs was measured by ‘tinyarray’ R package. The

Kaplan–Meier (K–M) survival curves of overall survival (OS)

were used to evaluate the clinical prognostic value of TIL-related

lncRNAs. Cytoscape software 3.7.2 was applied to visualize

coexpression networks between TIL-related lncRNAs and TIL-

related genes. Sankey diagram was used to assess the association

between prognostic TIL-related lncRNAs, TIL-related genes,

and risk types. The K–M survival curves were created to

compare the overall survival of high- and low-risk groups

according to predictive signatures. The receiver operating

characteristic (ROC) curve from the “survivalROC” R package

was used to assess the sensitivity and specificity of the signature.

Univariate Cox regression and multivariate Cox regression were

applied to assess the prognostic value of the signature.
Construction and validation of a
nomogram

Based on age, clinical stage, risk score, and pathological

grade, a nomogram for OS was developed with the R package

“rms” to predict the 1-year, 3-year, and 5-year relapse-free

survival probability. The concordance index (C-index) was

used to evaluate the consistency between the nomogram-

predicted results and the actual observed results. A calibration

curve was used to show the difference between the predictions of

the model and the real outcomes. ROC analysis was performed

to evaluate the predictive ability of the risk score. The web-based

OS probability calculators were built using packages “DynNom”

and “shiny” in R software.
Functional enrichment

Differentially expressed genes (DEGs) of mRNA between the

high-risk and low-risk groups were identified using package

limma in R, with thresholds of |log2 fold change (FC)| > 2 and

adjusted P< 0.05. Then, gene ontology (GO) enrichment analysis

was performed to find the major biological process (BP) related
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to immune DEGs. The visual GO enrichment maps of the

annotation analysis results were obtained by R with the

“ggplot2” and “GOplot” packages.
Somatic mutation analysis

Mutation data of the high-risk group and the low-risk group

were analyzed and visualized using the “maftools” package.

Mutation information for each gene in each sample was

demonstrated by waterfall plots.
Landscape of tumor-infiltrating immune
cells based on the signature

To evaluate the effect of the signature on immune cells,

CIBERSORT (Cell-type Identification by Estimating Relative

Subsets of RNA Transcripts; http://cibersort.stanford.edu) was

used to measure the abundance of tumor-infiltrating immune

cells in a gene expression matrix by linear support vector

regression (19). The abundance of lymphocyte profiles in the

TCGA-KIRC dataset was obtained via the “CIBERSORT” R

package. The infiltration levels in the high-risk group and the

low-risk group were visualized by the “ggplot” R package.
Real-time quantitative PCR assay

Total RNA was extracted from ccRCC and corresponding

benign renal tissue samples using NucleoZOL reagent

(740404.200, Meilunbio). Total RNA was then reverse-

transcribed into cDNA using HiScript® III RT SuperMix for

qPCR (R323-01, Vazyme, Nanjing, China). Real-time

quantitative PCR (RT-qPCR) was carried out using the AceQ®

qPCR SYBR Green Master Mix (Q141-02, Vazyme). The relative

expression of lncRNA was calculated based on the internal

reference b-actin. All experiments were carried out in three

replicates. The primers applied are listed in Supplementary

Table S1.
Western blot assay

Quantitative analysis of protein expression in clinical tissues

was performed using western blotting in accordance with the

protocol of our previous study (20). The following antibodies

were applied in the assay: b-Actin (1:5000; ab8227, Abcam,

Cambridge, UK), CD4 (1:2000; 19068-1-AP, Proteintech,

Chicago, IL, USA), CD8a (1:2000; 66868-1-Ig, Proteintech),

PD-1 (1:2000; 66220-1-Ig, Proteintech), FoxP3 (1:2000; 22228-

1-AP, Proteintech), and PD-L1 (1:2000, PTM-5075, PTM BIO,

Hangzhou, China). Correlations between the expression levels of
Frontiers in Immunology 04
lncRNAs and immune markers were determined by Pearson

correlation analysis.
Transfection of cell lines

Human AC084876.1-specific siRNA and negative control

siRNA were purchased from Tsingke Biotechnology Co., Ltd.

