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Background: Using interpretable machine learning, we sought to define the

immune microenvironment subtypes and distinctive genes in AD.

Methods: ssGSEA, LASSO regression, and WGCNA algorithms were used to

evaluate immune state in AD patients. To predict the fate of AD and identify

distinctive genes, six machine learning algorithms were developed. The output

of machine learning models was interpreted using the SHAP and LIME

algorithms. For external validation, four separate GEO databases were used.

We estimated the subgroups of the immunological microenvironment using

unsupervised clustering. Further research was done on the variations in

immunological microenvironment, enhanced functions and pathways, and

therapeutic medicines between these subtypes. Finally, the expression of

characteristic genes was verified using the AlzData and pan-cancer

databases and RT-PCR analysis.

Results: It was determined that AD is connected to changes in the

immunological microenvironment. WGCNA revealed 31 potential immune

genes, of which the greenyellow and blue modules were shown to be most

associated with infiltrated immune cells. In the testing set, the XGBoost

algorithm had the best performance with an AUC of 0.86 and a P-R value of

0.83. Following the screening of the testing set by machine learning algorithms

and the verification of independent datasets, five genes (CXCR4, PPP3R1,

HSP90AB1, CXCL10, and S100A12) that were closely associated with AD

pathological biomarkers and allowed for the accurate prediction of AD
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progression were found to be immune microenvironment-related genes. The

feature gene-based nomogram may provide clinical advantages to patients.

Two immune microenvironment subgroups for AD patients were identified,

subtype2 was linked to a metabolic phenotype, subtype1 belonged to the

immune-active kind. MK-866 and arachidonyltrifluoromethane were identified

as the top treatment agents for subtypes 1 and 2, respectively. These five

distinguishing genes were found to be intimately linked to the development of

the disease, according to the Alzdata database, pan-cancer research, and RT-

PCR analysis.

Conclusion: The hub genes associated with the immunemicroenvironment that

aremost strongly associated with the progression of pathology in AD are CXCR4,

PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular

subgroups might offer novel perceptions for individualized AD treatment.
KEYWORDS

alzheimer’s disease, immune microenvironment, characteristic genes, machine
learning, immune subtypes
Introduction

Alzheimer ’s disease (AD) is a severe progressive

neurodegenerative disease characterized by the over-accumulation

of amyloid-beta (Abeta) plaques, neurological deficits, and cognitive

impairment (1). Around 2-8% (more than 50 million) of the world’s

population has been impacted by AD over the past few decades,

placing a significantmedical cost on society (2). Only a select group of

medications, including acetylcholinesterase inhibitors and N-methyl-

D-aspartate antagonists, have been given FDA approval to treat

cognitive impairment in AD patients (3). Unfortunately, the clinical

complexity and personal heterogeneity of AD patients, in addition to

the severe side effects, may compromise the effectiveness of
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pharmacological treatment (4). In addition, most patients lose the

best opportunity for treatment after initial diagnosis because of AD’s

gradual and progressive onset. Therefore, it is essential to identify

reliable diagnostic markers for the early diagnosis of AD and to

develop novel molecular stratification techniques to direct the

customized treatment of AD patients.

Recent research has shown that changes to peripheral and

central immune cells may exert crucial roles in accelerating the

progression of AD (5, 6). For instance, peripheral B

lymphocytes, an essential component of adaptive immune

systems, can enter the central nervous system of AD patients,

breach the blood-brain barrier, and promote the activation of the

immune response through interactions with resident brain cells

(6). It has been reported that type 1 and type 17 T cells, two

subclasses of CD4+ T cells, contributed to the development of

AD by triggering glial pro-inflammatory responses (7). In

addition, the initiation of the innate immune system is

strongly linked to the beginning of AD. It has been suggested

that natural killer cells, which are known for their capacity to

destroy infected cells, may increase the risk of AD damage by

mediating Ab-dependent cytotoxicity (8). Another important

pathogenic mechanism contributing to the poor prognosis of

neuroinflammatory and neurodegenerative illnesses is the

release of harmful mediators from mast cells (9). In AD

patients, changes in peripheral dendritic cells are linked to

severe clinical symptoms (10). Moreover, the increased

neutrophils is more likely to contribute to excessive

accumulation of Ab and the impairment of memory and

cognitive abilities (11). These findings underline the immune

system’s crucial function in AD. Therefore, to identify AD
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patients who may benefit from immunotherapy, detailed

research of immune microenvironment-related characteristic

genes and precise identification of immune molecular subtypes

are urgently required.

We set out to evaluate the immune microenvironment

patterns in AD patients in great detail in this work. To

identify differentially expressed immune cells, the ssGSEA and

LASSO algorithms were used. Several machine learning

algorithms, such as Light Gradient Boosting (LightGBM),

CatBoost, eXtreme Gradient Boosting (XGBoost), Random

Forest (RF), Logistic Regression (LR), and support vector

machines (SVM), were developed to predict AD outcomes and

identify characteristic genes associated with immune

microenvironment. For analyzing the results of machine

learning models, the SHAP and LIME algorithms were used.

For the purpose of estimating the relationship between these

distinctive genes and AD pathology biomarkers, correlation

analysis was carried out. In addition, we identified distinct

subtypes of immunological microenvironments based on the

expression of distinguishing genes. We also looked at how these

subgroups varied in terms of enhanced functions, pathways,

immune cell infiltration, immunological features, and

therapeutic medicines. Finally, to further validate the

expression of distinctive genes, RT-PCR analysis, pan-cancer

analysis, and another online database called AlzData were used.
Materials

Raw data acquisition and preprocessing

The transcriptome data were obtained from the Gene

Expression Omnibus database (GEO, https://www.ncbi.nlm.

nih.gov/geo/). The obtained datasets were as follows: GSE5281

(87 AD and 74 normal brain tissues) (12), GSE28146 (22 AD

and 8 normal brain tissues) (13), GSE48350 (80 AD and 173

normal brain tissues) (14), GSE122063 (56 AD and 44 normal

brain tissues) (15), GSE33000 (310 AD and 157 normal brain

tissues) (16), GSE1297 (22 AD and 9 normal brain tissues) (17),

GSE132903 (97 AD and 98 normal brain tissues) (18),

GSE106241 (60 AD brain tissues). Three GPL570 datasets

GSE5281, GSE28146, and GSE48350 were combined on the

basis of the Combat function of “sva” R package (19), which

finally yielded 247 normal and 189 AD brain tissues after

excluding eight abnormal samples, were selected as test sets.

Other platforms datasets GSE122063, GSE33000, GSE132903,

and GSE106241were selected as the validation sets. The raw data

from these GEO datasets were pre-processed and normalized on

the basis of the Robust Multiarray Average (RMA) function of

“affy” R package. The detailed flow chart of study process was

exhibited in Figure 1.
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Evaluation of immune infiltrating cells

The enrichment scores of 28 immune cell subtypes were

evaluated using the single sample gene set enrichment analysis

(ssGSEA) as previously reported (20). Briefly, the overall marker

genes were utilized to estimate the abundance of immune cells in

a single sample, and the relative proportion of each cell subtype

of immune cells was exhibited as an enrichment score. The

Wilcoxon rank sum test was applied for evaluating the

differences in immune cell proportions between different

groups. To estimate the immune infiltrated levels, the immune

scores were calculated using the R package “ESTIMATE”. A p-

value less than 0.05 was considered statistically different.
Identification of characteristic
immune cells

The least absolute shrinkage and selection operator (LASSO)

is a widely used linear regression based on the R package of

“glmnet” for high-dimensional data (21, 22). In this study, we

conducted the LASSO regression model to determine the

optimal variables from immune cells. The combined dataset

was randomly divided into the training cohort (70%) and

validation cohort (30%), A ten-fold cross-validation method

with 1,000 iterations was employed to avoid the underlying

instability of the results. The optimal penalty parameter (l) was
determined via the minimum criteria. The immune cell subsets

with non-zero coefficients were considered the optimal variables

and were applied for subsequent analyses.
Weighted correlation network
analysis (WGCNA)

The WGCNA network was established to identify gene

modules associated with immune cell subtypes based on the R

package of “WGCNA” (23). Briefly, the top 25% of genes with

high variance from the combined dataset were selected as the

input data to increase the accuracy of the results. The optimal

soft threshold power was identified based on the scale-free

topology criterion, followed by the construction of a weighted

adjacency matrix and the transformation of a topological overlap

matrix (TOM). Modules with >50 genes were screened based on

the hierarchical clustering tree method. Each module was

displayed in a random color. Module eigengene (ME)

represented the first principal component of a gene module,

and module significance (MS) was represented by the correlation

coefficient between modules and corresponding clinical traits.

Gene significance (GS) was defined as the relationship between

each gene with a clinical phenotype.
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Evaluation of immune
microenvironment-associated
differential genes

A total of 2483 immune-related genes were obtained from the

Immunology Database and Analysis Portal (ImmPort; https://www.

immport.org/home), and 1379 immune genes were downloaded

from the innateDB (https://www.innatedb.ca/) database.

Differentially expressed genes (DEGs) between control and AD

samples were identified using the “limma” R package (24), and the

criteria of | log2 (fold change) | > 0.5 and a false discovery rate

(FDR) of 0.05. Finally, the immune microenvironment-associated
Frontiers in Immunology 04
DEGs were determined by intersecting the immune-related genes,

DEGs, and genes in feature modules.
Functional enrichment analysis

Gene ontology (GO) biological functions and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis were conducted using the R package of

“clusterProfiler” (25). GO categories cover biological processes

(BP), molecular functions (MF), and cellular components (CC).

The p-value was adjusted based on the Benjamini–Hochberg
FIGURE 1

The study flow chart. Step1: Identification of immune microenvironment-related DEGs. 1) AD-related immune cells shared by the integrated and
external validation datasets were found using the LASSO and ssGSEA algorithms. 2) The immune microenvironment-related DEGs were
identified using the WGCNA method and immune-related internet resources. 3) Analysis of DEGs connected to the immunological
microenvironment in terms of correlation and functional enrichment. Step2: Identification of immune microenvironment characteristic genes
based on explainable machine learning. 1) Comparison of the diagnostic efficacy of six machine learning algorithms including LightGBM,
CatBoost, XGBoost, RF, LR, and SVM. 2) SHAP summary plot SHAP dependency analysis were employed to interpretation the XGBoost and
LightGBM models and screen the final characteristic immune genes. 3) The SHAP force plots and the LIME algorithm were applied for
interpreting the individualized prediction of AD in the XGBoost model. Step3: Validation and correlation analysis of characteristic genes. 1) The
adequate diagnostic capacity of these 5 distinctive genes was demonstrated using the external validation datasets, generated nomogram,
calibration curve, and decision curve analysis. 2) Correlation analysis between 5 characteristic genes and AD pathological biomarkers including
a-secretase, b-secretase, g-secretase, and Ab-42 levels. Step4: Identification of immune microenvironment-related molecular subtypes in AD
patients. 1) Based on the expression profiles of 5 distinctive genes, consensus clustering technique was used to identify AD-related molecular
subtypes, and functional enrichment was assessed using GSVA approach. 2) Comparison the immune characteristics between different subtypes.
3) The CMap approach was used to predict prospective therapeutic medicines that would target certain subtypes.
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method, and a value of p.adjust less than 0.05 was considered

statistically different.
Machine learning models for feature
selection and visualization

Stable and remarkable features are critical for predicting the risk

of AD onset and progression. Based on the expression profiles of

immune microenvironment-associated DEGs, we applied the

PyCaret (3.0.0) Python package for establishing six machine

learning models including LightGBM, CatBoost, XGBoost, RF,

LR, and SVM. The LightGBM, CatBoost, and XGBoost classifiers

are the optimized distributed gradient boosting algorithms with

satisfactory predictive efficacy by converting a series of weak

variables into strong variables (26–28). The RF algorithm is one

of the most acceptable and well-known multi-class tree algorithms

that combines decision trees through majority voting, eventually

exhibiting its high accuracy and fast independent learning on

distinct datasets (29). The LR algorithm is one of the most classic

linear prediction algorithms based on the regression coefficients,

and has been widely utilized in various fields in recent decades (30).

The SVM algorithm is a popular machine learning algorithm that

projects input data into a higher-dimensional feature space by

mapping a kernel function that is easier to classify than the original

feature space. The iterative learning process of the SVM eventually

converges to the optimal hyperplane that provides the largest inter-

class span (31). Thesemachine-learningmodels were constructed in

accordance with our previous study (32). Briefly, the classification of

diseases was recognized as the response variable, and the immune

microenvironment-associated DEGs were selected as the

explanatory variables. All samples enrolled in the combined

dataset were randomly split into a training set (70%) and a

validation set (30%). Predictive performance for these machine

learning models was estimated using the accuracy, precision-recall

(P-R) value, area under the receiving operating characteristic curve

(AUC), recall, precision, F1, kappa, and Matthews correlation

coefficient (MCC). The final candidate model was determined on

the basis of accuracy, AUC, and P-R value.

Subsequently, the Shapley Additive exPlanation (SHAP) values

were utilized to visualize key features affecting AD onset and

progression, thus analyzing the significance of individual features

that influence the prediction of the outcome and exhibiting the

impact of each vital feature on the final machine learning model. In

addition, we conducted the other explainable algorithm, LIME, to fit

the predictive behavior of the optimal machine learning model (33).
External validation of
characteristic genes

External datasets, including GSE33000, GSE1297, and

GSE132903 were utilized to verify the ability of immune
Frontiers in Immunology 05
microenvironment-associated feature genes to distinguish AD

from non-AD control, and the diagnostic efficacy was visualized

using the AUC curves based on the R package of “pROC”.

GSE10624 was utilized to explore the correlation between feature

genes and classical pathological markers in AD patients. The

mRNA expression data of pan-cancer were downloaded from

Genomic Data Commons (GDC, https://gdc.cancer.gov/) and

employed to verify the expression levels of characteristic genes in

pan-cancer tissues. The AlzData database (http://www.alzdata.org/)

was used to depict the expression of characteristic genes in multiple

brain tissues of AD patients.
Establishment of a nomogram

Immune microenvironment-associated feature genes were

fitted to establish a nomogram on the basis of the R package of

“rms”. The calibration curve was used to figure out how accurate

the nomogram was, and the decision curve analysis (DCA) was

used to figure out how useful the nomogram was in the clinic.
Recognition of distinct immune
microenvironment subtypes by
unsupervised clustering

We performed the “partitioning around medoid” (PAM)

method to identify immune microenvironment subtypes for AD

patients, based on the ConsensusClusterPlus package.