(Beijing, China). The siRNA sequences are shown in the

Supplementary Table S1. RT-qPCR analysis was conducted

72 h after transfection to test the transfection efficacy.
Cell proliferation assays

Cell proliferation was measured by CCK-8 (Cell Counting

Kit-8, MA0218, Meilunbio) assay as previously described (20).
Cell migration and invasion assay

Cell migration and invasion were measured by a wound

healing assay and transwell assay in line with the protocol from

our previous study (20).
Quantification of transforming growth
factor-beta

The assay was conducted using a human TGF-b ELISA kit

(JM-04929H1, Jingmei, Jiangsu, China). The cell culture

medium was tested in accordance with the manufacturer’s

instructions. The results were normalized using cell counts.
Statistical analysis

All statistical analyses were performed in R software (version

4.03) and GraphPad Prism 8 (GraphPad Software, United States).

Continuous variables are shown as the means ± standard

deviations. Student’s t test or analysis of variance (ANOVA)

was used to determine the statistical significance of quantitative

data. P< 0.05 was regarded as statistically significant.
Results

Identifying 10 TIL-related lncRNAs in 507
patients with ccRCC

This study was performed following the workflow shown in

Figure 1. A total of 589 candidate lncRNAs related to tumor-

infiltrating lymphocytes (TIL) were identified by Pearson’s
frontiersin.org
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correlation analysis (Supplementary Table S2). To further evaluate

the prognostic value of these candidate lncRNAs, we performed

univariate Cox regression analysis with the p-value of 0.05 as the

cutoff threshold; 334 lncRNAs were detected as prognostic TIL-

lncRNAs (Figure 2A and Supplementary Table S3). Next, by

leveraging the Lasso algorithm, these 334 TIL-lncRNAs were
Frontiers in Immunology 05
narrowed down to 20 with the optimal lambda of 0.06175523

(Figures 2B, C and Supplementary Table S4). Furthermore,

among the 20 TIL-lncRNAs, 10 lncRNAs were found by

multivariate Cox regression analysis to be independent

prognostic factors in ccRCC (Figure 2D and Supplementary

Table S5). Among these 10 TIL-lncRNAs, seven lncRNAs, i.e.,
FIGURE 1

Flowchart of the study strategy.
A B

D E

C

FIGURE 2

Identifying 10 TIL-related Long noncoding RNAs (lncRNAs)s. (A) Prognostic factors identified by univariate Cox regression. (B) Cross-validation for
tuning parameter selection in the proportional hazards model. (C) Profiles of Lasso coefficients. (D) Multivariate Cox model of 10 TIL-related lncRNAs.
(E) Correlation analysis between 10 TIL-related lncRNAs. “Corr” indicates the correlation coefficient generated by Pearson’s correlation analysis. *P <
0.05; **P < 0.01; ***P < 0.001.
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AL590094.1 (HR = 1.23, 95% CI 1.03 to 1.16, P = 0.019),

LINC00460 (HR = 1.05, 95% CI 1.00 to 1.10, P = 0.031),

AC026401.3 (HR = 1.06, 95% CI 0.99 to 1.15, P = 0.115),

LINC00944 (HR = 1.24, 95% CI 1.09 to 1.42, P = 0.001),

LINC01615 (HR = 1.05, 95% CI 1.01 to 1.10, P = 0.023),

AL162586.1 (HR = 1.26, 95% CI 1.11 to 1.42, P< 0.001), and

AC084876.1 (HR = 1.24, 95% CI 1.01 to 1.52, P = 0.041) served as

negative prognostic factors, while other three lncRNAs, i.e.,

LINC02027 (HR = 0.84, 95% CI 0.71 to 0.98, P = 0.031),

AC147651.1 (HR = 0.98, 95% CI 0.96 to 1.00, P = 0.017), and

AP000439.2 (HR = 0.99, 95% CI 0.97 to 1.00, P = 0.103) were

favorable prognostic factors in ccRCC.