Performance of the cumulative distribution function (CDF)

curve, consensus matrix, relative alterations in area under CDF

curve, and a consistent cluster score (>0.9) were considered

when selecting the optimal subtype numbers. The distribution

differences in immune microenvironment subtypes were

visualized using a t-Distributed Stochastic Neighbor

Embedding (tSNE) plot based on the Rtsne package.
Gene set enrichment analysis (GSVA)

Functional enrichment between immune microenvironment

subtypes was evaluated using the “GSVA” and “limma” packages

(34). The gene sets “c2.cp.kegg.v7.4 .symbols” and

“c5.go.bp.v7.5.1.symbols” were obtained from the Molecular

Signatures Database (MSigDB) (https://www.gsea-msigdb.org/

gsea/msigdb/). The absolute t-value of the GSVA score of

hallmark pathways and biological functions more than 5 were

considered statistically different.
Prediction of
small-molecule compounds

Connectivity map (CMap) analysis was conducted to predict

small-molecule compounds targeting immune microenvironment
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subtype 1 and subtype2 as previously reported (35). Briefly, a total

of 1309 drug signatures were downloaded from the Connectivity

Map database (CMap, https://clue.io/), the expression profiles of

the top 150 up-regulated and 150 down-regulated were selected as

the input data. The CMap score were calculated using the eXtreme

Sum (XSum) algorithm, and the top five small-molecule

compounds with the lowest CMap score were selected

for visualization.
Primary culture of cortical neurons

Primary culture of cortical neurons was conducted following

our previous study (36) with minor modifications. Briefly,

embryonic rats (16-18 days) were dissected from anesthetized

pregnant Sprague-Dawley rats (purchased from the Experimental

Animal Center of Fujian Medical University). The cerebral cortex

of embryonic rats was dissected, and the meninges and blood

vessels were carefully exposed. The isolated tissue was then

minced, trypsinized with 0.25% trypsin for 20 min at 37°C, and

minced gently. Dispersed cells (3 × 106 cells) were placed on 6-well

plates coated with poly-1-lysine (100 µg/ml). Subsequently,

primary cortical neurons were cultured in a neurobasal medium

(Gibco, NY, USA) supplemented with 2% B27 supplement

(Gibco, NY, USA), 0.5-mM L-glutamine (Gibco, NY, USA), and

50 U/ml of penicillin-streptomycin (Gibco, NY, USA). The

cultured media were first changed after 8 hours and

subsequently half of the medium was replaced every 2-3 days.

Cortical neurons were cultured for approximately 7-9 days in a

37°C, 5% CO2 incubator. The Institutional Animal Care and Use

Committee of Fujian Medical University approved this study, and

it was done according to the Guidelines for the Care and Use of

Laboratory Animals.
Oligomeric Ab preparation and
establishment of AD model in primary
cortical neurons

The preparation of Ab1-42 oligomer form was conducted

following the previously reported (37) with minor

modifications. Briefly, a total of 1mg Ab1-42 was dissolved in

pre-cooled hexafluoroisopropanol (HFIP) and incubated at room

temperature for 30 to 60 minutes, making the concentration of

Ab1-42 was 1mmol/L. Subsequently, the 1mg Ab1-42-HFP

solution was placed on the ice for 5-10 minutes, the Ab1-42
peptide membrane was obtained after removing the supernatant

and was stored at -20°C. Next, The Ab1-42 peptide membrane was

dissolved in DMSO (Gibco, NY, USA) and stored at -20°C until

use. To maintain oligomerization conditions, the F-12 medium

(Gibco, NY, USA) was added to Ab1-42 peptide membrane and

incubated at 4°C overnight. After centrifugation and removal of

the precipitation, The supernatant (Ab1-42 peptide) was obtained
Frontiers in Immunology 06
and utilized to further study. The primary cortical neurons (DIV

7-8) cultured on the 6-well plates were incubated with 20 umol/L

Ab1-42 oligomer at 37°C for 12h to mimic the in vitro model of

AD. The culture medium was then changed to the normal

neurobasal medium, and the cells were grown in a 37°C

incubator with 5% CO2.
Real-time RT-PCR analysis

The total RNA of primary cortical neurons (DIV 7-8)

cultured on the 6-well plates was extracted using a TRIzol

reagent (ThermoFisher Scientific, MA, USA) following the

manufacturer ’s instructions. Total RNA was reverse-

transcribed using a RevertAid First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, MA, USA) for complementary DNA

(cDNA) synthesis. The primers applied for RT-PCR analysis

were as fo l lows: CXCR4: forward, 5 ′-GTTCCAGT

TCCAGCACATCAT-3′, reverse, 5′- CCAGGATAAGGA

TGACCGTAGT-3’; CXCL10: forward, 5′-TGCAAGTCT

ATCCTGTCCGC-3′, reverse, 5′-TCTTTGGCTCACCGC

TTTCA-3 ’ ; PPP3R1: forward, 5′-AAGATACGCAGTT

ACAGCAGATTG-3′, reverse, 5′-CCACCTACAACAGCACA
GAAC-3’; HSP90AB1: forward, 5′-TCTAATGCTTCTGA
TGCCCTGG′, reverse, 5′-GTGTCCACCAAAGTCAGCGT-3’;
S100A12: forward, 5′-CTTCCACCAATACTCAGTTCGG′,
reverse, 5′-GCAATGGCTACCAGGGATATG-3’. The qRT-

PCR was performed with SYBR® Premix Ex Taq™ II (Takara,

Shiga, Japan) and an ABI 7500 Real-Time PCR system (Applied

Biosystems, CA, USA). Relative quantification was conducted

against a standard curve, and the specific values were normalized

against rat b-actin mRNA. The results were defined as a relative

increment in mRNA expression relative to control values.
Other statistical analysis

All statistical analyses were performed using R software

(version 4.1.0). The correlation analysis was performed on the

basis of the Spearman method. The Wilcoxon sum-rank test was

utilized to compare the difference between two groups. The FDR

was calculated by the Benjamin–Hochberg method for adjusting

the p-value. Statistical significance was defined as a two-sided

p < 0.05.
Results

Infiltration of immune cells results in
AD patients

We first combined the normal and AD brain tissue

expression profiles of the GSE48350, GSE5281, and GSE28146
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datasets, and after excluding 8 abnormal brain tissues, we

obtained 247 normal brain tissues and 189 AD brain tissues.

Before removing batch effects, brain tissues from different

platforms showed significantly different clustering patterns but

grouped together after batch correlation (Figure S1). To

characterize immune differences between non-AD controls

and AD patients, we compared the difference in enrichment

scores of 28 immune cell subsets in each group of the combined

dataset. We observed a higher B cell infiltration, including that of

activated B cell, immature B cell, and memory B cell in patients

with AD. Meanwhile, AD patients exhibited higher T cell scores,

including the central memory CD4+ T cell, the effector memory

CD8+ T cell, the natural killer T cell, the regulatory T cell, the

type 1 T helper cell, and the type 17 T helper cell. In addition,

natural killer cell, macrophage, mast cell, MDSC, neutrophil, and
Frontiers in Immunology 07
dendritic cell also had higher cell scores in patients with AD

(Figures 2A, B). To further validate the results of immune

infiltration, we next evaluated the differences in the 28

immune cell scores in GSE122063. The results revealed that

excepting activated B cell, activated CD8+ T cell, CD56bright

natural killer cell, central memory CD8+ T cell, gamma delta T

cell, type 2 T helper cell, the remaining 22 immune cell

enrichment scores displayed notable differences between the

control and AD groups (Figures 2C, D).Combining these

results, we finally identified 13 differentially expressed immune

cells in AD patients including central memory CD4 T cell,

effector memory CD8+ T cell, immature B cell, macrophage,

mast cell, MDSC, memory B cell, natural killer cell, natural killer

T cell, neutrophil, Plasmacytoid dendritic cell, regulatory T cell,

type 1 T helper cell, and type 17 T helper cell, suggesting that the
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FIGURE 2

Evaluation of immune cell infiltration between AD and non-AD individuals. (A) Heatmap showing the ssGSEA scores of 28 immune cell
subpopulations in combine dataset. (B) Violin plot showing the differences of infiltrated immune cells in combine dataset between AD and
normal individuals. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance. (C) Heatmap showing the ssGSEA scores of 28
immune cell subpopulations in GSE122063. (D) Violin diagram showing the differences of infiltrated immune cells in GSE122063 between AD
and normal individuals. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance. (E) Ten-fold cross-validation of LASSO
regression analysis. Error bars represented the standard error (SE). The dotted vertical lines corresponded to the optimal value of lambda.
(F) LASSO coefficient profiles of 13 differentially expressed immune cells. (G) Barplots showing six immune cells with non-zero coefficients
recognized by LASSO algorithm.
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alterations in infiltrated immune cells are closely linked to

AD pathology.

Subsequently, we performed the LASSO regression

algorithm to further determine the characteristic immune cells

related to the progression of AD. Six optimal variables

(plasmacytoid dendritic cell, type 17 T helper cell, immature B

cell, natural killer cell, MDSC, and neutrophil) with non-zero

coefficients were finally determined from the above 13 immune

cell subsets (Figures 2E–G).
Identification of immune
microenvironment-related DEGs

We performed the WGCNA on the basis of the expression

profile of the combined dataset to determine core modules

correlated with the above six characteristic immune cell

subtypes in patients with AD. A scale-free topology network
Frontiers in Immunology 08
and connectivity were most efficient when the soft threshold b
was set at 4 based on the PickSoftThreshold function

(Figure 3A). The clustering tree was classified into eleven

differently colored gene modules via a hierarchical clustering

algorithm (Figure 3B). Among these modules, the greenyellow

module (986 genes) had the highest positive correlation with

immature B cell (R = 0.67), MDSC (R= 0.72), natural killer cell

(R= 0.75), neutrophil (R= 0.34), and type17 T helper cell

(R= 0.64). Whereas the blue module (2426 genes) exhibited

the highest negative correlation with immature B cell (R = -0.7),

MDSC (R= -0.62), natural killer cell (R= -0.68), neutrophil

(R= -0.59), and type17 T helper cell (R= -0.73) (Figure 3C).

Therefore, we selected the genes inside the greenyellow and blue

modules for further analysis. Following intersection, 26 immune

microenvironment-related DEGs shared by greenyellow

module-related genes, DEGs of AD, immune-related genes

from the ImmPort and innateDB datasets were finally

identified (Figure 3D). In addition, we also determined 5
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FIGURE 3

Identification of immune microenvironment-related DEGs between AD and controls. (A) The selection of soft threshold b. (B) Dendrogram of
the co-expression module clustering tree. Distinct colors corresponded to the different co-expression modules. (C) Heatmap indicating the
correlation between 11 modules with six types of immune cell. (D) Venn diagram showing the immune microenvironment-related DEGs shared
by greenyellow module (986 genes), DEGs of AD (863 genes), immune genes from ImmPort (2483 genes) and innateDB (1879 genes) databases.
(E) Venn diagram indicating the immune microenvironment-related DEGs shared by blue module (2426 genes), DEGs of AD (863 genes),
immune genes from ImmPort (2483 genes) and innateDB (1879 genes) databases. (F, G) Heatmap (F) and split violin plots (G) revealing the
expression of 31 immune microenvironment-related DEGs between AD and healthy controls. ***p < 0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1046410
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lai et al. 10.3389/fimmu.2022.1046410
immune microenvironment-related DEGs in the blue module

(Figure 3E). Further, a unique immune microenvironment

profile was generated between control and AD groups when

compared to the expression levels of these 31 immune

microenvironment-related DEGs. HSP90AB1 and PPP3R1

expression levels were significantly lower in AD patients than

in non-AD controls, whereas the remaining 29 DEGs were

significantly higher in AD patients (Figures 3F, G), suggesting

that these immune microenvironment-related DEGs may be

closely linked to AD progression.
Correlation and functional enrichment
analysis of immune microenvironment-
related DEGs

To evaluate the correlation among immune microenvironment-

related DEGs, we first depicted the comprehensive landscape of 31

immune microenvironment-related DEGs interactions based on the

gene expression data and identified four distinct patterns. Among

these DEGs, most of which exhibited strong synergistic effects

(Figure 4A). In addition, we depicted the correlation patterns

between 31 immune microenvironment-related DEGs and 28

immune cell subsets. Consistently, the results underlined that these

immune microenvironment-related DEGs were significantly
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correlated with immune cells (Figure 4B), indicating the alterations

in immune microenvironment may be a vital pathophysiological

mechanism contributing to AD progression. Functional enrichment

analysis revealed that these immune microenvironment-related

DEGs were mainly enriched in biological functions including

immune responses, cytokine–cytokine receptor interaction,

regulation of plasma membrane, ubiquitin protein ligase binding,

and TNF production (Figure 4C). KEGG enrichment analysis

suggested that immune-mediated signaling pathways, various

human diseases including multiple virus infections, alcoholic liver

disease, and autoimmune disease, and classical signaling pathways

including the TNF signaling pathway, cytokine–cytokine receptor

interaction, NF-kappa B signaling pathway, and MAPK signaling

pathway were closely related to these immune microenvironment-

related DEGs. These results demonstrated the crucial roles of

immune microenvironment-related DEGs.
Development and estimation of machine
learning models

To ascertain the optimal machine learning model for

predicting AD, we randomly split a total of 436 samples in the

combined dataset (247 normal and 189 AD) into the training

cohort (70%, N=305) and testing cohort (30%, N=131). The
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FIGURE 4

Correlation and functional enrichment analysis of immune microenvironment-related DEGs. (A) Interactions among 31 immune
microenvironment-related DEGs. The circle size represented the impact of each regulator on AD, the p-value was adjusted based on the
Benjamini–Hochberg method. Different colors corresponded to different gene clusters. The lines connecting the DEG represented interactions,
and the thickness of the lines represented the strength of the correlation. Red color corresponded to positive correlations and blue color
corresponded to negative correlations. (B) The correlation between 31 immune microenvironment-related DEGs and 28 immune cell subsets.
The circle size represented the value of correlation coefficients. Red color corresponded to positive correlations and blue color corresponded
to negative correlations. The shade of color represented the adjusted p-value. (C, D) Barplots showing the GO (C) and KEGG (D) enrichment
analysis of 31 immune microenvironment-related DEGs.
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expression profiles of 31 immune microenvironment-related

DEGs were selected as input variables, and six machine

learning models, including XGBoost, CatBoost, SVM,

LightGBM, LR, and RF were established to predict outcomes.

The performance of multiple machine learning models

(accuracy, AUC, recall, precision, F1, kappa, and MCC) in the

training cohort was shown in Figure S2A. The LightGBM model

displayed the highest accuracy (0.797), AUC (0.858), recall

(0.736), precision (0.792), F1 (0.759), kappa (0.585), and MCC

(0.591). Whereas the SVM model exhibited the lowest accuracy

(0.731) and AUC (0.808). In the testing cohort, the XGBoost

model acquired the best performance with an AUC value of 0.86

(CatBoost: 0.84, SVM: 0.80, LightGBM: 0.85, LR: 0.76, RF: 0.80)

and a P-R value of 0.83 (CatBoost: 0.83, SVM: 0.77, LightGBM:

0.82, LR: 0.68, RF: 0.76) (Figures S2A–E and Figures 5A–C). To

further estimate the performance of the six models in the testing

cohort, the accuracy, recall, precision, F1, kappa, and MCC were

also calculated and the results were presented in Figure 5C.