Next, correlation analysis was conducted. As shown in

Figure 2E, AC084876.1, LINC00944, and AC026401.3 had an

obvious positive correlation with other lncRNAs, whereas

AP000439.2 had a negative correlation with other lncRNAs.

Taken together, 10 TIL-lncRNAs, which significantly correlated

with TIL and were significant in the univariate Cox regression

model, LASSO algorithm, and multivariate Cox proportional

hazards regression model, were selected as the most important

TIL-lncRNAs for further analysis.
Construction of a TIL-related lncRNA
prognostic signature

We compared the abundance of 10 candidate TIL-lncRNAs

between tumor and normal tissue in TCGA-KIRC by Wilcoxon

signed-rank test and found that AL590094.1 (P< 2.2e-16),

LINC00460 (P = 2.1e-06), AC147651.1 (P = 6.6e-07),

AC026401.3 (P< 2.2e-16), LINC00944 (P< 2.2e-16),

LINC01615 (P< 2.2e-16), AP000439.2 (P< 2.2e-16),

AL162586.1 (P< 2.2e-16), and AC084876.1 (P< 2.2e-16) were

significantly upregulated, while LINC02027 (P = 2.1e-06) was

significantly downregulated in tumor tissue compared with

normal tissue (Figure 3A). The prognostic value of the 10 TIL-

lncRNAs was determined by K–M survival analysis (Figure 3B).

Based on the median expression, patients were classified into

high- and low-expression groups. Patients with high expression

of AL590094.1, LINC00460, AC026401.3, LINC00944,

LINC01615, AL162586.1, and AC084876.1 had poorer overall

survival than those with low expression, whereas patients with

high expression of LINC02027, AC147651.1, and AP000439.2

had better overall survival than those with low expression (log-

rank test, all P< 0.05, Figure 3B), indicating that these 10 TIL-

lncRNAs play a role in ccRCC. Considering that lncRNAs may

participate in the splicing, maturation, transportation or

localization, and stability of messenger RNAs (mRNAs), and

thus regulate the translation and biological functions of mRNA

(21), we explored the relationship between TIL-lncRNAs and

TIL-mRNAs by conducting coexpression networks (Figure 3C)
Frontiers in Immunology 06
and summarized their relationships with risk type in Sankey

diagram (Figure 3D). Briefly, AC026401.3, AP000439.2, and

LINC02027 were protective factors related to TNFRSF14,

HHLA2, and CD276. The other seven lncRNAs were risk

factors related to CTLA4, LAG3, TNFRSF18, TNFSF14,

TNFRSF14, TNFRSF25, CD70, CD44, DCD1LG2, TNFSF4,

CD244, CD27, CD40, CD48, CD86, CTLA4, ICOS, LAG3,

PDCD1, TIGIT, and TNFRSF9.

Then, 10 TIL-lncRNAs were enrolled to construct a TIL-

related lncRNA signature with the following formula for the risk

score: Risk score = (0.2068 × expression level of AL590094.1) +

(−0.1762 × expression level of LINC02027) + (0.0487 ×

expression level of LINC00460) + (−0.0199 × expression level

of AC147651.1) + (0.0604 × expression level of AC026401.3) +

(0.2158 × expression level of LINC00944) + (0.0509 × expression

level of LINC01615) + (−0.0134 × expression level of

AP000439.2) + (0.2292 × expression level of AL162586.1) +

(0.2125 × expression level of AC084876.1).
Evaluation of the 10 TIL-lncRNAs
signature

Based on the median cutoff value, patients in the cohort were

divided into the high-risk group (n = 253) and the low-risk

group (n = 254) (Figure 4A). As shown in Figure 4B, the death

probability of high-risk patients was higher than that of low-risk

patients. It was also found that the expression levels of

AC026401.3, LINC00944, and AC084876.1 were visibly

higher, and the expression levels of AP00439.2, AC14765.1,

and LINC02027 were downregulated in the high-risk

group (Figure 4C).