Combined with these results, the XGBoost model is superior to

other models, and the LightGBM model have the second-best

performance. Therefore, the XGBoost and LightGBM models

were selected for subsequent prediction.
Global and local explanations of the
machine learning models

To explain how the machine learning model worked in

predicting AD onset, we aimed to open the ‘black box’ in the

XGBoost and LightGBM models via SHAP values and elucidate

the influence of each feature variable on the prediction model.
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The importance ranking of the feature variables based on the

SHAP summary plot of the XGBoost model indicated that the

top 5 most powerful variables contributing to the XGBoost

model were CXCR4, PPP3R1, HSP90AB1, CXCL10, and

S100A12 (Figure 6A). In addition, we employed SHAP

dependency analysis to describe how a single characteristic

variable influenced the outcome of the XGBoost predictive

model (Figure 6B). The higher SHAP values of a characteristic

variable, the more likely AD becomes. For example, in the

XGBoost model, lower feature values of CXCR4 corresponded

to negative SHAP values, which were closely related to a lower

risk of AD onset. Contrast that with higher feature values of

CXCR4 were corresponded to positive SHAP values and exerted

a stronger impact on the prediction of AD onset. Furthermore,

we also found the top 5 most important variables in the

LightGBM model were consistent with those in the XGBoost

model, with CXCR4, HSP90AB1, PPP3R1, CXCL10, and

S100A12 being ranked in the top five (Figure 6C). The SHAP

dependency analysis was also utilized to interpret the effects of

each feature variable on the output of the LightGBM model

(Figure 6D). More detailed information about the top 5 immune

microenvironment-related DEGs affecting the outcome of the

XGBoost model was presented in Figures 6E–I. In total, low

expression levels of PPP3R1 and HSP90AB1 exerted a powerful

influence on the development of AD. Additionally, high levels of

CXCR4, CXCL10, and S100A12 were closely linked to

AD progression.

Subsequently, the SHAP force plots and the LIME algorithm

were employed to interpret the individualized prediction of AD

via drawing the patient and normal subjects from the testing set.

According to the SHAP force plots, numbers in bold
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A

FIGURE 5

Evaluation the performance of the six machine learning algorithms in testing set. (A, B) The specific values of AUC and P-R in XGBoost (A) and
LightGBM (B), machine learning models. (C) Comprehensive estimate the performance of the six machine learning models including accuracy,
recall, precision, F1, kappa, and MCC.
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corresponded to probabilistic predictions (f(x)), and the base

values represented predictions without model input. The blue

bars on the right represented normal predictions and the pink

bars on the left reflected predictions with increased AD

probability. Figures 7A, C presented a normal case based on

the SHAP force plot and LIME algorithm, respectively. The

predicted AD probability based on the XGBoost model was 11%.

Feature variables predicted by the XGBoost model that reinforce

the onset of AD were IL1R2 expression of 1.18, CXCL2

expression of 1.01, IL4R expression of 1.69, TNFAIP3

expression of 2.26, and C5AR1 expression of 1.17. Feature

variables that reduced the risk of AD included CXCR4,

PPP3R1, CXCL10, GBP2, and S100A12. The predicted

outcome of the XGBoost model for the current sample is the

control, which is consistent with the actual outcome of the

sample. Similarly, Figures 7B, D exhibited an AD case on the

basis of the SHAP force plot and LIME algorithm, respectively.

The predicted AD probability based on the XGBoost model was

94%. The patient’s elevated CXCR4 of 4.86, NFKBIA of 4.89,

PPP3R1 of 3.00, HSP90AB1 of 4.47, IL4R of 1.79 resulted in

increasing the AD risk, while the expression of S100A12 at 1.97,

CXCL10 at 0.76, IL1R2 at 1.92, FCER1G at 0.34, and IFITM1 at

4.36 could lead to a lower risk of AD. The expected output of the

XGBoost model is AD, and the actual result is also AD. Figure 7E

depicted the global explanation for all the normal and AD brain

tissue samples in the testing cohort.
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Selection and verification of
characteristic genes

Based on the mean SHAP values, we have intersected the top

5 feature variables from the XGBoost and LightGBM predictive

model and 5 characteristic genes (CXCR4, PPP3R1, HSP90AB1,

CXCL10, and S100A12) shared by the XGBoost and LightGBM

machine learning model were finally determined. Then, the

diagnostic ability of each feature gene to predict AD

progression in the internal datasets was assessed using ROC

curve analysis. The AUC values of the ROC curves in the

training set were 0.792 for CXCR4, 0.713 for PPP3R1, 0.678

for HSP90AB1, 0.647 for CXCL10, and 0.667 for S100A12

(Figure 8A). The AUC values of ROC curves in the testing set

were 0.774 for CXCR4, 0.697 for PPP3R1, 0.687 for HSP90AB1,

0.643 for CXCL10, and 0.648 for S100A12 (Figure 8B). The AUC

values of ROC curves in the combined set were 0.787 for

CXCR4, 0.707 for PPP3R1, 0.681 for HSP90AB1, 0.645 for

CXCL10, and 0.661 for S100A12 (Figure 8C). In addition,

three external validation datasets were used: GSE1297

(CXCR4: AUC=0.646, PPP3R1: AUC=0.843, HSP90AB1:

AUC=0.833, CXCL10: AUC=0.626, S100A12: AUC=0.611),

GSE33000 (CXCR4: AUC=0.829, PPP3R1: AUC=0.662,

HSP90AB1: AUC=0.716, CXCL10: AUC=0.689, S100A12:

AUC=0.843), and GSE132903 (CXCR4: AUC=0.568, PPP3R1:

AUC=0.742, HSP90AB1: AUC=0.660, CXCL10: AUC=0.604,
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FIGURE 6

explanation of machine learning models using SHAP summary and dependence plot. (A, B) Importance matrix and SHAP summary plot showing
the top 20 immune microenvironment-related genes contributing to the XGBoost model. (C, D) Importance matrix and SHAP summary plot
showing the top 20 immune microenvironment-related genes contributing to the LightGBM model. Each line represented a feature variable,
and the abscissa corresponded to the SHAP value. Red dots corresponded to higher feature values, and blue dots corresponded to lower
feature values. (E–I) SHAP dependence plot showing the top 5 characteristic features shared by the XGBoost and LightGBM models. SHAP
values more than zero represented a higher risk of AD.
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S100A12: AUC=0.580) were utilized to further verify the

diagnostic efficacy of these five characteristic genes

(Figures 8D–F). Furthermore, an AD development prediction

tool, the nomogram, was constructed by including these five

signature genes associated with immune microenvironment. In

the nomogram, the value of each signature variable is correlated

with a score point, and the total scores were obtained via

summing the scores of all feature variables, which represented

the risk of AD onset (Figure 8G). The calibration curve

confirmed the accuracy of the nomogram in diagnosing AD

(Figure 8H). DCA revealed that the clinical application of the

nomogram brought certain clinical benefits to AD patients

(Figure 8I). Taking the above results together, we concluded

that these feature genes associated with the immune

microenvironment displayed better diagnostic ability for

predicting the progression of AD.
Identification of subtypes in the immune
microenvironment of patients with AD

To elucidate the immune microenvironment-related

expression patterns in AD, we performed the consensus
Frontiers in Immunology 12
clustering algorithm to group the 189 AD brain tissue samples

on the basis of 5 characteristic genes. The consensus matrix was

regarded as the similarity matrix to determine the final subtypes.