The K–M survival curves showed that patients with a high

risk score had significantly poorer overall survival than those

with a low risk score (Figure 4D). Then, time-dependent ROC

curves were used to assess the predictive performance of the TIL-

related lncRNA signature (Figure 4E). The area under the ROC

(AUC) was 0.750, indicating that the TIL-lncRNA signature was

a reliable prognostic indicator for predicting OS in ccRCC. In

addition, univariate Cox regression and multivariate Cox

regression analysis were employed to assess the independent

prognostic value of the signature with the following factors: risk

score and relevant clinical factors (age, gender, grade, clinical

stage, tumor stage [T], and metastasis stage [M]). Node stage was

excluded as much data were missing. All of the factors except

gender were significantly associated with OS in univariate

analysis (Figure 4F). Multivariate analysis indicated that risk

score was still significantly related to OS, suggesting the TIL-

related lncRNA signature could serve as an independent

prognostic factor for patients with ccRCC (Figure 4G).
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Construction of a TIL-related lncRNA
prognostic model to predict the survival

The risk score, age, clinical stage, and pathologic grade were

included in the nomogram. As indicated in the nomogram, the

risk score had the largest contribution to OS of patients with

ccRCC (Figure 5A). The C-index of the nomogram was 0.693.

The calibration curve revealed good agreement between the

predicted and observed probabilities. All calibration curves of

1-year, 3-year, and 5-year (Figure 5B) OS were close to the 45-

degree line.
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As shown in Figures 5C–E, the area under curve (AUC) of

the nomograms was 0.853, 0.802, and 0.755 for 1-, 3-, and 5-year

OS, respectively. These AUC values of the nomograms were

greater than those of every single clinical predictor (i.e., age,

grade, and stage), indicating an advantage of combining these

risk factors for ccRCC prognosis.

For the clinical usability of themodel, a dynamic nomogramwas

created for the prediction of OS probability in patients with ccRCC

(Figure 5F), which was convenient and intuitive for individual

prognosis prediction based on the personal characteristics of

ccRCC patients (https://zhonglab.shinyapps.io/dynnomapp/).
A

B

DC

FIGURE 3

Evaluation of the 10 TIL-related lncRNAs. (A) Expression of the 10 TIL-related lncRNAs. (B) Prognostic value of the 10 TIL-related lncRNAs. (C)
Coexpression network between prognostic lncRNAs and TIL-related genes. (D) Sankey diagram showing the association between prognostic
TIL-related lncRNAs, TIL-related genes, and risk types.
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Functional analysis

As shown in the Volcano plots (Figure 6A), DEGs were

identified with fdr< 0.05 and |logFC| > 0.5. A total of 408 genes

were upregulated and 455 genes were downregulated in the low-

risk group compared with the high-risk group (Supplementary

Table S6). GO enrichment analysis (Figure 6B) indicated that

these DEGs were mostly related to the pathways involved in T-

cell activation, differentiation, proliferation, co-stimulation,

and migration.
Prediction of the immune infiltration

Somatic mutations often affect the distribution of tumor-

infiltrating immune cells in the tumor microenvironment,

thereby causing tumor heterogeneity. The results of somatic
Frontiers in Immunology 08
mutation analysis (Figure 6C) indicated that the top five mutated

genes in the high-risk group were VHL (43%), PBRM1 (40%),

TTN (26%), SETD2 (18%), and BAP1 (14%). The top five

mutated genes in the high-risk group were VHL (41%),

PBRM1 (38%), TTN (26%), DST (8%), and MUC16 (8%).

Considering the higher mutation frequency of SETD2 and

BAP1 in the high-risk group, we measured their expression

levels. The expression levels of SETD2 and BAP1 were

downregulated in the high-risk group (Figure 6D).

CIBERSORT analysis (Figure 6E) indicated that the abundance

of activated CD4+ memory T cells, CD8+ T cells, CD4+ follicular

helper T cells (TFH), and regulatory T cells (Tregs) was higher in

the high-risk group. A higher abundance of activated NK cells was

observed in the low-risk group. As shown in Figure 6F, immune

markers CD4, CD8a, CD69, CD25, PD-1, LAG3, CD62L, CCR7,
FoxP3, CD56, and CD16 were significantly upregulated in the high-

risk group with a decrease in TIM-3.
A
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C

FIGURE 4

Analysis of TIL-related lncRNA signature for patients with ccRCC. (A–C) lncRNA predictor-score analysis of 507 ccRCC patients. The horizontal
axis represents the 507 patients. Heat map of lncRNA expression level. (D) Survival time of patients between the groups. (E) Areas under the
ROC curve. Forest plots for univariate (F) and multivariate (G) Cox regression analysis.
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Measuring the expression levels of
AC084876.1 and AC026401.3 and
immune markers in kidney tissues

Considering the above results, we performed an RT-qPCR

assay to detect the expression of AC084876.1 and AC026401.3 in

seven pairs of matched frozen samples of ccRCC and benign

renal tissue adjacent to cancer from ccRCC patients. Moreover, a

western blot assay was conducted to measure the expression of

immune markers (including CD4, CD8a, PD-1, and FoxP3,

Figure 6H). As shown in Figure 6G, the expression of

AC084876.1 and AC026401.3 tended to be higher in cancer

tissues although the threshold of statistical significance was not

reached. The results of the western blot showed a higher trend

for all of the immune markers detected in cancer tissues, but

without reaching statistical significance (Figure S1A). For the

correlation analysis, we found that the expression of AC084876.1

positively correlated with FoxP3 (Figure 6I, 95% CI 0.173 to
Frontiers in Immunology 09
0.972, R2 = 0.671, P = 0.024). No statistically significant results

were found in other correlation analyses (Figure S1B).
Selecting AC084876.1 for experimental
validation

siRNAs were used to knock down the expression of

AC084876.1 in the 786-O cell line. The transfection efficiency

was measured by RT-qPCR, and we showed that si-1 and si-2

significantly interfered with the expression of AC084876.1

(Figure 7A, P< 0.01). The growth curve suggested that the

knockdown of AC084876.1 inhibited the growth of the 786-O

cell line (Figure 7B, P< 0.01). The migration ability (Figure 7C,

P< 0.01) and invasion ability (Figure 7D, P< 0.01) were

attenuated in AC084876.1-downregulated 786-O cell lines.

PD-L1 expressed on the surface of tumor cells and TGF-b
secreted by tumor cells have been shown to regulate the activity
A B

D E

F

C

FIGURE 5

Construction of a TIL-related lncRNA prognostic model to predict survival. (A) The nomogram of 1-year, 3-year, or 5-year OS. (B) Calibration
plots for evaluating the agreement between the predicted and the actual 1-year, 3-year, and 5-year OS for the prognosis model. (C–E) The 1-
year, 3-year, and 5-year ROC curves of the nomogram and other clinicopathological parameters. (F) A dynamic nomogram for clinical
application to predict survival. The K–M analysis is shown on the left. The corresponding 95% CI is shown on the right.
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and differentiation of tumor-infiltrating Tregs (22). To further

analyze the potential role of AC084876.1 to regulate tumor-

infiltrating Tregs, the expression level of PD-L1 and secreted

TGF-b level were also examined. We found that the knockdown

of AC084876.1 resulted in decreased expression of PD-L1

(Figure 7E, P< 0.01) and decreased secreted TGF-b (Figure 7F,

P< 0.01).
Discussion

ccRCC is the most common pathological subtype of renal

carcinoma. Although at an early stage patients can benefit from

surgical treatment, advanced patients have finite treatment

options (23). Immunotherapy has ignited their hope, but the

treatment effectiveness is still limited. The important role of
Frontiers in Immunology 10
lncRNAs in tumor progression has been gradually explored. To

date, several prognostic models based on the immune-related

lncRNAs have suggested that lncRNAs are involved in the

regulation of immune cell–mediated tumor killing in the

tumor microenvironment (TME) (24–26). A large number of

immune cells infiltrate the TME, and tumor-infiltrating

lymphocytes (TIL) play a key role in the response to

immunotherapy (27). Thus, it is worth noting that

investigating the potential role of TIL-related lncRNA may

identify novel biomarkers for the treatment and prognosis of

patients with ccRCC.