Based on the consensus clustering results, CDF plot, relative

change of the CDF curve area, and the consistent cluster score,

we selected k = 2 as the optimal value to group 189 patients into

two different subtypes, with 112 samples in subtype1, and 77

samples in subtype2 (Figures 9A–D). tSNE analysis manifested

the apparent difference between subtype1 and subtype2

(Figure 9E). As expected, there was eminent heterogeneity in

the expression of 5 characteristic genes between these subtypes

(Figure 9F). Differential analyses indicated that 609 upregulated

and 1055 downregulated DEGs were identified between

subtype1 and subtype2 (Figure S3).

We then characterized enriched biological functions and

signaling pathways using gene sets from the MSigDB database,

and performed GSVA to estimate the score of each patient. In

immune microenvironment subtype1, immune response-related

biological functions including mast cell activation, immune

response, cell chemotaxis, cytokine-mediated signaling

pathways, and inflammatory response (leukocyte cell

migration, chemotaxis, and adhesion) were highly enriched.

The biological functions of subtype2 were mainly involved in
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FIGURE 7

SHAP force plot and LIME algorithm for interpreting individual’s prediction results. (A, B) A normal individual (A) and AD case (B) were presented
based on the SHAP force plot, respectively. The bars in red and blue corresponded to increased AD probability and decreased AD probability,
respectively. (C, D) A normal individual (C) and AD case (D) were presented based on the LIME algorithm, respectively. The left side of the figure
exhibited the results of the LIME predictions. The middle section lists exhibited the ten variables that have the greatest effects on normal or AD
onset. The length of each feature bar indicated the importance of correspond feature in making predictions. The right panel exhibited the
specific values for the ten variables with the greatest effect on normal or AD onset. (E) The global explanation for all the normal and AD samples
in the testing cohort were depicted based on the SHAP force plot.
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the transportation of vesicles, metabolic processes, oxidative

phosphorylation, and the organization of the mitochondrial

inner membrane (Figure 9G). Consistently, the pathways for

immune microenvironment subtype1 enrichment were

consistently linked to immune response, including the B cell

receptor signaling pathway, cytokine-cytokine receptor

interaction, production of intestinal IgA, the notch signaling

pathway, and TGF-b signaling. Whereas in immune

microenvironment subtype2, neurodegenerative diseases and

metabolism-related pathways were activated (Figure 9H).
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Differentiation of immune
characteristics between immune
microenvironment subtypes

To better clarify and understand the biological and

immunological differences and relationships between these

immune microenvironment subtypes, we first compared the

differences in 28 immune cell subsets within each subtype. A

higher infiltration of T cells, including central memory CD4+ T

cell, central memory CD8+ T cell, effector memory CD4+ T cell,
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FIGURE 8

Validation of the diagnostic efficacy of characteristic genes. (A–C) ROC curves showing the diagnostic performance of characteristic genes in
internal datasets including training set (A), testing set (B), and combined set (C). (D–F) ROC curves showing the diagnostic performance of
characteristic genes in external datasets including GSE1297 (D), GSE33000 (E), and GSE132903 (F). (G) Representative nomogram showing the
predicted risk for AD based on feature genes. (H) Representative calibration curve showing predicted performance of the nomogram. (I) DCA
showing the clinical benefits of the nomogram. *p < 0.05, **p < 0.01, ***p < 0.001.
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natural killer T cell, regulatory T cell, type 1 T helper cell, and type

17 T helper cell were observed in patients with subtype1 when

compared with subtype2 groups. Meanwhile, multiple B cells

including activated B cell, immature B cell, and memory B cell,

and innate immune cells including natural killer cell, macrophage,

mast cell, MDSC, neutrophil also had higher enrichment scores in

immune microenvironment subtype1 (Figures 10A, B). To look for

the differences in immune characteristics between each subtype, we

further evaluated the expression of immune regulatory genes in

each subtype (Figure 10C). In immune microenvironment

subtype1, all immune co-stimulator genes and nearly all immune

genes related to antigen presentation and cell adhesion were

consistently highly expressed. Meanwhile , immune

microenvironment subtype1 also exhibited the enhanced

expression of the immune co-inhibitor, ligand, receptor, and

other associated genes (Figures S4A–G). Moreover, the immune

scores from each immune microenvironment subtype were also

compared, which represented a qualitative evaluation of immune

characteristics. Patients with subtype1 had greater immune scores

than the other subtype (Figure 10D). Combined with the above

results, we eventually identified subtype1 as an immune subtype

and subtype2 as a metabolism subtype.
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Correlation analysis and therapeutic
target prediction

To further explore the function of these 5 characteristic genes, we

utilized the external dataset GSE106241, which includedmore detailed

clinical information, to clarify the correlation between these

characteristic genes and AD pathological biomarkers. We observed

thatHSP90AB1was negatively correlatedwitha-secretase activity (R=
-0.37), b-secretase activity (R= -0.46), and AD clinical stage (R= -0.28)

(Figures 11A–C). Whereas CXCL10 was positively associated with b-
secretase activity (R= -0.46) (Figure 11D). Meanwhile, PPP3R1 also

exhibited negatively correlated with the activity of a-secretase (R=

-0.32), b-secretase (R= -0.57), g-secretase (R= -0.37), and Ab-42 levels
(R= -0.28) (Figures 11E–H). Furthermore, Figure 11I depicts

additional information about these five characteristic genes, such as

protein-protein interactions, predicted transcription factors, miRNA,

and multiple drugs targeting these five characteristic genes. Finally, we

explore the potential therapeutic drugs targeting immune subtype1

and metabolism subtype2 using the CMap analysis. The lower the

CMap score for a small molecule compound, the more likely it is to

have the ab i l i t y t o t r e a t th e d i s e a s e . MK-866 ,

arachidonyltrifluoromethane, TTNPB, vorinostat, and STOCKIN-
B C

D

E F

G

H

A

FIGURE 9

Identification and enrichment analysis of immune microenvironment subtypes. (A) Consensus clustering matrix when k = 2. (B) Consensus CDF
curves when k=2 to 6. (C) Relative alterations in CDF delta area curves. (D) Consensus score of each subtype when k=2 to 6. (E) t-SNE diagram
separated subtype1 (pink) and sybtype2 samples (blue). (F) Split violin plots revealing the expression of 5 characteristic genes between subtypes.
(G, H) Differences in enriched biological functions (G) and hallmark pathways (H) between distinct immune microenvironment subtypes ranked
by t values of GSVA scores. *p < 0.05, **p < 0.01, ****p < 0.0001.
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3584 were the top five small-molecule compounds with the lowest

CMap score in subtype1 (Figure 11J), whereas TTNPB, butein, PHA-

00816795, and STOCKIN-3584 were metabolism subtype2-related

small-molecule compounds (Figure 11K). Subtype1 and subtype2

shared three common small molecular compounds, including

arachidonyltrifluoromethane, TTNPB, and STOCKIN-3584. The

C M a p s c o r e i n d i c a t e d t h a t M K - 8 6 6 a n d

arachidonyltrifluoromethane were the most suitable therapeutic

drugs for targeting immune subtype1 and metabolism

subtype2, respectively.
External validation of differential
expression of characteristic genes