In the present study, we established a novel risk coefficient

model based on TIL-related lncRNAs through Pearson

correlation analysis, univariate Cox regression, Lasso

regression, and multivariate Cox regression in 507 ccRCC

patients from the TCGA-KIRC dataset. Finally, 10 TIL-related
A
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C

FIGURE 6

Correlation between the signature and TILs in ccRCC tissues. (A) DEGs between the groups by volcano map. (B) GO-BP enrichment analysis. (C)
Waterfall plots represent mutation information in each ccRCC patient sample in the high- and low-risk groups. (D) Expression of SETD2 and
BAP1. (E) TILs composition analysis in ccRCC of TCGA cohort. (F) Expression of immune markers of lymphocytes of TCGA cohort. (G, H) The
expression of AC084876.1 and AC026401.3 in seven kidney samples from ccRCC patients. (H) The expression of CD4, CD8a, PD-1, and FoxP3
in seven kidney samples from ccRCC patients. “B” indicates benign renal tissue adjacent to cancer. “T” indicates tumor tissues of ccRCC. (I)
Correlation between the expression of AC084876.1 and FoxP3 in seven ccRCC samples. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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lncRNAs (AL590094.1, LINC02027, LINC00460, AC147651.1,

AC026401.3, LINC00944, LINC01615, AP000439.2,

AL162586.1, and AC084876.1) were identified and included to

construct the prognostic signature. Considering the results of

survival analysis, Sankey diagram, and expression analysis of

lncRNAs in the high-risk group, AC026401.3, LINC00944, and

AC084876.1 were risk factors, whereas AP00439.2, AC14765.1,

and LINC02027 were protective factors. Exploring the

expression of biomarkers in experiments, we found that the

expression trends of AC084876.1 and AC026401.3 in benign and

malignant kidney tissues were consistent with the results of

bioinformatics analysis, although the differences did not reach

the threshold of statistical significance. A larger sample size is
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needed for further confirmation. The overall survival of ccRCC

patients in the TCGA cohort with high expression of

AC084876.1 was worse, and AC084876.1 was present as a risk

factor in the prognostic model. The experimental validation

indicated that the knockdown of AC084876.1 inhibited the

growth, migration, and invasion ability of the ccRCC cell line

in vitro. Thus, lncRNAs in the signature were tightly related to

TILs and reliable to further investigate the potential role of TIL-

related lncRNA signature in the progression of ccRCC.

The survival analysis indicated that the survival rate of

patients in the low-risk group was significantly higher.

Univariate Cox regression and multivariate Cox regression

analysis showed that the risk score could be an independent
A B
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C

FIGURE 7

Experimental validation of AC084876.1. (A) Transfection efficiency of siRNAs targeting AC084876.1 in the 786-O cell line. (B) Growth curve of
AC084876.1-downregulated 786-O cell line. (C, D) Knockdown of AC084876.1 inhibited migration and invasion of the 786-O cell line. (E)
Eexpression of PD-L1 decreased in the AC084876.1-downregulated 786-O cell line. (F) TGF-b secretion decreased in the AC084876.1-
downregulated 786-O cell line. **P < 0.01.
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predictor of overall survival in patients with ccRCC. In the

nomogram model, risk score contributed the most, and the

calibration curves of 1-, 3-, and 5-year survival prediction were

close to the ideal value. Also, the AUC values of the 1-, 3-, and 5-

year nomograms were greater than those of every single clinical

predictor, indicating that the nomogram could be clinically

helpful. To make the model applicable for clinical use, we

constructed a dynamic nomogram for convenient and intuitive

individual prognosis prediction based on the personal

characteristics of ccRCC patients.