Firstly, we employed the online tool AlzData database to

elucidate the expression landscape of characteristic genes in

different brain regions of AD patients. The expression of CXCR4

was notably increased, while HSP90AB1 and PPP3R1 were

markedly lower in the hippocampus and cortex tissues of AD

patients relative to normal controls. In addition, a significant

increment of CXCL10 expression was also observed in the

temporal cortex and frontal cortex of patients with AD. However,

the difference in the expression of S100A12 in different brain
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regions between normal subjects and AD patients was not

significant (Figures 12A–E). Subsequently, we perform pan-cancer

analysis to investigate the differential expression of these five

hallmark genes between 20 cancer types and adjacent normal

tissues. It was worth noting that the expression levels of CXCR4,

PPP3R1, HSP90AB1, CXCL10, and S100A12 were substantially

elevated in multiple types of cancer tissues (Figure 12F). Next, we

aimed to focus on those signature genes that were notably

associated with patient survival in 33 cancer types. We found that

all of the signature genes were closely related to the overall survival

of patients with at least three cancer types (Figure 12G). Finally, we

performed the RT-PCR analysis to further verify the expression

landscape of these five characteristic immune microenvironment-

related genes. Similar to the results of datasets in brain tissue

samples, the expression levels of CXCR4, CXCL10, and S100A12

were notably higher in AD cortical neurons, while HSP90AB1 and

PPP3R1 genes exhibited significant downregulation (Figure 12H).
Discussion

The creation of a clinically viable and useful classifier to

direct AD treatment is crucial given the considerable variation in

outcome observed in AD patients. We discovered that the
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FIGURE 10

The immune characteristics of distinct immune microenvironment subtypes. (A) Heatmap showing the ssGSEA scores of 28 immune cell
subpopulations between subtypes. (B) Violin diagram showing the differences of infiltrated immune cells among three groups. (C) Heatmap showing
the differences in immune regulatory genes between subtypes. (D) Violin plots revealing the differences in immune scores between subtypes. *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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immune microenvironment status was closely associated to the

beginning and development of AD in patients. Then, using six

machine learning methods, including LightGBM, CatBoost,

XGBoost, RF, LR, and SVM, we identified 5 immune

microenvironment-related characteristic genes that were

strongly correlated with AD pathology biomarkers and capable

of reliably forecasting the course of AD. The output of machine

learning models was interpreted using the SHAP and LIME

algorithms. Additionally, based on these distinguishing genes,

we discovered two distinct immune microenvironment

subtypes, each of which displayed distinct enriched functions

and pathways, immune cell infiltration, immunological features,

and therapeutic drugs. These results offer a fresh perspective on

the relationship between the immune microenvironment in the

brain tissues and the prognosis and classification of AD patients.

It was generally recognized that both innate and adaptive

immune responses would decline with age. Therefore, aging

negatively impacts immunity and may increase the risk of various

autoimmunity and inflammation diseases (38). Several researchers

have reported the role of the immunemicroenvironment in patients

with AD (6). It was found that the dysregulation of both central and

peripheral immune responses is regarded as the basis of AD

pathogenesis and progression. On one hand, an imbalance in

peripheral and central T-cell immunity has been observed in AD

patients, as evidenced by increased proportions of central and
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effector memory T cells (39, 40), suggesting that the alterations in

the distribution and activity of functional subpopulations of

peripheral lymphocytes may be a critical pathogenic mechanism

causing disease progression. Other studies have proven that the

higher proportion of CD4+ T cells in AD patients mainly includes

type17 and type 19 T help cells (41, 42), and regulatory T cells-

mediated immunomodulation is also involved in AD pathology

(43). On the other hand, excessive accumulation of cerebral Ab
peptides persistently activates the microglia- and astrocyte-

dependent immune cascade signaling, and the prolonged

neuroinflammatory conditions can lead to the infiltration of

innate immune cells in the central nervous system (CNS),

ultimately contributing to disease progression, neuronal

dysfunction and damage. Studies of the mouse models of Ab
pathology and AD patients have observed the significant

infiltration of peripheral innate immune cells including

macrophages, natural killer cells, and neutrophils in the CNS (11,

44, 45). The depletion or inhibition of neutrophils could exert

neuroprotective effects via reducing Ab neuropathology and

improving memory (11). As an essential component of the innate

immune system and a member of cytotoxic lymphocytes NK cells

are capable of rapidly killing cells via cytotoxic granules-mediated

apoptosis and inflammatory factors such as INF-g, as well as

stimulating the activation of other immune cells to cause an

immune cascade response when stimulated (46, 47). The
B C D
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FIGURE 11

Correlation analysis and therapeutic target prediction. (A–H) Scatter plot showing the correlations between HSP90AB1, CXCL10, PPP3R1 and AD
pathological markers (a-secretase activity, b-secretase activity, AD clinical stag, and Ab-42 levels). (I) Prediction of upstream- or downstream-
target molecules of 5 signature genes including protein-protein interaction, transcription factors, miRNA, and potential drugs. (J, K) CMap
analysis revealing the potential therapeutic drugs for subtype1 (J) and subtype2 (K), respectively.
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cytotoxic activity of peripheral blood NK cells is declining with age,

and the infiltration levels of peripheral NK cells were significantly

higher in the brains of AD humans and mice (48–50). Additionally,

Genome-wide association studies have revealed the close

correlation between multiple immune-related genes and the

pathology of AD. For example, homeostatic dysregulation of

microglia (disease-associated microglia) could be observed in AD

brain, as evidenced by the accumulation of the phagocytic receptor

TREM2-mediated phagocytic and lipid metabolism genes (51, 52).

Another phagocytic receptor, CD33, acts as the upstream regulator

of TREM2, and studies have confirmed that the crosstalk between

CD33 and TREM2 promotes the pathogenesis of AD via regulating

the IL-1b/IL-1RN singling pathway (53). Consistently, in our

current study, we identified six most correlated immune cells,

including plasmacytoid dendritic cell, type 17 T helper cell,

immature B cell, NK cells, MDSC, and neutrophil based on the

LASSO regression algorithm (Figure 2). The infiltrated immune
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cells subtypes revealed that both activations of innate and adaptive

immunity were observed in AD patients, thus presenting a poorer

prognosis. Targeting these immune cells may provide a theoretical

basis for the treatment of AD. Meanwhile, we have identified 31

DEGs that were most associated with the above six immune cell

subsets, most of which exhibited strong synergistic effects.

Functional enrichment analysis suggested that these DEGs were

notably enriched in immune-related functions and pathways

(Figures 3, 4), suggesting that the progression of AD might be a

result of the combination of multiple immune genes and cells.

Accurate early prediction and diagnosis of AD are required for

the timely identification of patients at high risk of AD so that

preventive approaches can be developed in a timely manner.

Recently, due to the excellent performance in clinical diagnosis,

various machine learning algorithms have been widely utilized to

predict new biomarkers and obtain new information about disease

pathogenesis (54, 55). Machine learning not only provides an
B
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FIGURE 12

External validation of characteristic genes. (A–E) AlzData database showing the expression levels of CXCR4 (A), CXCL10 (B), HSP90AB1 (C),
S100A12 (D) and PPP3R1 (E) in different brain regins. (F) Histogram (upper panel) showing the amount of up-regulated or down-regulated DEGs,
and the heatmap showing the fold change and FDR of 5 characteristic genes in each cancer. Red color corresponding to up-regulation and
green color corresponding to down-regulation. (G) Summary of the correlation between 5 characteristic genes and survival of cancer patients.
Red color corresponding to a higher expression of characteristic gene related with worse survival, while blue color corresponding to an
correlation with better survival. Only p-value less than 0.05 was exhibited. (H) Violin plots revealing the expressional differences in CXCR4,
CXCL10, PPP3R1, HSP90AB1, and S100A12 between control and AD groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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unbiased approach to predict patient’s clinical status, but also can

detect previously unknown conditions and identify new biomarkers

(56, 57). In our current study, of the six machine learning algorithms

we tested, we observed that an XGBoost approach exhibited the best

performance, as evidenced by the highest AUC, P-R curve area,

accuracy, recall, precision, F1, kappa, and MCC identifying AD

patients (Figure 5A). The LightGBM algorithm performed second

only to the XGBoost model (Figure 5B). The summary of feature

importance in both the XGBoost and LightGBM models suggested

that CXCR4 was the most critical factor contributing to the

pathogenesis of AD patients (Figures 6A, B). CXCR4 is an

evolutionarily highly conserved member of the GPCR family. As

the major receptor for CXCL12, CXCR4 is widely enriched in CNS

and plays a critical role in regulating neurotransmission, synaptic

plasticity, and glial interactions (58, 59). Several studies have

demonstrated that there is a powerful correlation between the

dysregulated CXCR4 and neurodegenerative diseases including

AD, and the inhibition of CXCR4/CXCL12 signaling pathways is

able to alleviate glutamate release mediated toxic cascade and

neuronal apoptosis (60, 61). Meanwhile, according to the XGBoost

and LightGBM models, other four vital feature variables were

PPP3R1, HSP90AB1, CXCL10, and S100A12 (Figures 6A,B).

Bioinformatics analysis indicated that the downregulation of

PPP3R1 can serve as novel biomarkers for patients with AD and

the potential mechanisms of low PPP3R1 involved in AD

pathogenesis mainly involve in axon guidance, glutamatergic-

mediated synapses transport, LTP, and MAPK signaling pathway

(62). HSP90AB1, which is a chaperone of Hsp90 family that is

closely linked to astrocytes, was reported to be a neuroprotective

factor in AD patients via reducing the accumulation of cerebral Ab
and tau (63). As a vital chemokine, a higher concentration of

CXCR10 was observed in the brain tissues of AD animal models,

indicating its pathogenic role in contributing to AD progression (64).

S100A12 is a novel inflammation-related protein expressed by

neutrophils and can be induced in many inflammatory cells. It has

been demonstrated that the abnormal expression of S100A12 in

brain samples could aggravate AD-induced inflammatory insult

(65). These findings were consistent with the results in our study

that the overexpression of CXCR4, CXCL10, and S100A12, and the

decreased PPP3R1 and HSP90AB1 might be predictive for poor

prognosis of AD patients. Furthermore, the external validation

datasets, constructed nomogram, calibration curve, and DCA

demonstrated the satisfactory diagnostic ability of these 5

characteristic genes (Figure 8).

Most of the previous studies on AD are based on single or

several types of immune cells and lack a comprehensive assessment

of the immune profile of AD patients (6, 66–69). Our research

comprehensively explored 28 immune cell subsets and various

immune-modulators in the AD immune microenvironment, and

based on the advantages of machine learning in clinical

applications, we finally identified six key immune cell subtypes

(plasmacytoid dendritic cell, type 17 T helper cell, immature B cell,

natural killer cell, MDSC, and neutrophil) and five vital immune
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genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that

can accurately predict AD progression, some of which have never

been reported in AD before. In addition, recent studies only depict

the expression landscape of immune cell subsets or immune-related

genes based on small sample sizes, and lack more in-depth studies

(50, 70, 71). What’s more, the immune-related molecular subtypes

in AD patients also remain unknown and need further clarification.

In this study, we combined several datasets and evaluated the

immune characteristics of AD patients with a larger sample size,

and performed an external validation with several independent

datasets, which makes our study more complete and credible.

Additionally, we classified the AD patients into two distinct

subtypes based on the immune microenvironment-related feature

genes (Figures 9A–E). We observed that subtype1 was mainly

enriched in immune response-related functions and pathways,

while subtype2 was associated with metabolism (Figures 9G, H).

Meanwhile, subtype1 exhibited a higher infiltration of immune cells

and immune scores. Intriguingly, the immune characteristics of

subtype1 were even higher, as evidenced by the enhanced

expression of co-stimulator, cell adhesion, co-inhibitor, ligand,

and receptor associated immune genes (Figures 10A–D).

Therefore, we recognized subtype1 as an immune subtype and

subtype2 as a metabolism subtype. These findings also show that

dysregulation of metabolism and the immune microenvironment

may be defining features of AD subtypes as well as critical pathology

mechanisms contributing to AD heterogeneity. Moreover, the

potential small-molecular compounds of immune subtype1 and

metabolism subtype2 were screened, respectively. We finally

identified MK-866 and arachidonyltrifluoromethane as the most

suitable target drugs for immune subtype1 and metabolism

subtype2, respectively (Figures 11J, K).

However, there are a few issues with the current study that need

to be clarified. First off, as this work was based on publicly available

datasets, additional prospective samples for experimental evaluation

are required for additional validation. Second, the samples

employed for the identification of molecular subtypes or for the

prediction of machine learning algorithms were somewhat tiny,

necessitating a higher AD sample size for validation. Finally, it is

impossible to fully evaluate the distinct subtypes of AD patients due

to the lack of information on crucial clinical characteristics such as

survival time, disease stage, responsiveness to medication, smoking,

drinking, and previous therapies.
Conclusion

The tight relationship between immune microenvironment

state and AD pathogenesis was thoroughly explained by our

study. Additionally, we discovered five distinct immune

microenvironment-related genes (CXCR4, PPP3R1, HSP90AB1,

CXCL10, and S100A12) that, when combined with interpretable

machine learning methods, could successfully forecast the

development of AD. Additionally, we put up a brand-new
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molecular classification for AD that includes immunological and

metabolic subtypes. Together, a thorough reflection of each

individual AD’s immune microenvironment pattern helps us to

better understand the etiology of AD, offers novel diagnostic clues,

and eventually creates a potential strategy for treating AD on an

individual basis.
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SUPPLEMENTARY FIGURE 1

Principal component analysis (PCA). (A, B) PCA of GSE48350, GSE5281
and GSE28146 datasets before (A) and after (B) batch correlation. The

colors represented samples from three different datasets, respectively.

SUPPLEMENTARY FIGURE 2

Comprehensive estimate the performance of the six machine learning
models in the training set. (A) Comparison of diagnostic efficacy of six

machine learning models in the training set. (B–E) The specific values of
AUC and P-R in CatBoost (B), SVM (C), LR (D), and RF (E)machine learning

models in the test set.

SUPPLEMENTARY FIGURE 3

Differential gene screening between subtype1 and subtype2. (A, B)
Heatmap (A) and volcano plot (B) exhibiting the expression profile of

up-regulated and down-regulated DEGs.

SUPPLEMENTARY FIGURE 4

The expression profiles of immune-modulators and immune checkpoints.
(A–G) Split violin plots revealing the expression of immune regulatory

genes associated with antigen presentation (A), cell adhension (B), co-
inhibitor (C), co-inhibitor (D), ligand (E), other (F), and receptor (G). *p <

0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
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