Consistent with previous studies based on the

immunotherapy effectiveness in ccRCC (28, 29), we found that

the mutation frequencies of SETD2 and BAP1 were higher and

their expression were both downregulated in the high-risk

group. SETD2 and BAP1 mutations are associated with

metastasis and poor prognosis in ccRCC (30, 31). SETD2

mutations also play an important role in promoting ccRCC

progression through cellular autophagy inhibition, DNA repair

inhibition, and genomic stability perturbation (32, 33). Mutation

of BAP1 may engender genomic instability and promote defects

in DNA repair pathways (34). Thus, our novel TIL-related

lncRNA signature may contribute to the understanding of the

potential mechanism of the progression of ccRCC.

GO-BP analysis of DEGs showed that the immune-related

biological processes were mostly involved in T-cell activation,

differentiation, proliferation, co-stimulation, and migration. By

applying CIBERSORT, we found that the abundance of activated

CD4+ memory T cells, CD8+ T cells, TFH, and Tregs was higher

in the high-risk group. CD8+ T cells are the main executors of

killing tumor cells in the immune system. However, high

abundance of CD8+ T cells was not associated with a

favorable prognosis in ccRCC (35), and it has been reported

that CD8+ T cells did not show functional status as exhausted

CD8+ TILs (36). Consistently, our study showed that the

exhausted T-cell markers, including PD-1, LAG3, and FoxP3,

were upregulated in the high-risk group. Tumor-infiltrating

CD8+T cells lose the ability to recognize antigens and activate

proliferation under the long-term effect of inhibitory cells and

factors, thereby leading to the failure of tumor-killing function

(37). Moreover, as an important suppressive immune cell, Tregs

can inhibit the proliferation of CD8+T cells by secreting TGF-b,
IL-10, and IL-35 (38).

Our results demonstrated that the expression of AC084876.1

positively correlated with FoxP3 in ccRCC. FoxP3 is considered

an important biomarker to characterize the Tregs, which are an

immunosuppressive subset of CD4+ T cells (39, 40). It is widely

accepted that Tregs, the central mediators of immune

suppression, are activated by PD-L1 and are induced to

differentiate by TGF-b synthesized from tumor cells (22). PD-

L1 expressed on tumor cells interacts with PD-1 on tumor-

infiltrating lymphocytes, attenuating effector T-cell responses

and allowing tumors to escape immune attack (41). In addition,
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Foxp3 in naive T cells could be induced by TGF-b, thereby
promoting Tregs development (42). Interestingly, we found that

knockdown of AC084876.1 resulted in decreased expression of

PD-L1 and reduced level of secreted TGF-b. These results

suggest that AC084876.1 may play an important role in the

progression of ccRCC by regulating the activation and

differentiation of Tregs. Tumor-infiltrating Tregs are highly

activated (43) and exert suppressive activities on effector cells

by inducing apoptosis and inhibiting activation/proliferation

(44). It has been reported that Tregs promote tumorigenesis

and immunosuppression via increasing consumption of IL-2

and upregulating inhibitory immune checkpoints (45).

Importantly, the functional enrichment analysis suggested that

our signature was related to T-cell activation, differentiation, and

proliferation signaling pathways, and Tregs were significantly

increased in the high-risk groups. Thus, we believe this may be

related to the potential regulatory mechanism between

AC084876.1 and tumor-infiltrating Tregs, which is worthy of

further investigation.

Despite a number of immune-related lncRNA signatures, to

our knowledge, the present study was the first to identify a TIL-

related lncRNA signature to predict the prognosis of ccRCC

patients. Compared with previous studies, which only

established signatures (26, 46), our novel signature was used to

establish a nomogram combined with clinical indicators to

accurately predict survival. As for the study with nomogram

construction (24), the potential mechanism of our signature was

verified with experiments. We showed that the signature was

mainly related to the function of T cells. Furthermore, we found

that AC084876.1 may serve as a potential therapy target

associated with the activation and differentiation of tumor-

infiltrating Tregs. However, our study was retrospective, and a

larger validation cohort is needed to confirm our conclusions.

Moreover, the underlying mechanism of the identified lncRNAs

in regulating TILs and tumor progression in ccRCC remains to

be further explored.
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